
EE1D1: Digital Systems A
BSc. EE, year 1, 2023-2024, lecture 1

Going Parallel (take two)
Computer Engineering Lab

Faculty of Electrical Engineering, Mathematics & Computer Science
2024-2025

CESE4130: Computer Engineering
2024-2025, lecture 8

1

Announcement
• None

2

Course objectives

3

• Describe number representation systems and inter-conversion.

• Perform binary arithmetic operation such as addition and multiplication.

• Explain basic concepts of computer architecture.

• Use logic gates to implement simple combinational circuits.

• Explain system software and operating systems fundamentals, task
management, synchronization, compilation, and interpretation.

• Use design and automation tools to perform synthesis and optimization.

Objectives

4

• Understand the memory hierarchy of CUDA devices
• Explain efficient and inefficient memory access paterens
• Get the basic of the interconnection networks

Recap
• Parallel machines should be understood and efficiently used
• Building a parallel machine is not enough, models, parallel algorithms and || programs are needed
• Fully automated parallelization compilers are still a dream
• Programming Massively Parallel accelerators requires a specific programming model / tools
• More(?)

• our main goal is “to remove magic” as you remember

5

Overview

6

• The lecture material is collected from various sources

• About CUDA, please refer to Wen-Mei and David
• https://shop.elsevier.com/books/programming-massively-parallel-processors/hwu/978-0-323-91231-0

• Also NVIDIA has a lot of tutorials and recorded lectures
• https://developer.nvidia.com/educators/existing-courses

• Parallel Processing course, again Behrooz Parhami
• https://web.ece.ucsb.edu/~parhami/text_par_proc.htm#slides Maybe even

https://shop.elsevier.com/books/programming-massively-parallel-processors/hwu/978-0-323-91231-0
https://developer.nvidia.com/educators/existing-courses
https://web.ece.ucsb.edu/~parhami/text_par_proc.htm

host device

Kernel 1

Grid 1

Block (0, 0)

Block (1, 1)Block (1, 0)

Block (0, 1)

Block (1,1)

Thread
(0,0,0)Thread

(0,1,3)
Thread
(0,1,0)

Thread
(0,1,1)

Thread
(0,1,2)

Thread
(0,0,0)

Thread
(0,0,1)

Thread
(0,0,2)

Thread
(0,0,3)

(1,0,0) (1,0,1) (1,0,2) (1,0,3)

CUDA: A Multi-Dimensional Grid Example

7

blockDim limited by the max
#threads
gridDim.x, gridDim.y and
gridDim.z [1..65,536]

highest dimension comes first! (the reversed
of that used in the C statements for setting
configuration parameters where the lowest
dimension is first).
Block(1,0) is blockIdx.y=1 and blockIdx.x=0

Grid 2

Kernel 2 4x2x2=16 threads

Processing a Picture with a 2D Grid

16×16 blocks

8

76x62 picture 5 blocks

4 blocks

M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

M2M1M0 M3 M5M4 M6 M7 M9M8 M10 M11 M13M12 M14 M15

M

Row-Major Layout of 2D arrays in C/C++ (reminder)

M2,1 à Row*Width+Col = 2*4+1 = 9
9

FORTRAN compiler layout is column-major

Conversion of a color image to grey–scale image (review)

10

L = r * 0.21 + g * 0.71 + b * 0.07

All pixels can be calculated
independently of each other

Covering a 76×62 picture with 16×16 blocks

Test (Col < width)

11

blockIdx.y*blockDim.y+threadIdx.y, blockIdx.x*blockDim.x+threadIdx.x)=
P(1*16+0, 0 *16+0)=P(16,0)

For the pixel handled by thread(0,0) of block(1,0)

