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Announcement
• There will be example questions
• However, do not count on getting similar questions with different numbers
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Course objectives
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• Describe number representation systems and inter-conversion.

• Perform binary arithmetic operation such as addition and multiplication.
 
• Explain basic concepts of computer architecture.

• Use logic gates to implement simple combinational circuits.

• Explain system software and operating systems fundamentals, task 
management, synchronization, compilation, and interpretation. 

• Use design and automation tools to perform synthesis and optimization.



Objectives
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• Understand the Amdahl and Gustaffson laws 
• Explain system scalability 
• Get the basics of a widely used performance evaluation model
• More laws



Recap
• Understood parallel machines and their interconnect network basics
• Some CUDA intro (to be used in Lab3)
• More(?)

• our main goal is “to remove magic” as you remember
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Overview
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• The lecture material is collected from various sources

• Mikko Lipasti (UW-Madison), Samuel Williams (Lawrence Berkeley 
National Lab) and more

• About Performance Modeling, please refer to Raj Jain 
• https://www.wiley.com/en-
us/The+Art+of+Computer+Systems+Performance+Analysis%3A+Techniques+for+Experimental+
Design%2C+Measurement%2C+Simulation%2C+and+Modeling-p-9780471503361

• For datacenters, see Luiz Barroso’s book …

https://www.wiley.com/en-us/The+Art+of+Computer+Systems+Performance+Analysis%3A+Techniques+for+Experimental+Design%2C+Measurement%2C+Simulation%2C+and+Modeling-p-9780471503361
https://www.wiley.com/en-us/The+Art+of+Computer+Systems+Performance+Analysis%3A+Techniques+for+Experimental+Design%2C+Measurement%2C+Simulation%2C+and+Modeling-p-9780471503361
https://www.wiley.com/en-us/The+Art+of+Computer+Systems+Performance+Analysis%3A+Techniques+for+Experimental+Design%2C+Measurement%2C+Simulation%2C+and+Modeling-p-9780471503361


Speedup and Scalability
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•  Speedup, Scalability, strong scaling, weak scaling

•  Iron law, MIPS, MFLOPS and benchmarks 

• Amdahl’s law

• Gustafson’s law

• Roofline Model

• Operational laws 



Performance expectation
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•  When using one processor, the sequential program runs for 100 
seconds. When we use 10 processors, should the program run for 10 
times faster?

•  This works only for embarrassingly parallel computations – parallel 
computations that can be divided into completely independent computations 
that can be executed simultaneously.  There may have no interaction 
between separate processes; sometime the results need to be collected.

•  Embarrassingly parallel applications are the kind that can scale up to a very large number of 
processors. Examples: Monte Carlo analysis, numerical integration, 3D graphics rendering, etc.

•  In other types of applications, the computation components interact and 
have dependencies, which prevents the applications from using a large 
number of  processors. 



Performance vs Cost
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Airplane Passengers Range (mi) Speed  (mph) 

Boeing 737-100 101 630 598 
Boeing 747 470 4,150 610
BAC/Sud Concorde 132 4,000 1,350
Douglas DC-8-50 146 8,720 544 

l Which of the following airplanes has the best performance?

l How much faster is the Concorde vs. the 747
l How much bigger is the 747 vs. DC-8?



Performance vs Cost
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•Which computer is fastest?

•Not so simple!
• Scientific simulation – FP performance
• Program development – Integer performance
• Database workload – Memory, I/O



Performance of Computers

11

•Want to buy the fastest computer for what 
you want to do?
•Workload is most important
•Correct measurement and analysis

•Want to design the fastest computer for 
what the customer wants to pay?
•Cost is an important criterion



Defining Performance
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•What is important to whom?
•Computer system user
•Minimize elapsed time for program = 
time_end – time_start
•Called response time (aka latency)

•Computer center manager
•Maximize completion rate = #jobs/second
•Called throughput



Response Time vs. Throughput
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• Is throughput = 1/av. response time?
• Only if NO overlap
• Otherwise, throughput > 1/av. response time
• E.g., a lunch buffet – assume 5 entrees
• Each person takes 2 minutes/entrée
• Throughput is 1 person every 2 minutes
• BUT time to fill up tray is 10 minutes
•Why and what would the throughput be otherwise?
• 5 people simultaneously filling tray (overlap)
•Without overlap, throughput = 1/10



What is Performance for Computer Architects?

14

•Computer architects’ view
•CPU time = time spent running a program

• Intuitively, bigger should be faster, so:
• Performance = 1/X time, where X is response, 
CPU execution, etc.

