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Announcement
• None
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Course objectives
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• Describe number representation systems and inter-conversion.

• Perform binary arithmetic operation such as addition and multiplication.
 
• Explain basic concepts of computer architecture.

• Use logic gates to implement simple combinational circuits.

• Explain system software and operating systems fundamentals, task 
management, synchronization, compilation, and interpretation. 

• Use design and automation tools to perform synthesis and optimization.



Objectives
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• Understand the memory hierarchy of CUDA devices
• Explain efficient and inefficient memory access paterens 
• Get the basic of the interconnection networks



Recap
• Parallel machines should be understood and efficiently used
• Building a parallel machine is not enough, models, parallel algorithms and || programs are needed
• Fully automated parallelization compilers are still a dream
• Programming Massively Parallel accelerators requires a specific programming model / tools   
• More(?)

• our main goal is “to remove magic” as you remember
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Overview
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• The lecture material is collected from various sources

• About CUDA, please refer to Wen-Mei and David 
• https://shop.elsevier.com/books/programming-massively-parallel-processors/hwu/978-0-323-91231-0

• Also NVIDIA has a lot of tutorials and recorded lectures
• https://developer.nvidia.com/educators/existing-courses

• Parallel Processing course, again Behrooz Parhami
• https://web.ece.ucsb.edu/~parhami/text_par_proc.htm#slides Maybe even

https://shop.elsevier.com/books/programming-massively-parallel-processors/hwu/978-0-323-91231-0
https://developer.nvidia.com/educators/existing-courses
https://web.ece.ucsb.edu/~parhami/text_par_proc.htm
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CUDA: A Multi-Dimensional Grid Example
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blockDim limited by the max 
#threads
gridDim.x, gridDim.y and 
gridDim.z [1..65,536]

highest dimension comes first! (the reversed 
of that used in the C statements for setting 
configuration parameters where the lowest 
dimension is first).
Block(1,0) is blockIdx.y=1 and blockIdx.x=0 

Grid 2

Kernel 2 4x2x2=16 threads



Processing a Picture with a 2D Grid

16×16 blocks
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76x62 picture 5 blocks

4 blocks
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Row-Major Layout of 2D arrays in C/C++ (reminder)

M2,1 à Row*Width+Col = 2*4+1 = 9 
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FORTRAN compiler layout is column-major



Conversion of a color image to grey–scale image (review)
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L = r * 0.21 + g * 0.71 + b * 0.07 

All pixels can be calculated 
independently of each other 



Covering a 76×62 picture with 16×16 blocks

Test (Col < width) 
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blockIdx.y*blockDim.y+threadIdx.y, blockIdx.x*blockDim.x+threadIdx.x)=
P(1*16+0, 0 *16+0)=P(16,0)

For the pixel handled by thread(0,0) of block(1,0) 

4
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// we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__ 
void colorToGreyscaleConvertion(unsigned char * Pout,  unsigned char * Pin,
                          int width, int height) {

 int Col = threadIdx.x + blockIdx.x * blockDim.x;
 int Row = threadIdx.y + blockIdx.y * blockDim.y;
 
 if (Col < width && Row < height) {
    // get 1D coordinate for the grayscale image
    int greyOffset = Row*width + Col;
    // one can think of the RGB image having
    // CHANNEL times columns of the gray scale image
    int rgbOffset = greyOffset*CHANNELS;
    unsigned char r = rgbImage[rgbOffset    ]; // red value for pixel
    unsigned char g = rgbImage[rgbOffset + 1]; // green value for pixel
    unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pixel
    // perform the rescaling and store it
    // We multiply by floating point constants
    grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;
 }
}

colorToGreyscaleConversion Kernel with 2D thread mapping to data
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Part of the CUDA C specification 
(same as threadIdx and blockIdx) 



CUDA Thread Block (review)
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• All threads in a block execute the same 
kernel program (SPMD)

• Programmer declares block:
• Block size 1 to 1,024 concurrent threads
• Block shape 1D, 2D, or 3D

• Threads have thread index numbers within 
block
• Kernel code uses thread index and block index 

to select work and address shared data
• Threads within the same block share data 

and synchronize while doing their share of 
the overall work

• Threads in different blocks can’t cooperate
• Each block can execute in any order relative to 

other blocks!

