
EE1D1: Digital Systems A
BSc. EE, year 1, 2023-2024, lecture 1

Scaling Out
Computer Engineering Lab

Faculty of Electrical Engineering, Mathematics & Computer Science
2024-2025

CESE4130: Computer Engineering
2024-2025, lecture 11

1

Announcement
• There will be example questions
• However, do not count on getting similar questions with different numbers

2

Course objectives

3

• Describe number representation systems and inter-conversion.

• Perform binary arithmetic operation such as addition and multiplication.

• Explain basic concepts of computer architecture.

• Use logic gates to implement simple combinational circuits.

• Explain system software and operating systems fundamentals, task
management, synchronization, compilation, and interpretation.

• Use design and automation tools to perform synthesis and optimization.

Objectives

4

• Understand the Amdahl and Gustaffson laws
• Explain system scalability
• Get the basics of a widely used performance evaluation model
• More laws

Recap
• Understood parallel machines and their interconnect network basics
• Some CUDA intro (to be used in Lab3)
• More(?)

• our main goal is “to remove magic” as you remember

5

Overview

6

• The lecture material is collected from various sources

• Mikko Lipasti (UW-Madison), Samuel Williams (Lawrence Berkeley
National Lab) and more

• About Performance Modeling, please refer to Raj Jain
• https://www.wiley.com/en-
us/The+Art+of+Computer+Systems+Performance+Analysis%3A+Techniques+for+Experimental+
Design%2C+Measurement%2C+Simulation%2C+and+Modeling-p-9780471503361

• For datacenters, see Luiz Barroso’s book …

https://www.wiley.com/en-us/The+Art+of+Computer+Systems+Performance+Analysis%3A+Techniques+for+Experimental+Design%2C+Measurement%2C+Simulation%2C+and+Modeling-p-9780471503361
https://www.wiley.com/en-us/The+Art+of+Computer+Systems+Performance+Analysis%3A+Techniques+for+Experimental+Design%2C+Measurement%2C+Simulation%2C+and+Modeling-p-9780471503361
https://www.wiley.com/en-us/The+Art+of+Computer+Systems+Performance+Analysis%3A+Techniques+for+Experimental+Design%2C+Measurement%2C+Simulation%2C+and+Modeling-p-9780471503361

Speedup and Scalability

7

• Speedup, Scalability, strong scaling, weak scaling

• Iron law, MIPS, MFLOPS and benchmarks

• Amdahl’s law

• Gustafson’s law

• Roofline Model

• Operational laws

Performance expectation

8

• When using one processor, the sequential program runs for 100
seconds. When we use 10 processors, should the program run for 10
times faster?

• This works only for embarrassingly parallel computations – parallel
computations that can be divided into completely independent computations
that can be executed simultaneously. There may have no interaction
between separate processes; sometime the results need to be collected.

• Embarrassingly parallel applications are the kind that can scale up to a very large number of
processors. Examples: Monte Carlo analysis, numerical integration, 3D graphics rendering, etc.

• In other types of applications, the computation components interact and
have dependencies, which prevents the applications from using a large
number of processors.

Performance vs Cost

9

Airplane Passengers Range (mi) Speed (mph)

Boeing 737-100 101 630 598
Boeing 747 470 4,150 610
BAC/Sud Concorde 132 4,000 1,350
Douglas DC-8-50 146 8,720 544

l Which of the following airplanes has the best performance?

l How much faster is the Concorde vs. the 747
l How much bigger is the 747 vs. DC-8?

Performance vs Cost

10

•Which computer is fastest?

•Not so simple!
• Scientific simulation – FP performance
• Program development – Integer performance
• Database workload – Memory, I/O

Performance of Computers

11

•Want to buy the fastest computer for what
you want to do?
•Workload is most important
•Correct measurement and analysis

•Want to design the fastest computer for
what the customer wants to pay?
•Cost is an important criterion

Defining Performance

12

•What is important to whom?
•Computer system user
•Minimize elapsed time for program =
time_end – time_start
•Called response time (aka latency)

•Computer center manager
•Maximize completion rate = #jobs/second
•Called throughput

Response Time vs. Throughput

13

• Is throughput = 1/av. response time?
• Only if NO overlap
• Otherwise, throughput > 1/av. response time
• E.g., a lunch buffet – assume 5 entrees
• Each person takes 2 minutes/entrée
• Throughput is 1 person every 2 minutes
• BUT time to fill up tray is 10 minutes
•Why and what would the throughput be otherwise?
• 5 people simultaneously filling tray (overlap)
•Without overlap, throughput = 1/10

What is Performance for Computer Architects?

14

•Computer architects’ view
•CPU time = time spent running a program

• Intuitively, bigger should be faster, so:
• Performance = 1/X time, where X is response,
CPU execution, etc.