•Elapsed time = CPU time + I/O wait time
•Let’s consider only CPU time (any comments?)



Improve Performance
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• Improve (a) response time or (b) throughput?
• Faster CPU
•Helps both (a) and (b)

•Add more CPUs
•Helps (b) and perhaps (a) due to less queueing



Performance Comparison
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• Machine A is n times faster than machine B 
  iff perf(A)/perf(B) = time(B)/time(A) = n
• Machine A is x% faster than machine B 
  iff perf(A)/perf(B) = time(B)/time(A) = 1 + x/100
• e.g., time(A) = 10s, time(B) = 15s

• 15/10 = 1.5 => A is 1.5 times faster than B
• 15/10 = 1.5 => A is 50% faster than B



What about “decelerating” accelerators?
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CPU

ACC 
Function1 – 5s

Function2 – 1s

CPU

Function1 – 1,000s

Function2 – 1s

10G data 
transferred Transfer 5s

CPU

ACC 

Function1 – 5s

Function2 – 2s

Final result only

CPU time 1,001s Option 1 time 11s Option 2 time 7s

Some observations
At Kernel level: 
• Kernel 1 speedup  200x (!)
• Kernel 2 “speedup”   0.5x (!)

At System level:
• Option 1 (Kernel 1 only) speedup   91x
• Option 2 (Kernels 1 and 2) speedup 143x

Some thinking about computation and data movements is required



Breaking Down Performance
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• A program is broken into instructions
• Hardware (u-architecture) is aware of instructions, not programs

• At lower level, HW breaks instructions into cycles
• Lower level state machines change state every cycle

• For example:
• 1GHz Snapdragon runs 1,000M cycles/sec, 1 cycle = 1ns
• 2.5GHz Core i7 runs 2.5G cycles/sec, 1 cycle = 0.25ns



Iron Law
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Processor Performance  =   ---------------
Time

Program

Architecture --> Implementation --> Realization
Compiler Designer      Processor Designer         Chip Designer

Instructions Cycles
Program Instruction

Time
Cycle

(code size)

= X X

(CPI) (cycle time)

Remember Blaauw Brooks?



Iron Law
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• Instructions/Program
• Instructions executed, not static code size
• Determined by algorithm, compiler, ISA

• Cycles/Instruction
• Determined by ISA and CPU organization
• Overlap among instructions reduces this term

• Time/cycle
• Determined by technology, organization, clever circuit design



The overall CPU architect goal
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• Minimize time which is the product, NOT isolated terms
• Common error to miss terms while devising optimizations
• e.g., ISA change to decrease instruction count
• BUT leads to CPU organization which makes clock slower

• Bottom line: terms are inter-related



Other Metrics
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• MIPS and MFLOPS

• MIPS = instruction count/(execution time x 106)

  = clock rate/(CPI x 106)

• But MIPS has serious shortcomings



Problems with MIPS
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• Example: without FP hardware, an FP op may take 50 
single-cycle instructions
• With FP hardware, only one 2-cycle instruction

l Thus, adding FP hardware:
– CPI increases (why?)
– Instructions/program decreases (why?)
– Total execution time decreases

l BUT, MIPS gets worse!

50/50 => 2/1
50 => 1
50 => 2

50 MIPS => 2 MIPS



Problems with MIPS

24

• Ignores program
• Usually used to quote peak performance
• Ideal conditions => guaranteed not to exceed!

• When is MIPS ok?
• Same compiler, same ISA
• e.g., same binary running on AMD Phenom, Intel Core i7
• Why? Instructions/program is constant and can be ignored



Other Metrics
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• MFLOPS = FP ops in program/(execution time x 106)
• Assuming FP ops independent of compiler and ISA
• Often safe for numeric codes: matrix size determines # of 

FP ops/program
• However, not always safe:

• Missing instructions (e.g., FP divide)
• Optimizing compilers

• Relative MIPS and normalized MFLOPS
• Just adds to the confusion



Which Programs?
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• Execution time of what program?
• Best case – your always run the same set of programs
• Port them and time the whole workload

• In reality, use benchmarks
• Programs chosen to measure performance
• Predict performance of actual workload
• Saves effort and money
• Representative? Honest? Benchmarketing…

Intel Polaris (2006) 
80 cores @ 4GHz
dual- SPFP MACs /cycle
1TFLOP  < 100W

But also: Synthetic Programs, Kernels, Instruction Mixes, Addition/MUL Instruction (?)