CUDA Thread Block

Thread Id #:
0 1 2 3 …          m   

Thread program

Courtesy: John Nickolls, NVIDIA



Compute Capabilities are GPU Dependent
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GRID V100D-32Q Tesla T10 Processor GeForce GTX 1080 Ti

Total amount of global memory: 4,160,749,568 4,294,770,688 3,131,572,224 Bytes

Number of multiprocessors:     80 30 28 
Number of cores: 640 240 224 

Total amount of constant memory:  65,536 65,536 65,536 Bytes
Total amount of shared memory per block: 49,152 16,384 49,152 Bytes
Total number of registers available per block: 65,536 16,384 65,536 Bytes

Warp size: 32 32 32 
Maximum number of threads per block: 1,024 512 1,024 
Maximum sizes of each dimension of a block: 1024 x 1024 x 64 512 x 512 x 64 1024 x 1024 x 64
Maximum sizes of each dimension of a grid: 2147483647 x 65535 x 65535 65535 x 65535 x 1 2147483647 x 65535 x 65535
Maximum memory pitch: 2,147,483,647 2,147,483,647 2,147,483,647 Bytes
Texture alignment:   512 256 512

Clock rate: 1.38 GHz 1.30 GHz 1.58 GHz
Concurrent copy and execution:  Yes Yes Yes



Transparent Scalability (as promised by CUDA)
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Device A

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Thread grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device B

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7
time

• Each block can execute in any order relative to others
• Hardware is free to assign blocks to any processor at any time

• A kernel scales to any number of parallel processors



Executing CUDA Thread Blocks
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t0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1SM 0

Mind that resources are finite:
Fermi SM architecture supports up to 
8 blocks and 1,536 threads
so 6 blocks of 256 threads, 3 of 512, 
etc are valid assignments
12 blocks of 128 threads is not!

• Threads are assigned to Streaming 
Multiprocessors in block granularity
• Up to 32 blocks to each SM as resource allows
• Maxwell SM can take up to 2,048 threads

• Threads run concurrently
• SM maintains thread/block id #s
• SM manages/schedules thread execution



Thread Scheduling (1/2)
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• Each block is executed as 32-thread 
warps
– An implementation decision, not part of 

the CUDA programming model
– Warps are scheduling units in SM

• If three blocks are assigned to an SM 
and each block has 256 threads, how 
many warps are there in an SM?

– Each block is divided into 256/32 = 8 warps
– 8 warps/blk * 3 blks  = 24 warps 

…
t0 t1 t2 … t31
…

…
t0 t1 t2 … t31
…Block 1 Warps Block 2 Warps

…
t0 t1 t2 … t31
…Block 1 Warps

Register File
(128 KB)

L1
(16 KB)

Shared Memory
(48 KB)

#SPs << #threads in wraps – this brings latency tolerance 



Thread Scheduling (2/2)
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• SM implements zero-overhead warp scheduling
• Warps whose next instruction has its operands ready 

for consumption are eligible for execution
• Eligible warps are selected for execution on a 

prioritized scheduling policy
• All threads in a warp execute the same 

instruction when selected (the classic SIMD)

TB1
W1

TB = Thread Block, W = Warp

TB2
W1

TB3
W1

TB2
W1

TB1
W1

TB3
W2

TB1
W2

TB1
W3

TB3
W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4



Be aware of Divergence
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• Main performance concern with branching is divergence
• Threads within a single warp take different paths
• Different execution paths were serialized in older GPUs

• The control paths taken by the threads in a warp are traversed one at a time until there is no more
• A common case: divergence could occur when branch condition is a function of 

thread ID
• Example with divergence: 

• If (threadIdx.x > 2) { }
• This creates two different control paths for threads in a block
• Branch granularity < warp size; threads 0, 1 and 2 follow different path than the rest of the threads in 

the first warp
• Example without divergence:

• If (threadIdx.x / WARP_SIZE > 2) { }
• Also creates two different control paths for threads in a block
• Branch granularity is a whole multiple of warp size; all threads in any given warp follow the same path

Volta++ mantain per-thread 
scheduling resources, e.g., PC and 
Stack. Pre-Volta devices mantained 
these resources per warp

Consider, understand and benefit from implementation (u-architectural) details



Block Granularity Considerations Example
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• For Matrix Multiplication using multiple blocks, should one use 8X8, 
16X16 or 32X32 blocks? Assume that in the GPU used, each SM can take 
up to 1,536 threads and up to 8 blocks

• For 8X8, we have 64 threads per block. Each SM can take up to 1,536 threads, 
which is 24 blocks. But each SM can only take up to 8 Blocks, only 512 threads 
(16 warps) will go into each SM! (under utilization!)