•Elapsed time = CPU time + I/O wait time
•Let’s consider only CPU time (any comments?)

Improve Performance

15

• Improve (a) response time or (b) throughput?
• Faster CPU
•Helps both (a) and (b)

•Add more CPUs
•Helps (b) and perhaps (a) due to less queueing

Performance Comparison

16

• Machine A is n times faster than machine B
 iff perf(A)/perf(B) = time(B)/time(A) = n
• Machine A is x% faster than machine B
 iff perf(A)/perf(B) = time(B)/time(A) = 1 + x/100
• e.g., time(A) = 10s, time(B) = 15s

• 15/10 = 1.5 => A is 1.5 times faster than B
• 15/10 = 1.5 => A is 50% faster than B

What about “decelerating” accelerators?

17

CPU

ACC
Function1 – 5s

Function2 – 1s

CPU

Function1 – 1,000s

Function2 – 1s

10G data
transferred Transfer 5s

CPU

ACC

Function1 – 5s

Function2 – 2s

Final result only

CPU time 1,001s Option 1 time 11s Option 2 time 7s

Some observations
At Kernel level:
• Kernel 1 speedup 200x (!)
• Kernel 2 “speedup” 0.5x (!)

At System level:
• Option 1 (Kernel 1 only) speedup 91x
• Option 2 (Kernels 1 and 2) speedup 143x

Some thinking about computation and data movements is required

Breaking Down Performance

18

• A program is broken into instructions
• Hardware (u-architecture) is aware of instructions, not programs

• At lower level, HW breaks instructions into cycles
• Lower level state machines change state every cycle

• For example:
• 1GHz Snapdragon runs 1,000M cycles/sec, 1 cycle = 1ns
• 2.5GHz Core i7 runs 2.5G cycles/sec, 1 cycle = 0.25ns

Iron Law

19

Processor Performance = ---------------
Time

Program

Architecture --> Implementation --> Realization
Compiler Designer Processor Designer Chip Designer

Instructions Cycles
Program Instruction

Time
Cycle

(code size)

= X X

(CPI) (cycle time)

Remember Blaauw Brooks?

Iron Law

20

• Instructions/Program
• Instructions executed, not static code size
• Determined by algorithm, compiler, ISA

• Cycles/Instruction
• Determined by ISA and CPU organization
• Overlap among instructions reduces this term

• Time/cycle
• Determined by technology, organization, clever circuit design

The overall CPU architect goal

21

• Minimize time which is the product, NOT isolated terms
• Common error to miss terms while devising optimizations
• e.g., ISA change to decrease instruction count
• BUT leads to CPU organization which makes clock slower

• Bottom line: terms are inter-related

Other Metrics

22

• MIPS and MFLOPS

• MIPS = instruction count/(execution time x 106)

 = clock rate/(CPI x 106)

• But MIPS has serious shortcomings

Problems with MIPS

23

• Example: without FP hardware, an FP op may take 50
single-cycle instructions
• With FP hardware, only one 2-cycle instruction

l Thus, adding FP hardware:
– CPI increases (why?)
– Instructions/program decreases (why?)
– Total execution time decreases

l BUT, MIPS gets worse!

50/50 => 2/1
50 => 1
50 => 2

50 MIPS => 2 MIPS

Problems with MIPS

24

• Ignores program
• Usually used to quote peak performance
• Ideal conditions => guaranteed not to exceed!

• When is MIPS ok?
• Same compiler, same ISA
• e.g., same binary running on AMD Phenom, Intel Core i7
• Why? Instructions/program is constant and can be ignored

Other Metrics

25

• MFLOPS = FP ops in program/(execution time x 106)
• Assuming FP ops independent of compiler and ISA
• Often safe for numeric codes: matrix size determines # of

FP ops/program
• However, not always safe:

• Missing instructions (e.g., FP divide)
• Optimizing compilers

• Relative MIPS and normalized MFLOPS
• Just adds to the confusion

Which Programs?

26

• Execution time of what program?
• Best case – your always run the same set of programs
• Port them and time the whole workload

• In reality, use benchmarks
• Programs chosen to measure performance
• Predict performance of actual workload
• Saves effort and money
• Representative? Honest? Benchmarketing…

Intel Polaris (2006)
80 cores @ 4GHz
dual- SPFP MACs /cycle
1TFLOP < 100W

But also: Synthetic Programs, Kernels, Instruction Mixes, Addition/MUL Instruction (?)

How to Average?

27

• One answer: for total execution time, how much faster is B? 9.1x

Machine A Machine B
Program 1 1 10
Program 2 1,000 100
Total 1,001 110

How to Average?