4

2

// we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__
void colorToGreyscaleConvertion(unsigned char * Pout, unsigned char * Pin,
 int width, int height) {

 int Col = threadIdx.x + blockIdx.x * blockDim.x;
 int Row = threadIdx.y + blockIdx.y * blockDim.y;

 if (Col < width && Row < height) {
 // get 1D coordinate for the grayscale image
 int greyOffset = Row*width + Col;
 // one can think of the RGB image having
 // CHANNEL times columns of the gray scale image
 int rgbOffset = greyOffset*CHANNELS;
 unsigned char r = rgbImage[rgbOffset]; // red value for pixel
 unsigned char g = rgbImage[rgbOffset + 1]; // green value for pixel
 unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pixel
 // perform the rescaling and store it
 // We multiply by floating point constants
 grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;
 }
}

colorToGreyscaleConversion Kernel with 2D thread mapping to data

12

Part of the CUDA C specification
(same as threadIdx and blockIdx)

CUDA Thread Block (review)

13

• All threads in a block execute the same
kernel program (SPMD)

• Programmer declares block:
• Block size 1 to 1,024 concurrent threads
• Block shape 1D, 2D, or 3D

• Threads have thread index numbers within
block
• Kernel code uses thread index and block index

to select work and address shared data
• Threads within the same block share data

and synchronize while doing their share of
the overall work

• Threads in different blocks can’t cooperate
• Each block can execute in any order relative to

other blocks!

CUDA Thread Block

Thread Id #:
0 1 2 3 … m

Thread program

Courtesy: John Nickolls, NVIDIA

Compute Capabilities are GPU Dependent

14

GRID V100D-32Q Tesla T10 Processor GeForce GTX 1080 Ti

Total amount of global memory: 4,160,749,568 4,294,770,688 3,131,572,224 Bytes

Number of multiprocessors: 80 30 28
Number of cores: 640 240 224

Total amount of constant memory: 65,536 65,536 65,536 Bytes
Total amount of shared memory per block: 49,152 16,384 49,152 Bytes
Total number of registers available per block: 65,536 16,384 65,536 Bytes

Warp size: 32 32 32
Maximum number of threads per block: 1,024 512 1,024
Maximum sizes of each dimension of a block: 1024 x 1024 x 64 512 x 512 x 64 1024 x 1024 x 64
Maximum sizes of each dimension of a grid: 2147483647 x 65535 x 65535 65535 x 65535 x 1 2147483647 x 65535 x 65535
Maximum memory pitch: 2,147,483,647 2,147,483,647 2,147,483,647 Bytes
Texture alignment: 512 256 512

Clock rate: 1.38 GHz 1.30 GHz 1.58 GHz
Concurrent copy and execution: Yes Yes Yes

Transparent Scalability (as promised by CUDA)

15

Device A

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Thread grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device B

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7
time

• Each block can execute in any order relative to others
• Hardware is free to assign blocks to any processor at any time

• A kernel scales to any number of parallel processors

Executing CUDA Thread Blocks

16

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1SM 0

Mind that resources are finite:
Fermi SM architecture supports up to
8 blocks and 1,536 threads
so 6 blocks of 256 threads, 3 of 512,
etc are valid assignments
12 blocks of 128 threads is not!

• Threads are assigned to Streaming
Multiprocessors in block granularity
• Up to 32 blocks to each SM as resource allows
• Maxwell SM can take up to 2,048 threads

• Threads run concurrently
• SM maintains thread/block id #s
• SM manages/schedules thread execution

Thread Scheduling (1/2)

17

• Each block is executed as 32-thread
warps
– An implementation decision, not part of

the CUDA programming model
– Warps are scheduling units in SM

• If three blocks are assigned to an SM
and each block has 256 threads, how
many warps are there in an SM?