How to Average?
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• One answer: for total execution time, how much faster is B? 9.1x

Machine A Machine B
Program 1 1 10
Program 2 1,000 100
Total 1,001 110



How to Average?
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• Another: Arithmetic Mean (AM) (same result)
• Arithmetic mean of times: 
• AM(A) = 1001/2 = 500.5
• AM(B) = 110/2 = 55
• 500.5/55 = 9.1x
• Valid only if programs run equally often, so use weighted 

arithmetic mean:
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More in Chapter 12 of Raj Jains’ book



Other Averages
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• e.g., 30 km/h for first 10 km, then 90 km/h for next 10 km, 
what is average speed?
• Average speed = (30+90)/2 WRONG!
• Average speed = total distance / total time
 = (20 / (10/30 + 10/90))
 = 45 km/h



Harmonic Mean
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• Harmonic mean of rates =

• Use HM if forced to start and end with rates 
(e.g., reporting MIPS or MFLOPS)
• Why?

• Rate has time in denominator
• Mean should be proportional to inverse of sums of 

time (not sum of inverses)
• See: J.E. Smith, “Characterizing computer 

performance with a single number,” CACM Volume 
31 ,  Issue 10  (October 1988), pp. 1202-1206.
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Dealing with Ratios 
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• If we take ratios with respect to machine A

Machine A Machine B
Program 1 1 10
Program 2 1,000 100
Total 1,001 110

Machine A Machine B
Program 1 1 10
Program 2 1 0.1



Dealing with Ratios 
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• Average for machine A is 1, average for machine B is 5.05
• If we take ratios with respect to machine B

• Can’t both be true!!!
• Don’t use arithmetic mean on ratios!

Machine A Machine B
Program 1 0.1 1
Program 2 10 1
Average 5.05 1



Geometric Mean
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• Use geometric mean for ratios
• Geometric mean of ratios = 

• Independent of reference machine
• In the example, GM for machine a is 1, for machine B is also 1

• Normalized with respect to either machine
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But …
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• GM of ratios is not proportional to total time
• AM in example says machine B is 9.1 times faster
• GM says they are equal
• If we took total execution time, A and B are equal only if

• Program 1 is run 100 times more often than program 2
• Generally, GM will mispredict for three or more machines



Summary on averaging
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• Use AM for times
• Use HM if forced to use rates
• Use GM if forced to use ratios

• Best of all, use unnormalized numbers to compute time

See also Chapter 12 of Raj Jains’ 
book, especially Section 12.4



Benchmarks: Standard Performance Evaluation Corporation
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• System Performance Evaluation Cooperative (SPEC)
• Formed in 80s to combat benchmarketing
• SPEC89, SPEC92, SPEC95, SPEC2000, SPEC CPU2006, 2017

• SPEC CPU® 2017: 43 benchmarks in four suites: 
• SPECspeed® 2017 Integer
• SPECspeed® 2017 Floating Point 
• SPECrate® 2017 Integer 
• SPECrate® 2017 Floating Point 
• optional metric for energy consumption.



Benchmarks (INT 2017 and 2000)
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Benchmarks (FP 2017 and 2000)
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Benchmarks Pitfalls 
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• Benchmark not representative
• Your workload is I/O bound, SPEC is useless

• Benchmark is too old
• Benchmarks age poorly; benchmarketing pressure causes 

vendors to optimize compiler/hardware/software to benchmarks
• Need to be periodically refreshed



Scalability
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• Scalability of a program measures how many processors that the 
program can make effective use of.

•  For a computation represented by a computation graph, parallelism is a good 
indicator of scalability. 



Speedup and strong scaling
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• Let 𝑇! be the execution time for a computation to run on one processor 
and 𝑇"	be the execution time for the computation (with the same input – 
same problem) to run on P processors

 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 = $!
$"

 
• Factor by which the use of P processors speeds up execution time relative to one 

processor for the same problem
• Since the problem size is fixed, this is referred to as strong scaling
• Given a computation graph, what is the highest speedup that can be achieved?



Speedup
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• 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 = !!
!"

  
• Typically, 1 ≤ 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 ≤ 𝑃
• The speedup is ideal if 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 = 𝑃
•  Linear speedup:  𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 = 𝑘×𝑃 for some constant 0 < 𝑘 < 1

Q: Can speedup be > P

PS P0 P1 P2 P3
vs



Efficiency
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• The efficiency of an || program using P processors is:
𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦	=	𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 	/	P

• Efficiency estimates how well-utilized the processors are in running 
the parallel program

• Ideal speedup means Efficiency = 1 (100% efficiency)

0

Processors

Performance

640

Program1

Program2

48

Speedup



Issues with Speedup, Efficiency
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• Speedup is best applied when hardware is constant, or 
for family within a generation

• Need to have computation, communication in same ratio
• Great sensitivity to the TS value

• TS should be the time of the best sequential program on 1 processor 
of the ||-machine

• TP=1  ¹ TS Measures relative speedup

Relative speedup is often important 
but it must be labeled as such

P0 P1 P2 P3 P0 P1 P2 P3
vs



Amdahl’s Law (fixed size speedup, strong scaling)
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• Given a program, let f be the fraction that must be sequential and 1-f be 
the fraction that can be parallelized

•  𝑇% = 𝑓	𝑇! +
!&' $!
%

• 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 = $!
$"
= $!

