
CUDA C++ Programming Guide, Release 12.5

6.2.4. Shared Memory

As detailed in Variable Memory Space Speciers shared memory is allocated using the __shared__
memory space specier.

Shared memory is expected to be much aster than global memory as mentioned in Thread Hierarchy
and detailed in Shared Memory. It can be used as scratchpad memory (or sotware managed cache)
to minimize global memory accesses rom a CUDA block as illustrated by the ollowing matrix multi-
plication example.

The ollowing code sample is a straightorward implementation omatrix multiplication that does not
take advantage o sharedmemory. Each thread reads one row o A and one column o B and computes
the corresponding element o C as illustrated in Figure 8. A is thereore read B.width times rom global
memory and B is read A.height times.

∕∕ Matrices are stored in row-major order:
∕∕ M(row, col) = *(M.elements + row * M.width + col)
typedef struct {

int width;
int height;
float* elements;

} Matrix;

∕∕ Thread block size
#define BLOCK_SIZE 16

∕∕ Forward declaration of the matrix multiplication kernel
__global__ void MatMulKernel(const Matrix, const Matrix, Matrix);

∕∕ Matrix multiplication - Host code
∕∕ Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
{

∕∕ Load A and B to device memory
Matrix d_A;
d_A.width = A.width; d_A.height = A.height;
size_t size = A.width * A.height * sizeof(float);
cudaMalloc(&d_A.elements, size);
cudaMemcpy(d_A.elements, A.elements, size,

cudaMemcpyHostToDevice);
Matrix d_B;
d_B.width = B.width; d_B.height = B.height;
size = B.width * B.height * sizeof(float);
cudaMalloc(&d_B.elements, size);
cudaMemcpy(d_B.elements, B.elements, size,

cudaMemcpyHostToDevice);

∕∕ Allocate C in device memory
Matrix d_C;
d_C.width = C.width; d_C.height = C.height;
size = C.width * C.height * sizeof(float);
cudaMalloc(&d_C.elements, size);

∕∕ Invoke kernel
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid(B.width ∕ dimBlock.x, A.height ∕ dimBlock.y);
MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);

(continues on next page)

34 Chapter 6. Programming Interace

CUDA C++ Programming Guide, Release 12.5

(continued rom previous page)

∕∕ Read C from device memory
cudaMemcpy(C.elements, d_C.elements, size,

cudaMemcpyDeviceToHost);

∕∕ Free device memory
cudaFree(d_A.elements);
cudaFree(d_B.elements);
cudaFree(d_C.elements);

}

∕∕ Matrix multiplication kernel called by MatMul()
__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)
{

∕∕ Each thread computes one element of C
∕∕ by accumulating results into Cvalue
float Cvalue = 0;
int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;
for (int e = 0; e < A.width; ++e)

Cvalue += A.elements[row * A.width + e]
* B.elements[e * B.width + col];

C.elements[row * C.width + col] = Cvalue;
}

The ollowing code sample is an implementation o matrix multiplication that does take advantage o
shared memory. In this implementation, each thread block is responsible or computing one square
sub-matrix Csub o C and each thread within the block is responsible or computing one element o
Csub. As illustrated in Figure 9, Csub is equal to the product o two rectangular matrices: the sub-
matrix o A o dimension (A.width, block_size) that has the same row indices as Csub, and the sub-
matrix o B o dimension (block_size, A.width)that has the same column indices as Csub. In order to t
into the device’s resources, these two rectangularmatrices are divided into asmany squarematrices o
dimension block_size as necessary and Csub is computed as the sum o the products o these square
matrices. Each o these products is perormed by rst loading the two corresponding squarematrices
rom global memory to shared memory with one thread loading one element o each matrix, and then
by having each thread compute one element o the product. Each thread accumulates the result o
each o these products into a register and once done writes the result to global memory.

By blocking the computation this way, we take advantage o ast shared memory and save a lot o
global memory bandwidth since A is only read (B.width / block_size) times rom global memory and B
is read (A.height / block_size) times.

TheMatrix type rom the previous code sample is augmented with a stride eld, so that sub-matrices
can be eciently represented with the same type. __device__ unctions are used to get and set ele-
ments and build any sub-matrix rom a matrix.