– Each block is divided into 256/32 = 8 warps
– 8 warps/blk * 3 blks = 24 warps

…
t0 t1 t2 … t31
…

…
t0 t1 t2 … t31
…Block 1 Warps Block 2 Warps

…
t0 t1 t2 … t31
…Block 1 Warps

Register File
(128 KB)

L1
(16 KB)

Shared Memory
(48 KB)

#SPs << #threads in wraps – this brings latency tolerance

Thread Scheduling (2/2)

18

• SM implements zero-overhead warp scheduling
• Warps whose next instruction has its operands ready

for consumption are eligible for execution
• Eligible warps are selected for execution on a

prioritized scheduling policy
• All threads in a warp execute the same

instruction when selected (the classic SIMD)

TB1
W1

TB = Thread Block, W = Warp

TB2
W1

TB3
W1

TB2
W1

TB1
W1

TB3
W2

TB1
W2

TB1
W3

TB3
W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

Be aware of Divergence

19

• Main performance concern with branching is divergence
• Threads within a single warp take different paths
• Different execution paths were serialized in older GPUs

• The control paths taken by the threads in a warp are traversed one at a time until there is no more
• A common case: divergence could occur when branch condition is a function of

thread ID
• Example with divergence:

• If (threadIdx.x > 2) { }
• This creates two different control paths for threads in a block
• Branch granularity < warp size; threads 0, 1 and 2 follow different path than the rest of the threads in

the first warp
• Example without divergence:

• If (threadIdx.x / WARP_SIZE > 2) { }
• Also creates two different control paths for threads in a block
• Branch granularity is a whole multiple of warp size; all threads in any given warp follow the same path

Volta++ mantain per-thread
scheduling resources, e.g., PC and
Stack. Pre-Volta devices mantained
these resources per warp

Consider, understand and benefit from implementation (u-architectural) details

Block Granularity Considerations Example

20

• For Matrix Multiplication using multiple blocks, should one use 8X8,
16X16 or 32X32 blocks? Assume that in the GPU used, each SM can take
up to 1,536 threads and up to 8 blocks

• For 8X8, we have 64 threads per block. Each SM can take up to 1,536 threads,
which is 24 blocks. But each SM can only take up to 8 Blocks, only 512 threads
(16 warps) will go into each SM! (under utilization!)

• For 16X16, we have 256 threads per block. Since each SM can take up to 1,536
threads (48 warps), which is 6 blocks (within the 8 block limit). Thus we use the
full thread capacity of an SM

• For 32X32, we would have 1,024 threads per Block. Only one block can fit into an
SM, using only 2/3 of the thread capacity of an SM

Recap: consider, understand and benefit from implementation (microarchitectural) details

Programmer View of CUDA Memories

21

• Each thread can:
• Read/write per-thread registers (~1 cycle)
• Read/write per-block shared memory (~5 cycles)
• Read/write per-grid global memory (~500 cycles)
• Read/only per-grid constant memory (~5 cycles

with caching)

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory (read-only for SMs)

Variable declaration Memory Scope Lifetime
int LocalVar; register thread thread

__device__ __shared__ int SharedVar; shared block block

__device__ int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application

CUDA Variable Type Qualifiers

• __device__ is optional when used with
__shared__, or __constant__

• Automatic variables without any qualifier
reside in a register
• Except per-thread arrays that reside in

global memory

How about GPU performance? (it is the memory …)

22

• All threads access global memory for their input
matrix elements
• One memory accesses per SP floating-point addition

(4 bytes)
• 4B/s of memory bandwidth/FLOPS

• Consider a GPU with
• Peak floating-point rate 12 TFLOPS with 1 TB/s DRAM

bandwidth
• 4*12 = 48 TB/s required to achieve peak FLOPS rating
• The 1 TB/s memory bandwidth limits the execution at

250 GFLOPS

• This limits the execution rate to 2% (.25/12) of the
peak floating-point execution rate of the device!

• Need to drastically cut down memory accesses
to get close to the 12 TFLOPS device capability

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

CUDA Shared Memory (SM)

23

• Shared memory is on-chip (similar to Registers)
• Access costs and functionality are quite different
• Part of the memory space (load/store access)
• Visible to all threads in a block (enables collaboration)

large but slow

small but fast

Global Memory

Processing Unit

I/O

ALU

Processor (SM)

Shared
Memory Register

File

Control Unit

PC IR

Shared
Memory

Shared
Memory

Shared
Memory

Global Memory

SP- Streaming
Processor

SM- Streaming
Multiprocessor

Block of SMs

Common Programming Strategy (reminds of something?)