'	$!(
!#$ %!
"

= !
'((!&')/%

•  When 𝑃 → ∞, 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑃  = !
'

• Original paper: Amdahl, Gene M. (1967). "Validity of the Single 
Processor Approach to Achieving Large-Scale Computing Capabilities" . 
AFIPS Conference Proceedings (30): 483–485.

https://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
https://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf


Amdahl’s Law
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Amdahl’s law: As P increases, the percentage of work in the 
parallel region reduces, performance is more and more 
dominated by the sequential region

P=1

time

P=2 P=4 P=8



Implications of Amdahl’s Law
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• For strong scaling, the speedup is 
bounded by the percentage of 
sequential portion of the program, 
not by the number of processors!

• Strong scaling will be hard to 
achieve for many programs 



Gustafson’s Law (scaled speedup, weak scaling)
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• Large scale parallel/distributed systems are expected to allow 
for solving problem faster or larger problems

•  Amdahl’s Law indicates that there is a limit on how faster it can go
•  How about bigger problems? This is what Gustafson’s Law sheds 

lights on!
•  In Amdahl’s law, as the number of processors increases, the 

amount of work in each node decreases (more processors 
sharing the parallel part)
•  In Gustafson’s law, as the number of processors increases, the 

amount of work in each node remains the same (doing more 
work collectively)



Gustafson’s Law
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P=1

time

P=2 P=4 P=8

Gustafson’s law: As P increases, the total work on each process 
remains the same. So the total work increases with P. 



Gustafson’s Law (scaled speedup, weak scaling)
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• The work on each processor is 1 (f is the fraction for sequential program, 
(1-f) is the fraction for parallel program.

• With P processor (with the same 𝑇% = 1), the total amount of useful work 
is 𝑓 + 1 − 𝑓 𝑃. Thus, 𝑇! = 𝑓 + 1 − 𝑓 𝑃.

• Thus, 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑃  = 𝑓 + 1 − 𝑓 𝑃.

No of PEs Strong scaling speedup 
(Amdalh’s law, f = 10%)

Weak scaling speedup 
(Gustafson’s law, f = 10%)

2 1.82 1.9

4 3.07 3.7

8 4.71 7.3

16 6.40 14.5

100 9.90 90.1



Implication of Gustafson’s Law
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•  For weak scaling, 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑃  = 𝑓 + 1 − 𝑓 𝑃
•  Speedup is now proportional to P.

•  Scalability is much better when the problem size can increase
•  Many application can use more computing power to solve larger problems

•  Weather prediction, large deep learning models.

• Gustafson, John L. (May 1988). "Reevaluating Amdahl's Law". 
Communications of the ACM. 31 (5): 532–3.

he also came up with

http://www.johngustafson.net/pubs/pub13/amdahl.htm
https://en.wikipedia.org/wiki/Communications_of_the_ACM


Modeling Performance: Roofline Model
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§ Roofline Model is a throughput-oriented 
performance model

§ Tracks rates not times
§ Uses bound and bottleneck analysis
§ Independent of ISA and architecture (applies 

to CPUs, GPUs, Google TPUs1, etc…)

1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017.
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline


Performance Models
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§ Because there are so many components, performance models often 
conceptualize the system as being dominated by one or more of 
these components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

FLOP/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

Roofline
Model

Williams et al, "Roofline: An Insightful Visual Performance Model For Multicore Architectures", CACM, 2009.

!Use the

right model



DRAM Roofline
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§ One could hope to always attain 
peak performance (FLOP/s)

§ However, finite locality (reuse) and 
bandwidth limit performance.

§ Assume:
• Idealized processor/caches
• Cold start (data in DRAM)

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

#FP ops / Peak GFLOP/s
Time = max

#Bytes / Peak GB/s



DRAM Roofline

55

§ One could hope to always attain 
peak performance (FLOP/s)

§ However, finite locality (reuse) and 
bandwidth limit performance.