• For 16X16, we have 256 threads per block. Since each SM can take up to 1,536 
threads (48 warps), which is 6 blocks (within the 8 block limit). Thus we use the 
full thread capacity of an SM

• For 32X32, we would have 1,024 threads per Block. Only one block can fit into an 
SM, using only 2/3 of the thread capacity of an SM

Recap: consider, understand and benefit from implementation (microarchitectural) details



Programmer View of  CUDA Memories
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• Each thread can:
• Read/write per-thread   registers (~1 cycle)
• Read/write per-block shared memory (~5 cycles)
• Read/write per-grid global memory (~500 cycles)
• Read/only per-grid constant memory (~5 cycles 

with caching)

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory (read-only for SMs)

Variable declaration Memory Scope Lifetime
int LocalVar; register thread thread

__device__ __shared__   int SharedVar; shared block block

__device__              int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application

CUDA Variable Type Qualifiers

• __device__ is optional when used with  
__shared__, or __constant__

• Automatic variables without any qualifier 
reside in a register
• Except per-thread arrays that reside in 

global memory



How about GPU performance? (it is the memory …)
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• All threads access global memory for their input 
matrix elements
• One memory accesses per SP floating-point addition 

(4 bytes) 
• 4B/s of memory bandwidth/FLOPS

• Consider a GPU with
• Peak floating-point rate 12 TFLOPS with 1 TB/s DRAM 

bandwidth
• 4*12 = 48 TB/s required to achieve peak FLOPS rating
• The 1 TB/s memory bandwidth limits the execution at 

250 GFLOPS

• This limits the execution rate to 2% (.25/12) of the 
peak floating-point execution rate of the device!

• Need to drastically cut down memory accesses 
to get close to the 12 TFLOPS device capability

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory



CUDA Shared Memory (SM)
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• Shared memory is on-chip (similar to Registers)
• Access costs and functionality are quite different
• Part of the memory space (load/store access)
• Visible to all threads in a block (enables collaboration)

large but slow 

small but fast

Global Memory

Processing Unit

I/O

ALU

Processor (SM)

Shared 
Memory Register

File

Control Unit

PC IR

Shared 
Memory

Shared 
Memory

Shared 
Memory

Global Memory

SP- Streaming 
Processor

SM- Streaming 
Multiprocessor

Block of SMs



Common Programming Strategy (reminds of something?)
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• Global memory resides in device memory (DRAM) 
• A profitable way of performing computation on the 

device is to tile the input data to take advantage of 
fast shared memory:
• Partition data into subsets (tiles) that fit into shared memory
• Handle each data subset with one thread block by:

• Loading the subset from global memory to shared memory, using 
multiple threads to exploit memory-level parallelism

• Performing the computation on the subset from shared memory; 
each thread can efficiently multi-pass over any data element

• Copying results from shared memory to global memory

(!) “Blocked Matrix Operations” are widely used in the literature, CUDA reserved the word “blocks”



Shared Memory Blocking Basic Idea
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Thread 1 Thread 2 …

in
Global 
Memory

Thread 1 Thread 2 …

Global 
Memory

in

On-chip Memory

a lot of redundant 
Global Memory traffic



Basic Concept of Tiling
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__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width){

    __shared__ float subTileM[TILE_WIDTH][TILE_WIDTH];
    __shared__ float subTileN[TILE_WIDTH][TILE_WIDTH];
 …

In a congested traffic system, significant reduction of  vehicles can 
greatly improve the delay seen by all vehicles
• Carpooling for commuters
• Tiling for global memory accesses
• drivers = threads accessing their memory data operands
• cars = memory access requests



Outline of the Tiling Technique
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• Identify a tile of global memory contents that are 
accessed by multiple threads
• Load the tile from global memory into on-chip memory
• Have the multiple threads to access their data from the 

on-chip memory
• Move on to the next block/tile
• (threads timing is still missing above, more later)