24

• Global memory resides in device memory (DRAM)
• A profitable way of performing computation on the

device is to tile the input data to take advantage of
fast shared memory:
• Partition data into subsets (tiles) that fit into shared memory
• Handle each data subset with one thread block by:

• Loading the subset from global memory to shared memory, using
multiple threads to exploit memory-level parallelism

• Performing the computation on the subset from shared memory;
each thread can efficiently multi-pass over any data element

• Copying results from shared memory to global memory

(!) “Blocked Matrix Operations” are widely used in the literature, CUDA reserved the word “blocks”

Shared Memory Blocking Basic Idea

25

Thread 1 Thread 2 …

in
Global
Memory

Thread 1 Thread 2 …

Global
Memory

in

On-chip Memory

a lot of redundant
Global Memory traffic

Basic Concept of Tiling

26

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width){

 __shared__ float subTileM[TILE_WIDTH][TILE_WIDTH];
 __shared__ float subTileN[TILE_WIDTH][TILE_WIDTH];
 …

In a congested traffic system, significant reduction of vehicles can
greatly improve the delay seen by all vehicles
• Carpooling for commuters
• Tiling for global memory accesses
• drivers = threads accessing their memory data operands
• cars = memory access requests

Outline of the Tiling Technique

27

• Identify a tile of global memory contents that are
accessed by multiple threads
• Load the tile from global memory into on-chip memory
• Have the multiple threads to access their data from the

on-chip memory
• Move on to the next block/tile
• (threads timing is still missing above, more later)

Idea: Place global memory data into Shared Memory for reuse

28

• Each input element is read by WIDTH threads
• Load each element into Shared Memory and

have several threads use the local version to
reduce the memory bandwidth

M

N

P

W
ID
TH

W
ID
TH

WIDTH WIDTH

ty

tx

Tiled Multiply

29

M

N

P

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty
2
1
0

TILE_WIDTH-1

2

1

0

TI
LE
_W
ID
TH

TI
LE
_W
ID
TH

TI
LE
_W
ID
TH
E

W
ID
TH

W
ID
TH

• Break up the execution of the kernel into phases so
that the data accesses in each phase is focused on
one subset (tile) of M and N

Two Access Patterns

30

d_M d_N

WIDTH

Thread 1
Thread 2

M[Row*Width+k] N[k*Width+Col]

k is loop counter in the inner product
loop of the kernel code

W
ID
TH

not coalesced coalesced

N
T0 T1 T2 T3
Load iteration 0

T0 T1 T2 T3
Load iteration 1

Access
direction in
Kernel code

…

N0,2

N1,1

N0,1N0,0

N1,0

N0,3

N1,2 N1,3

N2,1N2,0 N2,2 N2,3

N3,1N3,0 N3,2 N3,3

N0,2N0,1N0,0 N0,3 N1,1N1,0 N1,2 N1,3 N2,1N2,0 N2,2 N2,3 N3,1N3,0 N

N accesses
are coalesced

M accesses are not coalesced

31

d_M

WIDTH

Thread 1
Thread 2

M[Row*Width+k]

not coalesced

M
T0 T1 T2 T3

Load iteration 0

T0 T1 T2 T3
Load iteration 1

Access direction
in Kernel code

…

M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3 M3,1M3,0 M3,2 M3,3

M[Row*Width+k]

Determine if access is coalesced

32

› Accesses in a warp are to consecutive locations
if the index in an array access is in the form of

• A[(expression with terms independent of threadIdx.x) + threadIdx.x];
• Then (expression with terms independent of threadIdx.x) is also

multiple of the burst size we speak of fully coalesced access

Use shared memory to enable coalescing in tiled mxMUL

33

d_M d_N

Copy into
scratchpad

memory

Perform
multiplication

with scratchpad
values

corner turning

Use a coalesced pattern
to copy tile M to SM

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width)

{

1. __shared__ float subTileM[TILE_WIDTH][TILE_WIDTH];

2. __shared__ float subTileN[TILE_WIDTH][TILE_WIDTH];

. . .