§ Assume:
• Idealized processor/caches
• Cold start (data in DRAM)

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

1 / Peak GFLOP/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

= max



DRAM Roofline
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§ One could hope to always attain 
peak performance (FLOP/s)

§ However, finite locality (reuse) and 
bandwidth limit performance.

§ Assume:
• Idealized processor/caches
• Cold start (data in DRAM)

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFLOP/s#FP ops
Time (#FP ops / #Bytes) * Peak GB/s

= min



DRAM Roofline
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§ One could hope to always attain 
peak performance (FLOP/s)

§ However, finite locality (reuse) and 
bandwidth limit performance.

§ Assume:
• Idealized processor/caches
• Cold start (data in DRAM)

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
Note, Arithmetic Intensity (AI) = Flops / Bytes (as presented to DRAM )



Arithmetic Intensity
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§ The most important concept in Roofline is Arithmetic Intensity

§ Measure of data locality (data reuse)
§ Ratio of Total Flops performed to Total Bytes moved
§ For the DRAM Roofline…

o Total Bytes to/from DRAM and includes all cache and prefetcher effects
o Can be very different from total loads/stores (bytes requested)
o Equal to ratio of sustained GFLOP/s to sustained GB/s (time cancels)



DRAM Roofline
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§ Plot Roofline bound using 
Arithmetic Intensity as the x-axis

§ Log-log scale makes it easy to 
doodle, extrapolate performance 
along Moore’s Law, etc…

§ Kernels with AI less than machine 
balance are ultimately DRAM 
bound (we’ll refine this later…)

Peak FLOP/s

At
ta

in
ab

le
 F

LO
P/

s

DRAM G
B/s

Arithmetic Intensity (FLOP:Byte)

DRAM-bound Compute-bound



Roofline Example #1 (H)
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§ Typical machine balance is 5-10 
flops per byte…
• 40-80 flops per double to exploit compute capability
• Artifact of technology and money
• Unlikely to improve

§ Consider STREAM Triad…

• 2 flops per iteration
• Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])
• AI = 0.083 flops per byte == Memory bound

At
ta

in
ab

le
 F

LO
P/

s

DRAM G
B/s

Arithmetic Intensity (FLOP:Byte)

TRIAD

GFLOP/s ≤ AI * DRAM GB/s
#pragma omp parallel for
for(i=0;i<N;i++){

  Z[i] = X[i] + alpha*Y[i];

}

0.083

Peak FLOP/s



Roofline Example #2
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§ Conversely, 7-point constant 
coefficient stencil…
• 7 flops
• 8 memory references (7 reads, 1 store) per point
• AI = 0.11 flops per byte (L1)

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
  new[k][j][i] = -6.0*old[k  ][j  ][i  ] 
    + old[k  ][j  ][i-1]
  + old[k  ][j  ][i+1]
  + old[k  ][j-1][i  ]
  + old[k  ][j+1][i  ]
      + old[k-1][j  ][i  ]
  + old[k+1][j  ][i  ];
}}}

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)



Roofline Example #2
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#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
  new[k][j][i] = -6.0*old[k  ][j  ][i  ] 
    + old[k  ][j  ][i-1]
  + old[k  ][j  ][i+1]
  + old[k  ][j-1][i  ]
  + old[k  ][j+1][i  ]
      + old[k-1][j  ][i  ]
  + old[k+1][j  ][i  ];
}}}

CPU
(compute, FLOP/s)

CACHE
(only compulsory misses)

Cache Bandwidth
(GB/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

§ Conversely, 7-point constant 
coefficient stencil…
• 7 flops
• 8 memory references (7 reads, 1 store) per point
• Cache can filter all but 1 read and 1 write per point
• AI = 0.44 flops per byte



Roofline Example #2
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§ Conversely, 7-point constant 
coefficient stencil…
• 7 flops
• 8 memory references (7 reads, 1 store) per point
• Cache can filter all but 1 read and 1 write per point
• AI = 0.44 flops per byte == memory bound,
• but 5x the flop rate

At
ta

in
ab

le
 F

LO
P/

s

DRAM G
B/s

7-point
Stencil

GFLOP/s ≤ AI * DRAM GB/s

TRIAD

Arithmetic Intensity (FLOP:Byte)
0.083 0.44

Peak FLOP/s

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
  new[k][j][i] = -6.0*old[k  ][j  ][i  ] 
    + old[k  ][j  ][i-1]
  + old[k  ][j  ][i+1]
  + old[k  ][j-1][i  ]
  + old[k  ][j+1][i  ]
      + old[k-1][j  ][i  ]
  + old[k+1][j  ][i  ];
}}}