28

• Another: Arithmetic Mean (AM) (same result)
• Arithmetic mean of times:
• AM(A) = 1001/2 = 500.5
• AM(B) = 110/2 = 55
• 500.5/55 = 9.1x
• Valid only if programs run equally often, so use weighted

arithmetic mean:

n
itime

n

i

1)(
1

´
þ
ý
ü

î
í
ìå

=

()
n

itimeiweight
n

i

1)()(
1

´
þ
ý
ü

î
í
ì

´å
=

More in Chapter 12 of Raj Jains’ book

Other Averages

29

• e.g., 30 km/h for first 10 km, then 90 km/h for next 10 km,
what is average speed?
• Average speed = (30+90)/2 WRONG!
• Average speed = total distance / total time
 = (20 / (10/30 + 10/90))
 = 45 km/h

Harmonic Mean

30

• Harmonic mean of rates =

• Use HM if forced to start and end with rates
(e.g., reporting MIPS or MFLOPS)
• Why?

• Rate has time in denominator
• Mean should be proportional to inverse of sums of

time (not sum of inverses)
• See: J.E. Smith, “Characterizing computer

performance with a single number,” CACM Volume
31 , Issue 10 (October 1988), pp. 1202-1206.

þ
ý
ü

î
í
ìå

=

n

i nrate

n

1)(
1

Dealing with Ratios

31

• If we take ratios with respect to machine A

Machine A Machine B
Program 1 1 10
Program 2 1,000 100
Total 1,001 110

Machine A Machine B
Program 1 1 10
Program 2 1 0.1

Dealing with Ratios

32

• Average for machine A is 1, average for machine B is 5.05
• If we take ratios with respect to machine B

• Can’t both be true!!!
• Don’t use arithmetic mean on ratios!

Machine A Machine B
Program 1 0.1 1
Program 2 10 1
Average 5.05 1

Geometric Mean

33

• Use geometric mean for ratios
• Geometric mean of ratios =

• Independent of reference machine
• In the example, GM for machine a is 1, for machine B is also 1

• Normalized with respect to either machine

n
n

i

iratioÕ
=1

)(

But …

34

• GM of ratios is not proportional to total time
• AM in example says machine B is 9.1 times faster
• GM says they are equal
• If we took total execution time, A and B are equal only if

• Program 1 is run 100 times more often than program 2
• Generally, GM will mispredict for three or more machines

Summary on averaging

35

• Use AM for times
• Use HM if forced to use rates
• Use GM if forced to use ratios

• Best of all, use unnormalized numbers to compute time

See also Chapter 12 of Raj Jains’
book, especially Section 12.4

Benchmarks: Standard Performance Evaluation Corporation

36

• System Performance Evaluation Cooperative (SPEC)
• Formed in 80s to combat benchmarketing
• SPEC89, SPEC92, SPEC95, SPEC2000, SPEC CPU2006, 2017

• SPEC CPU® 2017: 43 benchmarks in four suites:
• SPECspeed® 2017 Integer
• SPECspeed® 2017 Floating Point
• SPECrate® 2017 Integer
• SPECrate® 2017 Floating Point
• optional metric for energy consumption.

Benchmarks (INT 2017 and 2000)

37

Benchmarks (FP 2017 and 2000)

38

Benchmarks Pitfalls

39

• Benchmark not representative
• Your workload is I/O bound, SPEC is useless

• Benchmark is too old
• Benchmarks age poorly; benchmarketing pressure causes

vendors to optimize compiler/hardware/software to benchmarks
• Need to be periodically refreshed

Scalability

40

• Scalability of a program measures how many processors that the
program can make effective use of.

• For a computation represented by a computation graph, parallelism is a good
indicator of scalability.

Speedup and strong scaling

41

• Let 𝑇! be the execution time for a computation to run on one processor
and 𝑇"	be the execution time for the computation (with the same input –
same problem) to run on P processors

 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 = $!
$"

• Factor by which the use of P processors speeds up execution time relative to one

processor for the same problem
• Since the problem size is fixed, this is referred to as strong scaling
• Given a computation graph, what is the highest speedup that can be achieved?

Speedup

42

• 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 = !!
!"

• Typically, 1 ≤ 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 ≤ 𝑃
• The speedup is ideal if 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 = 𝑃
• Linear speedup: 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 = 𝑘×𝑃 for some constant 0 < 𝑘 < 1

Q: Can speedup be > P

PS P0 P1 P2 P3
vs

Efficiency

43

• The efficiency of an || program using P processors is:
𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦	=	𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 	/	P

• Efficiency estimates how well-utilized the processors are in running
the parallel program

• Ideal speedup means Efficiency = 1 (100% efficiency)

0

Processors

Performance

640

Program1

Program2

48

Speedup

Issues with Speedup, Efficiency

44

• Speedup is best applied when hardware is constant, or
for family within a generation

• Need to have computation, communication in same ratio
• Great sensitivity to the TS value

• TS should be the time of the best sequential program on 1 processor
of the ||-machine

• TP=1 ¹ TS Measures relative speedup

Relative speedup is often important
but it must be labeled as such

P0 P1 P2 P3 P0 P1 P2 P3
vs

Amdahl’s Law (fixed size speedup, strong scaling)

45

• Given a program, let f be the fraction that must be sequential and 1-f be
the fraction that can be parallelized

• 𝑇% = 𝑓	𝑇! +
!&' $!
%

• 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 = $!
$"
= $!