// Loop over the M and N tiles required to compute the P element

8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Collaborative loading of M and N tiles into shared memory

9. subTileM[?][?] = M[?];

10. subTileN[?][?] = N[?];

. . .

Barrier Synchronization

34

• An API function call in CUDA
• __syncthreads()

• All threads in the same block must reach the
__syncthreads() before any can move on

• Best used to coordinate tiled algorithms phased execution
• To ensure that all elements of a tile are loaded (at begin)
• To ensure that all elements of a tile are consumed (at end)

carpooling tiling

…

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

…
Thread N-3

Thread N-2

Thread N-1

Time

Each of the TILE_WIDTH2
threads loads one element
followed by a
__syncthreads()

Shared Memory and Threading

35

• SMs in Maxwell have 64KB shared mem. (max 48KB/block)
• Shared memory size is implementation dependent!
• For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of

shared memory
• Shared memory can potentially support up to 32 thread blocks actively

executing
• This allows up to 8*512 = 4,096 pending loads (2 per thread, 256

threads/block)
• The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared

memory usage per thread block, allowing 8 thread blocks active at
the same time (2*1,024 = 2,048 loads / 1,024 * (2*32) = 65,536
mul/add), however, max #threads (1,536) will reduce #thread
blocks to just 1!

• Each __syncthread() can reduce the number of active threads for a block,
hence more thread blocks can be advantageous

• Using 16x16 tiling, we reduce the accesses to the global
memory by a factor of 16

• Device with 150GB/s mem BW supports (150/4)*16 = 600 GFLOPS!

Register file capacity and parallelism

36

• Assume a current-generation device D, with SM of up to 1,536 threads
and 16,384 registers

• With 16,384 registers to support 1,536 threads, there are only 10
registers (16,384/1,536) for each thread!
• using 11 registers, will limit the number of concurrent threads in each SM
• Such reduction is at block granularity; e.g., with blocks of 512 threads, the reduction of

threads will be done with 512 threads at a time
• Next smaller #threads from 1,536 is 1,024, a 1/3 reduction of threads that can

simultaneously reside in each SM
• This can substantially reduce the #warps available for scheduling, thereby decreasing the

ability of the processor to find useful work in the presence of long-latency operations

• The number of registers is device dependent

Recap: consider, understand and benefit from implementation (microarchitectural) details

Back 2 || Computers

37

• How the different sub-systems are connected together
• Some fundamentals of Interconnection Networks

Multiple processors and multiple memories

38

• Global memory shared among ||processors is the natural
generalization of the sequential memory model (PRAM)
• Thinking about it, programmers assume sequential consistency

(SC) when they think about ||ism
• SC difficult to achieve under all circumstances (and is costly)
• A system BUS can do this, but …

M M M M M M M M

P P P P P P P P
references all

visible
source of
contention

M M M M M M M M

P P P P P P P P
Interconnection Network

(Dance Hall)
Network delays cause memory latency to be higher for a
single reference than with a bus, but simultaneous use
should help when many references are in the air (MulThrd)

Interconnect Networks

39

P1P0 P3P2 P5P4 P7P6

Mem Mem Mem Mem Mem Mem Mem Mem

Point-to-point Network

Architecture common for servers Max node degree d = 2
Network diameter D = p – 1 (ëp/2û)
Bisection width B = 1 (2)

P2P0 P1 P3 P4 P5 P6 P7 P8

P2P0 P1 P3 P4 P5 P6 P7 P8

P1

P0

P3

P4

P2 P5

P7 P8

P6

Max node degree d = 3
Network diameter D = 2 ëlog2 pû (- 1)
Bisection width B = 1

P P P

P P P

P P P

0 1 2

3 4 5

6 7 8

P P P

P P P

P P P

0 1 2

3 4 5

6 7 8

Max node degree d = 4
Network diameter D = 2Öp – 2 (Öp)
Bisection width B @ Öp (2Öp)

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
0

Max node degree d = p – 1
Network diameter D = 1
Bisection width B = ëp/2û ép/2ù

0 0

1 1

Processor-
to-memory

network

p-1 m-1

Processor-
to-processor

network

Processors Caches Memory
modules

Parallel I/O

. . .