Hierarchical Roofline
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§ Processors have multiple levels of 
memory/cache
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ Applications have locality in each level
§ Unique data movements imply unique AI’s
§ Moreover, each level will have unique peak and 

sustained bandwidths

CPU

L1 D$

DRAM

L2 D$

MCDRAM

Machine Balance

GFLOP/s
L1 GB/s

GFLOP/s
L2 GB/s

GFLOP/s
MCDRAM GB/s

GFLOP/s
DRAM GB/s

Arithmetic Intensity

GFLOPs
L1 GB

GFLOPs
L2 GB

GFLOPs 
MCDRAM GB

GFLOPs 
DRAM GB



Hierarchical Roofline
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DDR Bound
DDR AI*BW <

MCDRAM AI*BW

§ Construct superposition of Rooflines…

§ Measure bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple AI’s 

and multiple bounds (flops, L1, L2, … DRAM)…

• … performance is bound by the minimum At
ta

in
ab

le
 F

LO
P/

s

DDR G
B/sMCDRAM ca
ch

e G
B/s

Arithmetic Intensity (FLOP:Byte)

L2
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Peak FLOP/s



Hierarchical Roofline
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§ Construct superposition of Rooflines…

§ Measure bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple AI’s 

and multiple bounds (flops, L1, L2, … DRAM)…

• … performance is bound by the minimum At
ta

in
ab

le
 F

LO
P/

s

MCDRAM ca
ch

e G
B/s

Arithmetic Intensity (FLOP:Byte)

L2
 G

B/s

DDR bottleneck 
pulls performance 
below MCDRAM 

Roofline

Peak FLOP/s



Why is Roofline Useful?
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§ Imagine a mix of loop nests
§ FLOP/s alone may not be useful in 

deciding which to optimize first

FL
O

P/
s

Kernel (or apps)



Why is Roofline Useful?
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§ We can sort kernels by AI …

At
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s

Arithmetic Intensity (FLOP:Byte)



Why is Roofline Useful?
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§ We can sort kernels by AI …
§ … and compare performance 

relative to machine capabilities Peak FLOP/s

At
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s

DDR G
B/s

Arithmetic Intensity (FLOP:Byte)



Why is Roofline Useful?

70

§ Kernels near the roofline are making 
good use of computational resources

o kernels can have low performance (GFLOP/s), 
but make good use of a machine

o kernels can have high performance (GFLOP/s), 
but make poor use of a machine

Peak FLOP/s

At
ta

in
ab

le
 F

LO
P/

s

DDR G
B/s

50
% of

 STREAM

Arithmetic Intensity (FLOP:Byte)

50% of Peak



How Do We Count FLOPs?
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Manual Counting
§ Go thru each loop nest and 

count the number of FP 
operations

ü Works best for deterministic 
loop bounds

ü or parameterize by the 
number of iterations 
(recorded at run time)

✘ Not scalable

Perf. Counters
§ Read counter before/after
ü More Accurate
ü Low overhead (<%) == can 

run full MPI applications
ü Can detect load imbalance
✘ Requires privileged access
✘ Requires manual 

instrumentation (+overhead) 
or full-app characterization 

✘ Broken counters = garbage
✘ May not differentiate 

FMADD from FADD
✘ No insight into special 

pipelines

Binary Instrumentation
§ Automated inspection of 

assembly at run time
ü Most Accurate
ü FMA-, VL-, and mask-aware
ü Can count instructions by 

class/type
ü Can detect load imbalance
ü Can include effects from 

non-FP instructions
ü Automated application to 

multiple loop nests
✘ >10x overhead (short runs / 

reduced concurrency)



How Do We Measure Data Movement?
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Manual Counting
§ Go thru each loop nest and 

estimate how many bytes 
will be moved

§ Use a mental model of 
caches

ü Works best for simple loops 
that stream from DRAM 
(stencils, FFTs, spare, …)

✘ N/A for complex caches
✘ Not scalable

Perf. Counters
§ Read counter before/after
ü Applies to full hierarchy (L2, 

DRAM, 
ü Much more Accurate
ü Low overhead (<%) == can 

run full MPI applications
ü Can detect load imbalance
✘ Requires privileged access
✘ Requires manual 

instrumentation (+overhead) 
or full-app characterization 

Cache Simulation
§ Build a full cache simulator 

driven by memory 
addresses

ü Applies to full hierarchy and 
multicore

ü Can detect load imbalance
ü Automated application to 

multiple loop nests
✘ Ignores prefetchers
✘ >10x overhead (short runs / 

reduced concurrency)