∕∕ Matrices are stored in row-major order:
∕∕ M(row, col) = *(M.elements + row * M.stride + col)
typedef struct {

int width;
int height;
int stride;
float* elements;

} Matrix;
∕∕ Get a matrix element
__device__ float GetElement(const Matrix A, int row, int col)

(continues on next page)

6.2. CUDA Runtime 35

CUDA C++ Programming Guide, Release 12.5

Figure 8: Matrix Multiplication without Shared Memory

36 Chapter 6. Programming Interace

CUDA C++ Programming Guide, Release 12.5

(continued rom previous page)

{
return A.elements[row * A.stride + col];

}
∕∕ Set a matrix element
__device__ void SetElement(Matrix A, int row, int col,

float value)
{

A.elements[row * A.stride + col] = value;
}
∕∕ Get the BLOCK_SIZExBLOCK_SIZE sub-matrix Asub of A that is
∕∕ located col sub-matrices to the right and row sub-matrices down
∕∕ from the upper-left corner of A
__device__ Matrix GetSubMatrix(Matrix A, int row, int col)

{
Matrix Asub;
Asub.width = BLOCK_SIZE;
Asub.height = BLOCK_SIZE;
Asub.stride = A.stride;
Asub.elements = &A.elements[A.stride * BLOCK_SIZE * row

+ BLOCK_SIZE * col];
return Asub;

}
∕∕ Thread block size
#define BLOCK_SIZE 16
∕∕ Forward declaration of the matrix multiplication kernel
__global__ void MatMulKernel(const Matrix, const Matrix, Matrix);
∕∕ Matrix multiplication - Host code
∕∕ Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
{

∕∕ Load A and B to device memory
Matrix d_A;
d_A.width = d_A.stride = A.width; d_A.height = A.height;
size_t size = A.width * A.height * sizeof(float);
cudaMalloc(&d_A.elements, size);
cudaMemcpy(d_A.elements, A.elements, size,

cudaMemcpyHostToDevice);
Matrix d_B;
d_B.width = d_B.stride = B.width; d_B.height = B.height;
size = B.width * B.height * sizeof(float);
cudaMalloc(&d_B.elements, size);
cudaMemcpy(d_B.elements, B.elements, size,
cudaMemcpyHostToDevice);
∕∕ Allocate C in device memory
Matrix d_C;
d_C.width = d_C.stride = C.width; d_C.height = C.height;
size = C.width * C.height * sizeof(float);
cudaMalloc(&d_C.elements, size);
∕∕ Invoke kernel
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid(B.width ∕ dimBlock.x, A.height ∕ dimBlock.y);
MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);
∕∕ Read C from device memory
cudaMemcpy(C.elements, d_C.elements, size,

cudaMemcpyDeviceToHost);
∕∕ Free device memory

(continues on next page)

6.2. CUDA Runtime 37

CUDA C++ Programming Guide, Release 12.5

(continued rom previous page)

cudaFree(d_A.elements);
cudaFree(d_B.elements);
cudaFree(d_C.elements);

}
∕∕ Matrix multiplication kernel called by MatMul()
__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)

{
∕∕ Block row and column
int blockRow = blockIdx.y;
int blockCol = blockIdx.x;
∕∕ Each thread block computes one sub-matrix Csub of C
Matrix Csub = GetSubMatrix(C, blockRow, blockCol);
∕∕ Each thread computes one element of Csub
∕∕ by accumulating results into Cvalue
float Cvalue = 0;
∕∕ Thread row and column within Csub
int row = threadIdx.y;
int col = threadIdx.x;
∕∕ Loop over all the sub-matrices of A and B that are
∕∕ required to compute Csub
∕∕ Multiply each pair of sub-matrices together
∕∕ and accumulate the results
for (int m = 0; m < (A.width ∕ BLOCK_SIZE); ++m) {