Idea: Place global memory data into Shared Memory for reuse
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• Each input element is read by WIDTH threads
• Load each element into Shared Memory and 

have several threads use the local version to 
reduce the memory bandwidth

M

N

P

W
ID
TH

W
ID
TH

WIDTH WIDTH

ty

tx



Tiled Multiply
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M

N

P

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty
2
1
0

TILE_WIDTH-1

2

1

0

TI
LE
_W
ID
TH

TI
LE
_W
ID
TH

TI
LE
_W
ID
TH
E

W
ID
TH

W
ID
TH

• Break up the execution of the kernel into phases so 
that the data accesses in each phase is focused on 
one subset (tile) of M and N



Two Access Patterns 
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d_M d_N

WIDTH

Thread 1
Thread 2

M[Row*Width+k] N[k*Width+Col]

k is loop counter in the inner product 
loop of the kernel code 

W
ID
TH

not coalesced coalesced

N
T0 T1 T2 T3
Load iteration 0

T0 T1 T2 T3
Load iteration 1

Access 
direction in 
Kernel code

…

N0,2

N1,1

N0,1N0,0

N1,0

N0,3

N1,2 N1,3

N2,1N2,0 N2,2 N2,3

N3,1N3,0 N3,2 N3,3

N0,2N0,1N0,0 N0,3 N1,1N1,0 N1,2 N1,3 N2,1N2,0 N2,2 N2,3 N3,1N3,0 N

N accesses 
are coalesced



M accesses are not coalesced 
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d_M

WIDTH

Thread 1
Thread 2

M[Row*Width+k]

not coalesced

M
T0 T1 T2 T3

Load iteration 0

T0 T1 T2 T3
Load iteration 1

Access direction 
in Kernel code

…

M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3 M3,1M3,0 M3,2 M3,3

M[Row*Width+k]



Determine if access is coalesced 
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› Accesses in a warp are to consecutive locations 
if the index in an array access is in the form of

• A[(expression with terms independent of threadIdx.x) + threadIdx.x];
• Then (expression with terms independent of threadIdx.x) is also 

multiple of the burst size we speak of fully coalesced access



Use shared memory to enable coalescing in tiled mxMUL 
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d_M d_N

Copy into 
scratchpad 

memory

Perform 
multiplication 

with scratchpad 
values

corner turning

Use a coalesced pattern 
to copy tile M to SM

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width)

{

1.  __shared__ float subTileM[TILE_WIDTH][TILE_WIDTH];

2.  __shared__ float subTileN[TILE_WIDTH][TILE_WIDTH];

. . .

// Loop over the M and N tiles required to compute the P element

8.  for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Collaborative loading of M and N tiles into shared memory

9.   subTileM[ ? ][ ? ] = M[           ? ];

10.   subTileN[ ? ][ ? ] = N[           ? ];

. . .



Barrier Synchronization
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• An API function call in CUDA
• __syncthreads()

• All threads in the same block must reach the 
__syncthreads() before any can move on

• Best used to coordinate tiled algorithms phased execution
• To ensure that all elements of a tile are loaded (at begin)
• To ensure that all elements of a tile are consumed (at end)

carpooling tiling

…

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

…
Thread N-3

Thread N-2

Thread N-1

Time 

Each of the TILE_WIDTH2 
threads loads one element 
followed by a
__syncthreads()



Shared Memory and Threading
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• SMs in Maxwell have 64KB shared mem. (max 48KB/block)
• Shared memory size is implementation dependent!
• For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of 

shared memory
• Shared memory can potentially support up to 32 thread blocks actively 

executing 
• This allows up to 8*512 = 4,096 pending loads (2 per thread, 256 

threads/block)
• The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared 

memory usage per thread block, allowing 8 thread blocks active at 
the same time (2*1,024 = 2,048 loads / 1,024 * (2*32) = 65,536 
mul/add), however, max #threads (1,536) will reduce #thread 
blocks to just 1!

• Each __syncthread() can reduce the number of active threads for a block, 
hence more thread blocks can be advantageous

• Using 16x16 tiling, we reduce the accesses to the global 
memory by a factor of 16

• Device with 150GB/s mem BW supports (150/4)*16 = 600 GFLOPS!
    