.

.

.

.

.

.

Challenge:
Cache
coherence

Removing the Processor-to-Memory Bottleneck

0

1

Interconnection
network

p-1

Processors

Parallel I/O

.

.

.

.

.

.

Memories

Some Terminology:
NUMA
Nonuniform memory access
(distributed shared memory)
UMA
Uniform memory access
(global shared memory)
COMA
Cache-only memory arch

Some Interconnection Networks in use

40

–––
 Number Network Bisection Node Local
Network name(s) of nodes diameter width degree links?
–––
1D mesh (linear array) k k – 1 1 2 Yes
1D torus (ring, loop) k k/2 2 2 Yes
2D Mesh k2 2k – 2 k 4 Yes
2D torus (k-ary 2-cube) k2 k 2k 4 Yes1

3D mesh k3 3k – 3 k2 6 Yes
3D torus (k-ary 3-cube) k3 3k/2 2k2 6 Yes1

Pyramid (4k2 – 1)/3 2 log2 k 2k 9 No
Binary tree 2l – 1 2l – 2 1 3 No
4-ary hypertree 2l(2l+1 – 1) 2l 2l+1 6 No
Butterfly 2l(l + 1) 2l 2l 4 No
Hypercube 2l l 2l–1 l No
Cube-connected cycles 2l l 2l 2l–1 3 No
Shuffle-exchange 2l 2l – 1 ³ 2l–1/l 4 unidir. No
De Bruijn 2l l 2l /l 4 unidir. No
––
 1 With folded layout

Interconnection Network Topics

41

• Interconnection networks for parallel computers
• components
• characteristics
• network models

• Analysis of networks
• diameter
• bisection bandwidth
• degree
• cost
• example networks

• Simple cost measures for communication
• store-and-forward model
• cut-through model

Kinds of Networks

42

• Wide-area networks (WAN)
• telephone, internet

• Local-area networks (LAN)
• ethernet, wireless 802.11x

• System-level networks
• processor to processor
• (processor to memory)

• These networks differ in scalability, assumptions, cost
• Primary focus of our discussion is system-level networks

Interconnection Network Domains Wider Scale

43

• Communication and computation occur at many levels
• Which designs make sense for particular technologies,

architectures, applications, etc., and at which levels?
• From physical layer perspective, three broad regimes:

Similar principles apply

Components of a network

44

• clusters
• each processor has a dedicated network interface

• switches
• k inputs, m outputs, m ≥ k

• simplest: k = m = 2

• links
• characteristic bandwidth
• (# parallel bits per link) • (signaling rate)

Four characteristics of networks

45

• Network topology
• physical interconnection structure of network

• analogy: Roadmap showing interstates
• Routing algorithm

• rules that specify which routes a message may follow
• analogy: To drive from Delft to Amsterdam, take A13 and then A4

• Switching Strategy
• determines how a message traverses a route

• analogy: Presidential convoy reserves entire route in advance, while a
group of travelers in separate cars make individual switching decisions

• Flow control
• determines when a message makes progress

• analogy: Traffic signals and rules: two cars cannot occupy the same
location at the same time

Network topology

46

• Connected undirected graph G = (N, C)
• N = set of nodes
• C = set of channels (bidirectional links)

• Indirect network (switching fabric)
• contains switch nodes without an attached processor or memory
• switching nodes do not generate traffic
• typical case in modern networks

• Direct network
• every node can be a producer and/or consumer of messages
• no pure switching nodes