∕∕ Get sub-matrix Asub of A
Matrix Asub = GetSubMatrix(A, blockRow, m);
∕∕ Get sub-matrix Bsub of B
Matrix Bsub = GetSubMatrix(B, m, blockCol);
∕∕ Shared memory used to store Asub and Bsub respectively
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
∕∕ Load Asub and Bsub from device memory to shared memory
∕∕ Each thread loads one element of each sub-matrix
As[row][col] = GetElement(Asub, row, col);
Bs[row][col] = GetElement(Bsub, row, col);
∕∕ Synchronize to make sure the sub-matrices are loaded
∕∕ before starting the computation
__syncthreads();
∕∕ Multiply Asub and Bsub together
for (int e = 0; e < BLOCK_SIZE; ++e)

Cvalue += As[row][e] * Bs[e][col];
∕∕ Synchronize to make sure that the preceding
∕∕ computation is done before loading two new
∕∕ sub-matrices of A and B in the next iteration
__syncthreads();

}
∕∕ Write Csub to device memory
∕∕ Each thread writes one element
SetElement(Csub, row, col, Cvalue);

}

38 Chapter 6. Programming Interace

CUDA C++ Programming Guide, Release 12.5

Figure 9: Matrix Multiplication with Shared Memory

6.2. CUDA Runtime 39

CUDA C++ Programming Guide, Release 12.5

6.2.5. Distributed Shared Memory

Thread block clusters introduced in compute capability 9.0 provide the ability or threads in a thread
block cluster to access shared memory o all the participating thread blocks in a cluster. This parti-
tioned shared memory is called Distributed Shared Memory, and the corresponding address space is
called Distributed shared memory address space. Threads that belong to a thread block cluster, can
read, write or perorm atomics in the distributed address space, regardless whether the address be-
longs to the local thread block or a remote thread block. Whether a kernel uses distributed shared
memory or not, the shared memory size specications, static or dynamic is still per thread block. The
size o distributed shared memory is just the number o thread blocks per cluster multiplied by the
size o shared memory per thread block.

Accessing data in distributed shared memory requires all the thread blocks to exist. A user can guar-
antee that all thread blocks have started executing using cluster.sync() rom Cluster Group API.
The user also needs to ensure that all distributed shared memory operations happen beore the exit
o a thread block, e.g., i a remote thread block is trying to read a given thread block’s shared memory,
user needs to ensure that the shared memory read by remote thread block is completed beore it can
exit.

CUDA provides a mechanism to access to distributed shared memory, and applications can benet
rom leveraging its capabilities. Lets look at a simple histogram computation and how to optimize it
on the GPU using thread block cluster. A standard way o computing histograms is do the computa-
tion in the sharedmemory o each thread block and then perorm global memory atomics. A limitation
o this approach is the shared memory capacity. Once the histogram bins no longer t in the shared
memory, a user needs to directly compute histograms and hence the atomics in the global memory.
With distributed shared memory, CUDA provides an intermediate step, where a depending on the his-
togram bins size, histogram can be computed in shared memory, distributed shared memory or global
memory directly.

The CUDA kernel example below shows how to compute histograms in shared memory or distributed
shared memory, depending on the number o histogram bins.

#include <cooperative_groups.h>

∕∕ Distributed Shared memory histogram kernel
__global__ void clusterHist_kernel(int *bins, const int nbins, const int bins_per_
↪→block, const int *__restrict__ input,

size_t array_size)
{

extern __shared__ int smem[];
namespace cg = cooperative_groups;
int tid = cg::this_grid().thread_rank();

∕∕ Cluster initialization, size and calculating local bin offsets.
cg::cluster_group cluster = cg::this_cluster();
unsigned int clusterBlockRank = cluster.block_rank();
int cluster_size = cluster.dim_blocks().x;

for (int i = threadIdx.x; i < bins_per_block; i += blockDim.x)
{

smem[i] = 0; ∕∕Initialize shared memory histogram to zeros
}

∕∕ cluster synchronization ensures that shared memory is initialized to zero in
∕∕ all thread blocks in the cluster. It also ensures that all thread blocks
∕∕ have started executing and they exist concurrently.