Register file capacity and parallelism
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• Assume a current-generation device D, with SM of up to 1,536 threads 
and 16,384 registers 

• With 16,384 registers to support 1,536 threads, there are only 10 
registers (16,384/1,536) for each thread!
• using 11 registers, will limit the number of concurrent threads in each SM 
• Such reduction is at block granularity; e.g., with blocks of 512 threads, the reduction of 

threads will be done with 512 threads at a time 
• Next smaller #threads from 1,536 is 1,024, a 1/3 reduction of threads that can 

simultaneously reside in each SM 
• This can substantially reduce the #warps available for scheduling, thereby decreasing the 

ability of the processor to find useful work in the presence of long-latency operations

• The number of registers is device dependent    

Recap: consider, understand and benefit from implementation (microarchitectural) details



Back 2 || Computers
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• How the different sub-systems are connected together
• Some fundamentals of Interconnection Networks 



Multiple processors and multiple memories

38

• Global memory shared among ||processors is the natural 
generalization of the sequential memory model (PRAM)
• Thinking about it, programmers assume sequential consistency 

(SC) when they think about ||ism
• SC difficult to achieve under all circumstances (and is costly)
• A system BUS can do this, but …

M M M M M M M M

P P P P P P P P
references all 

visible
source of 
contention

M M M M M M M M

P P P P P P P P
Interconnection Network

(Dance Hall)
Network delays cause memory latency to be higher for a 
single reference than with a bus, but simultaneous use 
should help when many references are in the air (MulThrd)



Interconnect Networks
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P1P0 P3P2 P5P4 P7P6

Mem Mem Mem Mem Mem Mem Mem Mem

Point-to-point Network

Architecture common for servers Max node degree d = 2
Network diameter D = p – 1 ( ëp/2û )
Bisection width B = 1 ( 2 )

P2P0 P1 P3 P4 P5 P6 P7 P8

P2P0 P1 P3 P4 P5 P6 P7 P8

P1

P0

P3

P4

P2 P5

P7 P8

P6

Max node degree d = 3
Network diameter D = 2 ëlog2 pû    ( - 1 )
Bisection width B = 1 

P P P 

P P P 

P P P 

0 1 2 

3 4 5 

6 7 8 

P P P 

P P P 

P P P 

0 1 2 

3 4 5 

6 7 8 

Max node degree d = 4
Network diameter D = 2Öp – 2  ( Öp )
Bisection width B @ Öp     ( 2Öp )

P 
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Removing the Processor-to-Memory Bottleneck
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Some Terminology:
NUMA
Nonuniform memory access
(distributed shared memory)
UMA
Uniform memory access
(global shared memory)
COMA
Cache-only memory arch



Some Interconnection Networks in use
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–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
   Number         Network Bisection   Node       Local
Network name(s) of nodes       diameter width     degree    links?
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1D mesh (linear array) k         k – 1 1     2        Yes
1D torus (ring, loop) k         k/2  2     2        Yes
2D Mesh  k2         2k – 2 k     4        Yes
2D torus (k-ary 2-cube) k2         k  2k     4        Yes1

3D mesh   k3         3k – 3 k2     6        Yes
3D torus (k-ary 3-cube) k3         3k/2 2k2     6        Yes1

Pyramid   (4k2 – 1)/3      2 log2 k 2k     9        No
Binary tree  2l – 1          2l – 2 1     3        No
4-ary hypertree  2l(2l+1 – 1)      2l  2l+1     6        No
Butterfly  2l(l + 1)          2l      2l     4        No
Hypercube  2l          l  2l–1     l        No
Cube-connected cycles 2l l          2l  2l–1     3        No
Shuffle-exchange  2l          2l – 1 ³ 2l–1/l     4 unidir.    No
De Bruijn  2l           l  2l /l     4 unidir.    No
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
                 1 With folded layout



Interconnection Network Topics
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• Interconnection networks for parallel computers
• components
• characteristics
• network models

• Analysis of networks
• diameter
• bisection bandwidth
• degree
• cost
• example networks

• Simple cost measures for communication
• store-and-forward model
• cut-through model  



Kinds of Networks
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• Wide-area networks (WAN)
• telephone, internet

• Local-area networks (LAN)
• ethernet, wireless 802.11x

• System-level networks
• processor to processor
• (processor to memory)

• These networks differ in scalability, assumptions, cost
• Primary focus of our discussion is system-level networks