Can we do this differently?
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• of course …
• e.g., using Operational Laws (what Laws?)
• Operational Laws are similar to the elementary laws of motion, 

for example: 

• Notice that distance d, acceleration a, and time t are 
operational quantities. No need to consider them as 
expected values of random variables or to assume a distribution 



Operational Laws
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• Relationships that do not require any assumptions about the 
distribution of service times or inter-arrival times 

• Identified originally by Buzen (1976) and later extended by 
Denning and Buzen (1978)

• Operational ⇒ Directly measured 
• Operationally testable assumptions ⇒ assumptions that can 

be verified by measurements
• For example, whether number of job arrivals is equal to the number 

of completions? 
• This assumption, called job flow balance, is operationally testable 
• A set of observed service times is or is not a sequence of 

independent random variables is or is not operationally testable 



Operational Quantities
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• Quantities that can be directly measured during a finite 
observation period 

• T = Observation interval  Ai = #arrivals 
• Ci = #completions   Bi = Busy Time



Utilization Law
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Motivational Example:
• Consider a network gateway at which the packets arrive at a rate of 125 packets per 

second and the gateway takes an average of two milliseconds (2ms) to forward them
• Throughput Xi = Exit rate = Arrival rate = 125 packets/second
• Service time Si = 0.002 seconds
• Utilization Ui= Xi Si = 125 × 0.002 = 0.25 = 25% 
• This result is valid for any arrival or service process. Even if inter-arrival times and service 

times to are not IID* random variables with exponential distribution (operational)

* IID: Independent and Identically Distributed random variables



Forced Flow Law
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• Relates the system throughput to individual device throughputs
• In an open model, System throughput = #jobs leaving the 

system per unit time 
• In a closed model, System throughput = #jobs traversing 

OUT to IN link per unit time 
• If observation period T is such that Ai = Ci
⇒ Device satisfies the assumption of job flow balance 

• Each job makes Vi requests for ith device in the system 
• Ci = C0 Vi or Vi =Ci/C0 , Vi is called visit ratio 



Forced Flow Law (cont)
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Jobs 1

2

M

i
Vi
visits per job



Forced Flow Law (cont)
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• Throughput of ith device: 

• In other words for throughput: 

• This is the Forced Flow Law 



Bottleneck Device
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• Combining the forced flow law and the utilization law, we get:

 
• Here Di=Vi Si is the total service demand on the device for all 

visits of a job
• The device with the highest Di has the highest utilization and 

is the bottleneck device 



And there are more related Laws
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Raj Jain, “The Art of Computer Systems Performance Analysis,” Wiley, 1991

th
ro

ug
hp

ut

1/Dmax
N/(D + Z)

N*=(D + Z)/Dmax
number of users

D the sum of all demands on all devices
Dmax the bottleneck device demand
N #jobs in the system
Z the user response time (think time)
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Raj Jain, “The Art of Computer Systems 
Performance Analysis,” Wiley, 1991

Will also find excellent 
source for excuses …

Recommended read!



Summary
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• Fair performance comparison is tricky (do not cook the numbers)
• Real application level performance matters but is not easy
• Best serial program has not much to do with the best || program 



Thank you
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Simple Motivational Example
› Assume a repetitive task reading a record (tI), processing (tC) 

it and then storing the results back (tO) 
• It is irrelevant if tI  and tO represent I/O or Memory accesses

› Serial execution (no overlap):
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tI

tO
tC

tI

tO
tC

tI

tO
tC

Throughput = 1/(tI + tC + tO) [records/sec]



Simple Motivational Example (cont.)
› Assume a repetitive task reading a record (tI), processing (tC) 

it and then storing the results back (tO) 
• Irrelevant if tI  and tO represent I/O or Memory access

› Two-way restricted parallel (C-I or O-C) (degree of overlap 2):
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Throughput = 1/(tI + tO)

tC < tI + tO tC ≥ tI + tO

tI

tO
tC tCtC

tO

tI

Throughput = 1/(tC)

tO

tItI

tO

tI

tO
tC tC tC



Simple Motivational Example (cont.)
› Assume a repetitive task reading a record (tI), processing (tC) 

it and then storing the results back (tO) 
• Irrelevant if tI  and tO represent I/O or Memory access