Indirect networks

47

• Processor to memory interconnect in shared-memory machines
• Connect p processors to p memory banks

• Example: bus
• Θ(p) switches
• simultaneous references always serialize

• Example: crossbar
• Θ(p2) switches
• simultaneous references in disjoint banks serviced in parallel

• Example: multistage network
• Θ(p lg p) switches and links

• Θ(lg p) stages of Θ(p) switches each
• simultaneous reference of disjoint memories may be serialized

• contention within the network

Multistage Butterfly indirect network (p = 8)

48

Routing in butterfly networks

49

• based on destination address
• destination address dk-1 ….. d0
• in stage i, switch setting is determined by dk-i

• switch to top or bottom

Multistage Omega network (p = 8)

50

• Isomorphic to butterfly network
• same “perfect shuffle” connection pattern between successive stages

Network Topology: Graph-theoretical measures

51

• Diameter: Maximum length of shortest path between any pair of nodes

• i.e. distance between maximally separated nodes - related to latency
• Bisection width: Minimum number of edges crossing approximately equal bipartition

of nodes
• related to bandwidth with full applied load
• a scalable network has bisection width Ω(p)

• Degree: number of edges (links) per node (switch)
• related to cost and switch complexity
• fixed degree is simpler and more scalable

• Cost: number of wires
• length of wires and wiring regularity is also an issue

Linear array, Ring, Binary Tree, Mesh and Crossbar (review)

52

Max node degree d = 2
Network diameter D = p – 1 (ëp/2û)
Bisection width B = 1 (2)

P2P0 P1 P3 P4 P5 P6 P7 P8

P2P0 P1 P3 P4 P5 P6 P7 P8

P1

P0

P3

P4

P2 P5

P7 P8

P6

Max node degree d = 3
Network diameter D = 2 ëlog2 pû (- 1)
Bisection width B = 1

P P P

P P P

P P P

0 1 2

3 4 5

6 7 8

P P P

P P P

P P P

0 1 2

3 4 5

6 7 8

Max node degree d = 4
Network diameter D = 2Öp – 2 (Öp)
Bisection width B @ Öp (2Öp)

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
0

Max node degree d = p – 1
Network diameter D = 1
Bisection width B = ëp/2û ép/2ù

Fat-tree

Networks in current parallel computers

53

• Modern interconnects are indirect
• Hardware routing between source and destination

• Indirect networks
• Cluster of commodity nodes

• Fat-tree (assembled using 36 port non-blocking switches)
• IBM Summit (ORNL)

• Fat-tree Infiniband [4,608 nodes] (24,000 GPU, 202,752 cores)
• Fujitsu Fugaku

• 6D torus [160,000 nodes k-ary d-cube, ? k~7 d=6] (3M+ cores)

• Processor – memory interconnects (p procs, m memories)
• Tera MTA

• 3D torus (p = 256, m = 4,096)
• NEC SX-9

• crossbar (p = 16 procs * 16 channels/proc = 256, m = 8,192)

Routing and flow control

54

• System-level networks
• Tradeoffs are very different than WAN (TCP)

• use flow control instead of dropping packets
• mostly static routing instead of dynamic routing

• Routing algorithm
• prescribes a unique path from source to destination

• e.g., dimension ordered routing on hypercube and lower dimensional d-cubes
• some networks dynamically “misroute” if a needed link is unavailable

• routing can be store-and-forward or cut-through

• Flow control
• contention for output links in a switch can block progress
• generally low-latency per-link flow control is used

• delay in access to a link rapidly propagates back to sender

Communication cost model

55

• Message size m bits

• Number of hops (links) to travel h

• Channel width W and link cycle time tc
• Per-bit transfer time tw = tc/W

• assuming m is sufficiently large

• Startup time ts
• overhead to insert message into network

• Node latency or per-hop time th
• time taken by message header cross channel and be interpreted at destination