Interconnection Network Domains Wider Scale 
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• Communication and computation occur at many levels
• Which designs make sense for particular technologies, 

architectures, applications, etc., and at which levels?
• From physical layer perspective, three broad regimes:

Similar principles apply



Components of a network
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• clusters
• each processor has a dedicated network interface

• switches
• k inputs, m outputs, m ≥ k

• simplest: k = m = 2

• links
• characteristic bandwidth
• (# parallel bits per link) • (signaling rate)



Four characteristics of networks
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• Network topology
• physical interconnection structure of network

• analogy: Roadmap showing interstates
• Routing algorithm

• rules that specify which routes a message may follow
• analogy: To drive from Delft to Amsterdam, take A13 and then A4

• Switching Strategy
• determines how a message traverses a route

• analogy: Presidential convoy reserves entire route in advance, while a 
group of travelers in separate cars make individual switching decisions

• Flow control
• determines when a message makes progress

• analogy: Traffic signals and rules: two cars cannot occupy the same 
location at the same time



Network topology 
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• Connected undirected graph G = (N, C)
• N = set of nodes
• C = set of channels (bidirectional links)

• Indirect network (switching fabric)
• contains switch nodes without an attached processor or memory
• switching nodes do not generate traffic
• typical case in modern networks

• Direct network
• every node can be a producer and/or consumer of messages
• no pure switching nodes



Indirect networks 

47

• Processor to memory interconnect in shared-memory machines
• Connect p processors to p memory banks

• Example: bus
• Θ(p) switches
• simultaneous references always serialize

• Example: crossbar
• Θ(p2) switches
• simultaneous references in disjoint banks serviced in parallel

• Example: multistage network
• Θ(p lg p) switches and links

• Θ(lg p) stages of Θ(p) switches each
• simultaneous reference of disjoint memories may be serialized

• contention within the network



Multistage Butterfly indirect network (p = 8)
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Routing in butterfly networks
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• based on destination address
• destination address dk-1 ….. d0
• in stage i, switch setting is determined by dk-i

• switch to top or bottom



Multistage Omega network (p = 8)
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• Isomorphic to butterfly network
• same “perfect shuffle” connection pattern between successive stages



Network Topology: Graph-theoretical measures
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• Diameter: Maximum length of shortest path between any pair of nodes

• i.e. distance between maximally separated nodes - related to latency
• Bisection width: Minimum number of edges crossing approximately equal bipartition 

of nodes
• related to bandwidth with full applied load
• a scalable network has bisection width Ω(p)

• Degree: number of edges (links) per node (switch)
• related to cost and switch complexity
• fixed degree is simpler and more scalable

• Cost: number of wires
• length of wires and wiring regularity is also an issue



Linear array, Ring, Binary Tree, Mesh and Crossbar (review)

52

Max node degree d = 2
Network diameter D = p – 1 ( ëp/2û )
Bisection width B = 1 ( 2 )
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Networks in current parallel computers
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• Modern interconnects are indirect
• Hardware routing between source and destination

• Indirect networks
• Cluster of commodity nodes

• Fat-tree (assembled using 36 port non-blocking switches)
• IBM Summit (ORNL)

• Fat-tree Infiniband [4,608 nodes] (24,000 GPU, 202,752 cores)
• Fujitsu Fugaku

• 6D torus [160,000 nodes k-ary d-cube, ? k~7 d=6] (3M+ cores)

• Processor – memory interconnects (p procs, m memories)
• Tera MTA

• 3D torus (p = 256, m = 4,096)
• NEC SX-9

• crossbar (p = 16 procs * 16 channels/proc = 256, m = 8,192)



Routing and flow control
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•  System-level networks
• Tradeoffs are very different than WAN (TCP)

• use flow control instead of dropping packets
• mostly static routing instead of dynamic routing

• Routing algorithm
• prescribes a unique path from source to destination

• e.g., dimension ordered routing on hypercube and lower dimensional d-cubes
• some networks dynamically “misroute” if a needed link is unavailable

• routing can be store-and-forward or cut-through

• Flow control
• contention for output links in a switch can block progress
• generally low-latency per-link flow control is used

• delay in access to a link rapidly propagates back to sender



Communication cost model
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• Message size m bits

