
Chapter 1. The Benets o Using GPUs

The Graphics Processing Unit (GPU)1 provides much higher instruction throughput andmemory band-
width than the CPUwithin a similar price and power envelope. Many applications leverage these higher
capabilities to run aster on the GPU than on the CPU (see GPU Applications). Other computing de-
vices, like FPGAs, are also very energy ecient, but ofer much less programming exibility than GPUs.

This diference in capabilities between the GPU and the CPU exists because they are designed with
diferent goals in mind. While the CPU is designed to excel at executing a sequence o operations,
called a thread, as ast as possible and can execute a ew tens o these threads in parallel, the GPU
is designed to excel at executing thousands o them in parallel (amortizing the slower single-thread
perormance to achieve greater throughput).

The GPU is specialized or highly parallel computations and thereore designed such thatmore transis-
tors are devoted to data processing rather than data caching and ow control. The schematic Figure
1 shows an example distribution o chip resources or a CPU versus a GPU.

Figure 1: The GPU Devotes More Transistors to Data Processing

Devoting more transistors to data processing, or example, oating-point computations, is benecial
or highly parallel computations; the GPU can hidememory access latencies with computation, instead

1 The graphics qualier comes rom the act that when the GPU was originally created, two decades ago, it was designed as
a specialized processor to accelerate graphics rendering. Driven by the insatiable market demand or real-time, high-denition,
3D graphics, it has evolved into a general processor used or many more workloads than just graphics rendering.

3



CUDA C++ Programming Guide, Release 12.6

o relying on large data caches and complex ow control to avoid long memory access latencies, both
o which are expensive in terms o transistors.

In general, an application has amix o parallel parts and sequential parts, so systems are designed with
a mix o GPUs and CPUs in order to maximize overall perormance. Applications with a high degree o
parallelism can exploit this massively parallel nature o the GPU to achieve higher perormance than
on the CPU.

4 Chapter 1. The Benets o Using GPUs



Chapter 2. CUDA®: A General-Purpose
Parallel Computing Platorm
and Programming Model

In November 2006, NVIDIA® introduced CUDA®, a general purpose parallel computing platorm and
programmingmodel that leverages the parallel compute engine in NVIDIA GPUs to solvemany complex
computational problems in a more ecient way than on a CPU.

CUDA comes with a sotware environment that allows developers to use C++ as a high-level program-
ming language. As illustrated by Figure 2, other languages, application programming interaces, or
directives-based approaches are supported, such as FORTRAN, DirectCompute, OpenACC.

5



CUDA C++ Programming Guide, Release 12.6

Figure 2: GPUComputingApplications. CUDA is designed to support various languages and application
programming interaces.

6 Chapter 2. CUDA®: A General-Purpose Parallel Computing Platorm and Programming Model



Chapter 3. A Scalable Programming
Model

The advent o multicore CPUs and manycore GPUs means that mainstream processor chips are now
parallel systems. The challenge is to develop application sotware that transparently scales its paral-
lelism to leverage the increasing number o processor cores, much as 3D graphics applications trans-
parently scale their parallelism to manycore GPUs with widely varying numbers o cores.

The CUDA parallel programming model is designed to overcome this challenge while maintaining a low
learning curve or programmers amiliar with standard programming languages such as C.

At its core are three key abstractions — a hierarchy o thread groups, shared memories, and barrier
synchronization— that are simply exposed to the programmer as aminimal set o language extensions.

These abstractions provide ne-grained data parallelism and thread parallelism, nested within coarse-
grained data parallelism and task parallelism. They guide the programmer to partition the problem
into coarse sub-problems that can be solved independently in parallel by blocks o threads, and each
sub-problem intoner pieces that can be solved cooperatively in parallel by all threadswithin the block.

This decomposition preserves language expressivity by allowing threads to cooperate when solving
each sub-problem, and at the same time enables automatic scalability. Indeed, each block o threads
can be scheduled on any o the available multiprocessors within a GPU, in any order, concurrently or
sequentially, so that a compiled CUDA program can execute on any number o multiprocessors as
illustrated by Figure 3, and only the runtime system needs to know the physical multiprocessor count.

This scalable programming model allows the GPU architecture to span a wide market range by simply
scaling the number omultiprocessors andmemory partitions: rom the high-perormance enthusiast
GeForce GPUs and proessional Quadro and Tesla computing products to a variety o inexpensive,
mainstream GeForce GPUs (see CUDA-Enabled GPUs or a list o all CUDA-enabled GPUs).

7



CUDA C++ Programming Guide, Release 12.6

Figure 3: Automatic Scalability

Note: A GPU is built around an array o Streaming Multiprocessors (SMs) (see Hardware Implementation or
more details). A multithreaded program is partitioned into blocks o threads that execute independently rom
each other, so that a GPU with more multiprocessors will automatically execute the program in less time than a

GPU with ewer multiprocessors.

8 Chapter 3. A Scalable Programming Model



Chapter 5. Programming Model

This chapter introduces the main concepts behind the CUDA programming model by outlining how
they are exposed in C++.

An extensive description o CUDA C++ is given in Programming Interace.