Store-and-forward routing

56

• flow-control mechanism at message or packet level
• packets are transferred one link at a time
• large buffers, high latency
• cost
 tSF = ts + (th + m tw) h

Cut-through routing

57

• flow control is per-link and payload transmission is pipelined
• message spread out across multiple links in the network
• small buffers, low latency
• cost
 tCT = ts + h th + m tw

And much much more

58

• Virtual Channels to cope with Head-Of-Line
(HOL) blocking

• Fully Adaptive Routing to utilize all available
network paths

• etc

Summary

59

• CUDA provides programmable Massively Parallel accelerators
• Interconnection Networks play important role
• Memory and Networks kind of merge together

OR

Thank you

60

Fat Tree from supercomputers to Data Centers

K-ary fat tree: three-layer topology (edge, aggregation and core)
– each pod consists of (k/2)2 servers & 2 layers of k/2 k-port switches
– each edge switch connects to k/2 servers & k/2 aggregation switches
– each aggregation switch connects to k/2 edge & k/2 core switches
– (k/2)2 core switches: each connects to k pods

Great Scalability, Uniform Bandwidths, Can be built with cheap components

Interconnects of some TOP-500 Machines

Must be important

TOP-500 Interconnect share

Better chart of few years back

Compute Express Link
Open standard for CPU-to-Device and CPU-to-Memory in the High Perf Datacenters (2019)
currently v3.0 (64 GT/s, 7.563 GB/s (×1), 121.0 GB/s (×16); 256-byte FLIT in PAM-4)
Includes open standards, e.g., OpenCAPI (IBM), Gen-Z (HPE), and CCIX (Xilinx), and proprietary protocols: InfiniBand /
RoCE (Mellanox), Infinity Fabric (AMD), Omni-Path and QuickPath/Ultra Path (Intel), and NVLink/NVSwitch (Nvidia)
Supported by the entire Industry (see: http://www.computeexpresslink.org/)

Three distinct protocols:
• CXL.io PCIe 5.0 based

(configuration, link
initialization and
management, device
discovery and enumeration,
interrupts, DMA, and
register I/O access using
non-coherent loads/stores);

• CXL.cache low latency
coherent cache access for
peripheral devices;

• CXL.mem load/store host
CPU coherent access to
cached device memory
(volatile and persistent).

http://www.computeexpresslink.org/

CXL usage models

Three primary device types:
Type 1 (CXL.io and CXL.cache) – specialised accelerators with no local memory (e.g., smart NIC). Devices rely on
coherent access to host CPU memory.
Type 2 (CXL.io, CXL.cache and CXL.mem) – General-purpose Accelerators (GPU, ASIC or FPGA) with high-
performance GDDR or HBM local memory. Devices can coherently access host CPU's memory and/or provide
coherent or non-coherent access to device local memory from the host CPU.
Type 3 (CXL.io and CXL.mem) – memory expansion boards and persistent memory. Devices provide host CPU
with low-latency access to local DRAM or byte-addressable non-volatile storage.

Chiplets for heterogeneous integration

2D and 2.5D packaging options

Chip split and integration

Chip partition and integration

Design costs forecast

Universal Chiplet Interconnect Express™ (UCIe)

UCIe Layers

UCIe Board to Package integration

UCIe and CXL integration

UCIe 1.0 (2022) is open chiplet standard to unleash ecosystem and innovations across the compute
continuum with power-efficiency and cost-effectiveness in mind. It envisions a plug-and-play model,
modelled after several successful standards, driven by industry leaders for wide-spread adoption.

Ponte Veccio

3D processor with 47 functional tiles on five process nodes and connected with two different chiplet
technologies (TSMC’s N5 5nm, and Intel 7 memory tiles optimized for random access bandwidth-optimized
SRAM tiles (RAMBO)). These are stacked on two Foveros base die built with the Intel 7, 17 metal layer process,
with each base die measuring 646mm2 / 100Bln+ transistors

HBM: 3D stacked
High Bandwidth Memory
(covered in the next topic)