• Number of hops (links) to travel h

• Channel width W and link cycle time tc
• Per-bit transfer time tw = tc/W

• assuming m is sufficiently large

• Startup time ts
• overhead to insert message into network

• Node latency or per-hop time th
• time taken by message header cross channel and be interpreted at destination



Store-and-forward routing
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• flow-control mechanism at message or packet level
• packets are transferred one link at a time
• large buffers, high latency
• cost
         tSF = ts + (th + m tw) h



Cut-through routing
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•  flow control is per-link and payload transmission is pipelined
• message spread out across multiple links in the network
• small buffers, low latency
• cost
         tCT = ts + h th + m tw



And much much more
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• Virtual Channels to cope with Head-Of-Line 
(HOL) blocking

• Fully Adaptive Routing to utilize all available 
network paths

• etc



Summary
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• CUDA provides programmable Massively Parallel accelerators
• Interconnection Networks play important role
• Memory and Networks kind of merge together  

OR



Thank you
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Fat Tree from supercomputers to Data Centers

K-ary fat tree: three-layer topology (edge, aggregation and core) 
– each pod consists of (k/2)2 servers & 2 layers of k/2 k-port switches 
– each edge switch connects to k/2 servers & k/2 aggregation switches
– each aggregation switch connects to k/2 edge & k/2 core switches
– (k/2)2 core switches: each connects to k pods 

Great Scalability, Uniform Bandwidths, Can be built with cheap components



Interconnects of some TOP-500 Machines

Must be important



TOP-500 Interconnect share

Better chart of few years back



Compute Express Link
Open standard for CPU-to-Device and CPU-to-Memory in the High Perf Datacenters (2019)
currently v3.0 (64 GT/s, 7.563 GB/s (×1), 121.0 GB/s (×16); 256-byte FLIT in PAM-4)
Includes open standards, e.g., OpenCAPI (IBM), Gen-Z (HPE), and CCIX (Xilinx), and proprietary protocols: InfiniBand / 
RoCE (Mellanox), Infinity Fabric (AMD), Omni-Path and QuickPath/Ultra Path (Intel), and NVLink/NVSwitch (Nvidia) 
Supported by the entire Industry (see: http://www.computeexpresslink.org/)

Three distinct protocols:
• CXL.io PCIe 5.0 based 

(configuration, link 
initialization and 
management, device 
discovery and enumeration, 
interrupts, DMA, and 
register I/O access using 
non-coherent loads/stores);

• CXL.cache low latency 
coherent cache access for 
peripheral devices;

• CXL.mem load/store host 
CPU coherent access to 
cached device memory 
(volatile and persistent).

http://www.computeexpresslink.org/


CXL usage models 

Three primary device types:
Type 1 (CXL.io and CXL.cache) – specialised accelerators with no local memory (e.g., smart NIC). Devices rely on 
coherent access to host CPU memory.
Type 2 (CXL.io, CXL.cache and CXL.mem) – General-purpose Accelerators (GPU, ASIC or FPGA) with high-
performance GDDR or HBM local memory. Devices can coherently access host CPU's memory and/or provide 
coherent or non-coherent access to device local memory from the host CPU.
Type 3 (CXL.io and CXL.mem) – memory expansion boards and persistent memory. Devices provide host CPU 
with low-latency access to local DRAM or byte-addressable non-volatile storage.



Chiplets for heterogeneous integration

2D and 2.5D packaging options

Chip split and integration 

Chip partition and integration 

Design costs forecast



Universal Chiplet Interconnect Express™ (UCIe)



UCIe Layers



UCIe Board to Package integration



UCIe and CXL integration

UCIe 1.0 (2022) is open chiplet standard to unleash ecosystem and innovations across the compute 
continuum with power-efficiency and cost-effectiveness in mind. It envisions a plug-and-play model, 
modelled after several successful standards, driven by industry leaders for wide-spread adoption. 



Ponte Veccio 

3D processor with 47 functional tiles on five process nodes and connected with two different chiplet 
technologies (TSMC’s N5 5nm, and Intel 7 memory tiles optimized for random access bandwidth-optimized 
SRAM tiles (RAMBO)). These are stacked on two Foveros base die built with the Intel 7, 17 metal layer process, 
with each base die measuring 646mm2 / 100Bln+ transistors

HBM: 3D stacked 
High Bandwidth Memory 
(covered in the next topic)