› Two-way parallel (C-I or O-C or I-O) (degree of overlap 2):
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tI

tO
tC

tI

tO
tCtC

Throughput = 2/(tI + tC +  tO)

tC < tI + tO tC ≥ tI + tO

tI

tO
tC tCtC

tO

tI

Throughput = 1/(tC)

tO

tItI

tO



Simple Motivational Example (cont.)
› Assume a repetitive task reading a record (tI), processing (tC) 

it and then storing the results back (tO) 
› Three-way parallel (I-C-O) (degree of overlap 3):
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tI

tO
tC

tI

tO
tC

Throughput = 1/(max(tI ,tO)

tC < tI + tO
tC ≥ tI + tO

tI

tO
tC tCtC

tO

tI

Throughput = 1/(tC)

tO

tI

tC
tI

tI

tO
tC

tO
tC

tI tI
tC

tO

tI
tC



Simple Motivational Example (cont.)
› The presented model is rough and quite optimistic 
› Average times are used

• Suits well streaming with FIFOs used to balance data moves

› Provides an upper bound for what is achievable for your 
application on a given computing platform
• tI, tC and tO summarize platform and application properties
• They are determined by platform capabilities and application needs

• How much data is moved and how much computation for each data element

› The model’s simplicity enables early strategic decisions and 
will prevent you of committing on impossible targets

89



Iron Law Example 
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• Machine A: clock 1ns, CPI 2.0, for program x
• Machine B: clock 2ns, CPI 1.2, for program x

• Which is faster and how much?
 Time/Program = instr/program x cycles/instr x sec/cycle
 Time(A)  = N x 2.0 x 1 = 2N
 Time(B) = N x 1.2 x 2 = 2.4N
 Compare: Time(B)/Time(A) = 2.4N/2N = 1.2

• So, Machine A is 20% faster than Machine B for this program



Iron Law Example 
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Keep clock(A) @ 1ns and clock(B)  @2ns
For equal performance, if CPI(B)=1.2, what is CPI(A)?

Time(B)/Time(A) = 1 = (Nx2x1.2)/(Nx1xCPI(A))
CPI(A) = 2.4



Iron Law Example 
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Keep CPI(A)=2.0 and CPI(B)=1.2
For equal performance, if clock(B)=2ns, what is clock(A)?

Time(B)/Time(A) = 1 = (N x 2.0 x clock(A))/(N x 1.2 x 2)
clock(A) = 1.2ns



Both Laws Together
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Amdhal’s view
(fixed problem size)

Gustaffson’s view
(scalable problem size)

Amdhal (v.2):
Tp = 𝛼 ·Tbase + (1-𝛼)·Tbase / p
where, 𝛼 is the fraction of the serial code and
p – the speedup factor of the parallel portion

Tp = (𝛼 + (1-𝛼) / p)·Ts

Sp = Ts / Tp = 1/(𝛼 + (1-𝛼)/p);  lim∞= 1/𝛼

Gustaffson:
Sp = Work (p) / Work (1) = 
     = (𝛼·W + (1-𝛼)·p·W)/W = 𝛼 + (1-𝛼) · p
linear speedup is assumed

With 𝛼 = 0.1 (10% serial code)
Amdahl’s speedup is maximal 10, 
while Gustaffson claims 0.1 + 0.9·p



The Roofline Model (Arithmetic Intensity)
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for (i=0; i < N; 
i=i+1)
   a[i] = b[i]+c[i]

for (i=0; i < N; i=i+1)
   a[i] = b[i]*c[i]+b[i]

for (i=0; i < N; i=i+1) {
   I1 = A_offset[i]; I2 = A_offset[i+1]; 
   sum = 0.0;
   for (j = 0; j < (I2-I1); ++j)
      sum += A[I1+j] * x[col_index[I2+j]]; 
   y[i] = sum;
}

one (1)  ADD
two (2)  LOADs (8 Bytes)
one (1)  WRITE (8 Bytes)
AI = 1/(2*8+8) = 1/24* 

one (1) ADD
one (1) MUL
two (2) LOADs (8 Bytes)
one (1)  WRITE (8 Bytes)
AI = 2/(2*8+8) = 1/12* 

one (1)  ADD
one (1) MUL
two (2)  LOADs (8 Bytes)
one (1) LOAD (4 Bytes)
one (1)  WRITE (8 Bytes)
AI = 2/(2*8+4+8) = 1/14  

* on cache-based systems kernel would actually require an extra read for a[] 
(because of write-allocate traffic) leading to even lower AI



The Roofline Model (Arithmetic Intensity, 2)
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Particle Methods

BLAS L3

FFT Stencil 

BLAS L1, SpMv

AI

• New architectures with decreased machine balance 
• the point where the bandwidth roof meets the ceiling moves to the right 

• More and more algorithms are going to find themselves memory bound
• Even DGEMM can run into trouble depending on the blocking factor chosen 