(continues on next page)

40 Chapter 6. Programming Interace

CUDA C++ Programming Guide, Release 12.5

(continued rom previous page)

cluster.sync();

for (int i = tid; i < array_size; i += blockDim.x * gridDim.x)
{

int ldata = input[i];

∕∕Find the right histogram bin.
int binid = ldata;
if (ldata < 0)

binid = 0;
else if (ldata >= nbins)

binid = nbins - 1;

∕∕Find destination block rank and offset for computing
∕∕distributed shared memory histogram
int dst_block_rank = (int)(binid ∕ bins_per_block);
int dst_offset = binid % bins_per_block;

∕∕Pointer to target block shared memory
int *dst_smem = cluster.map_shared_rank(smem, dst_block_rank);

∕∕Perform atomic update of the histogram bin
atomicAdd(dst_smem + dst_offset, 1);

}

∕∕ cluster synchronization is required to ensure all distributed shared
∕∕ memory operations are completed and no thread block exits while
∕∕ other thread blocks are still accessing distributed shared memory
cluster.sync();

∕∕ Perform global memory histogram, using the local distributed memory histogram
int *lbins = bins + cluster.block_rank() * bins_per_block;
for (int i = threadIdx.x; i < bins_per_block; i += blockDim.x)
{

atomicAdd(&lbins[i], smem[i]);
}

}

The above kernel can be launched at runtime with a cluster size depending on the amount o dis-
tributed shared memory required. I histogram is small enough to t in shared memory o just one
block, user can launch kernel with cluster size 1. The code snippet below shows how to launch a clus-
ter kernel dynamically based depending on shared memory requirements.

∕∕ Launch via extensible launch
{

cudaLaunchConfig_t config = {0};
config.gridDim = array_size ∕ threads_per_block;
config.blockDim = threads_per_block;

∕∕ cluster_size depends on the histogram size.
∕∕ (cluster_size == 1) implies no distributed shared memory, just thread block

↪→local shared memory
int cluster_size = 2; ∕∕ size 2 is an example here
int nbins_per_block = nbins ∕ cluster_size;

∕∕dynamic shared memory size is per block.
(continues on next page)

6.2. CUDA Runtime 41

CUDA C++ Programming Guide, Release 12.5

(continued rom previous page)

∕∕Distributed shared memory size = cluster_size * nbins_per_block * sizeof(int)
config.dynamicSmemBytes = nbins_per_block * sizeof(int);

CUDA_CHECK(::cudaFuncSetAttribute((void *)clusterHist_kernel,
↪→cudaFuncAttributeMaxDynamicSharedMemorySize, config.dynamicSmemBytes));

cudaLaunchAttribute attribute[1];
attribute[0].id = cudaLaunchAttributeClusterDimension;
attribute[0].val.clusterDim.x = cluster_size;
attribute[0].val.clusterDim.y = 1;
attribute[0].val.clusterDim.z = 1;

config.numAttrs = 1;
config.attrs = attribute;

cudaLaunchKernelEx(&config, clusterHist_kernel, bins, nbins, nbins_per_block, input,
↪→ array_size);
}

6.2.6. Page-Locked Host Memory

The runtime provides unctions to allow the use o page-locked (also known as pinned) host memory
(as opposed to regular pageable host memory allocated by malloc()):

▶ cudaHostAlloc() and cudaFreeHost() allocate and ree page-locked host memory;

▶ cudaHostRegister() page-locks a range o memory allocated by malloc() (see reerence
manual or limitations).

Using page-locked host memory has several benets:

▶ Copies between page-locked host memory and device memory can be perormed concurrently
with kernel execution or some devices as mentioned in Asynchronous Concurrent Execution.

▶ On some devices, page-locked hostmemory can bemapped into the address space o the device,
eliminating the need to copy it to or rom device memory as detailed in Mapped Memory.

▶ On systemswith a ront-side bus, bandwidth between hostmemory and devicememory is higher
i host memory is allocated as page-locked and even higher i in addition it is allocated as write-
combining as described in Write-Combining Memory.

Note: Page-locked host memory is not cached on non I/O coherent Tegra devices. Also, cuda-
HostRegister() is not supported on non I/O coherent Tegra devices.

The simple zero-copy CUDA sample comeswith a detailed document on the page-lockedmemory APIs.

42 Chapter 6. Programming Interace