Full code or the vector addition example used in this chapter and the next can be ound in the vec-
torAdd CUDA sample.

5.1. Kernels

CUDAC++ extends C++ by allowing the programmer to dene C++ unctions, called kernels, that, when
called, are executedN times in parallel by N diferentCUDA threads, as opposed to only once like regular
C++ unctions.

A kernel is dened using the __global__ declaration specier and the number o CUDA threads that
execute that kernel or a given kernel call is specied using a new <<<...>>>execution conguration
syntax (see C++ Language Extensions). Each thread that executes the kernel is given a unique thread
ID that is accessible within the kernel through built-in variables.

As an illustration, the ollowing sample code, using the built-in variable threadIdx, adds two vectors
A and B o size N and stores the result into vector C:

∕∕ Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)
{

int i = threadIdx.x;
C[i] = A[i] + B[i];

}

int main()
{

...
∕∕ Kernel invocation with N threads
VecAdd<<<1, N>>>(A, B, C);
...

}

Here, each o the N threads that execute VecAdd() perorms one pair-wise addition.

11



CUDA C++ Programming Guide, Release 12.6

5.2. Thread Hierarchy

For convenience, threadIdx is a 3-component vector, so that threads can be identied using a one-
dimensional, two-dimensional, or three-dimensional thread index, orming a one-dimensional, two-
dimensional, or three-dimensional block o threads, called a thread block. This provides a natural way
to invoke computation across the elements in a domain such as a vector, matrix, or volume.

The index o a thread and its thread ID relate to each other in a straightorward way: For a one-
dimensional block, they are the same; or a two-dimensional block o size (Dx, Dy), the thread ID o
a thread o index (x, y) is (x + y Dx); or a three-dimensional block o size (Dx, Dy, Dz), the thread ID o a
thread o index (x, y, z) is (x + y Dx + z Dx Dy).

As an example, the ollowing code adds two matrices A and B o size NxN and stores the result into
matrix C:

∕∕ Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N],

float C[N][N])
{

int i = threadIdx.x;
int j = threadIdx.y;
C[i][j] = A[i][j] + B[i][j];

}

int main()
{

...
∕∕ Kernel invocation with one block of N * N * 1 threads
int numBlocks = 1;
dim3 threadsPerBlock(N, N);
MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
...

}

There is a limit to the number o threads per block, since all threads o a block are expected to reside
on the same streaming multiprocessor core and must share the limited memory resources o that
core. On current GPUs, a thread block may contain up to 1024 threads.

However, a kernel can be executed by multiple equally-shaped thread blocks, so that the total number
o threads is equal to the number o threads per block times the number o blocks.

Blocks are organized into a one-dimensional, two-dimensional, or three-dimensional grid o thread
blocks as illustrated by Figure 4. The number o thread blocks in a grid is usually dictated by the size
o the data being processed, which typically exceeds the number o processors in the system.

The number o threads per block and the number o blocks per grid specied in the <<<...>>> syntax
can be o type int or dim3. Two-dimensional blocks or grids can be specied as in the example above.

Each block within the grid can be identied by a one-dimensional, two-dimensional, or three-
dimensional unique index accessible within the kernel through the built-in blockIdx variable. The
dimension o the thread block is accessible within the kernel through the built-in blockDim variable.

Extending the previous MatAdd() example to handle multiple blocks, the code becomes as ollows.

∕∕ Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N],
float C[N][N])

(continues on next page)

12 Chapter 5. Programming Model



CUDA C++ Programming Guide, Release 12.6

Figure 4: Grid o Thread Blocks

(continued rom previous page)

{
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if (i < N && j < N)

C[i][j] = A[i][j] + B[i][j];
}

int main()
{

...
∕∕ Kernel invocation
dim3 threadsPerBlock(16, 16);
dim3 numBlocks(N ∕ threadsPerBlock.x, N ∕ threadsPerBlock.y);
MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
...

}

A thread block size o 16x16 (256 threads), although arbitrary in this case, is a common choice. The
grid is created with enough blocks to have one thread per matrix element as beore. For simplicity,
this example assumes that the number o threads per grid in each dimension is evenly divisible by the
number o threads per block in that dimension, although that need not be the case.

Thread blocks are required to execute independently: It must be possible to execute them in any order,
in parallel or in series. This independence requirement allows threadblocks to be scheduled in any order
across any number o cores as illustrated by Figure 3, enabling programmers to write code that scales
with the number o cores.

Threadswithin a block can cooperate by sharing data through some sharedmemory and by synchroniz-
ing their execution to coordinate memory accesses. More precisely, one can speciy synchronization
points in the kernel by calling the __syncthreads() intrinsic unction; __syncthreads() acts as a
barrier at which all threads in the block must wait beore any is allowed to proceed. Shared Memory
gives an example o using shared memory. In addition to __syncthreads(), the Cooperative Groups
API provides a rich set o thread-synchronization primitives.

For ecient cooperation, the shared memory is expected to be a low-latency memory near each pro-
cessor core (much like an L1 cache) and __syncthreads() is expected to be lightweight.

5.2. Thread Hierarchy 13