'	$!(
!#$ %!
"

= !
'((!&')/%

• When 𝑃 → ∞, 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 = !
'

• Original paper: Amdahl, Gene M. (1967). "Validity of the Single
Processor Approach to Achieving Large-Scale Computing Capabilities" .
AFIPS Conference Proceedings (30): 483–485.

https://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
https://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf

Amdahl’s Law

46

Amdahl’s law: As P increases, the percentage of work in the
parallel region reduces, performance is more and more
dominated by the sequential region

P=1

time

P=2 P=4 P=8

Implications of Amdahl’s Law

47

• For strong scaling, the speedup is
bounded by the percentage of
sequential portion of the program,
not by the number of processors!

• Strong scaling will be hard to
achieve for many programs

Gustafson’s Law (scaled speedup, weak scaling)

48

• Large scale parallel/distributed systems are expected to allow
for solving problem faster or larger problems

• Amdahl’s Law indicates that there is a limit on how faster it can go
• How about bigger problems? This is what Gustafson’s Law sheds

lights on!
• In Amdahl’s law, as the number of processors increases, the

amount of work in each node decreases (more processors
sharing the parallel part)
• In Gustafson’s law, as the number of processors increases, the

amount of work in each node remains the same (doing more
work collectively)

Gustafson’s Law

49

P=1

time

P=2 P=4 P=8

Gustafson’s law: As P increases, the total work on each process
remains the same. So the total work increases with P.

Gustafson’s Law (scaled speedup, weak scaling)

50

• The work on each processor is 1 (f is the fraction for sequential program,
(1-f) is the fraction for parallel program.

• With P processor (with the same 𝑇% = 1), the total amount of useful work
is 𝑓 + 1 − 𝑓 𝑃. Thus, 𝑇! = 𝑓 + 1 − 𝑓 𝑃.

• Thus, 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 = 𝑓 + 1 − 𝑓 𝑃.

No of PEs Strong scaling speedup
(Amdalh’s law, f = 10%)

Weak scaling speedup
(Gustafson’s law, f = 10%)

2 1.82 1.9

4 3.07 3.7

8 4.71 7.3

16 6.40 14.5

100 9.90 90.1

Implication of Gustafson’s Law

51

• For weak scaling, 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 = 𝑓 + 1 − 𝑓 𝑃
• Speedup is now proportional to P.

• Scalability is much better when the problem size can increase
• Many application can use more computing power to solve larger problems

• Weather prediction, large deep learning models.

• Gustafson, John L. (May 1988). "Reevaluating Amdahl's Law".
Communications of the ACM. 31 (5): 532–3.

he also came up with

http://www.johngustafson.net/pubs/pub13/amdahl.htm
https://en.wikipedia.org/wiki/Communications_of_the_ACM

Modeling Performance: Roofline Model

52

§ Roofline Model is a throughput-oriented
performance model

§ Tracks rates not times
§ Uses bound and bottleneck analysis
§ Independent of ISA and architecture (applies

to CPUs, GPUs, Google TPUs1, etc…)

1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017.
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

Performance Models

53

§ Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of
these components.

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
Depth

MPI Message Size
MPI Send:Wait ratio

#MPI Wait’s

FLOP/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
OMP Overhead
Network Bandwidth
Network Gap
Network Latency

Roofline
Model

Williams et al, "Roofline: An Insightful Visual Performance Model For Multicore Architectures", CACM, 2009.

!Use the

right model

DRAM Roofline

54

§ One could hope to always attain
peak performance (FLOP/s)

§ However, finite locality (reuse) and
bandwidth limit performance.

§ Assume:
• Idealized processor/caches
• Cold start (data in DRAM)

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

#FP ops / Peak GFLOP/s
Time = max

#Bytes / Peak GB/s

DRAM Roofline

55

§ One could hope to always attain
peak performance (FLOP/s)

§ However, finite locality (reuse) and
bandwidth limit performance.

§ Assume:
• Idealized processor/caches
• Cold start (data in DRAM)

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

1 / Peak GFLOP/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

= max

DRAM Roofline

56

§ One could hope to always attain
peak performance (FLOP/s)

§ However, finite locality (reuse) and
bandwidth limit performance.

§ Assume:
• Idealized processor/caches
• Cold start (data in DRAM)

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFLOP/s#FP ops
Time (#FP ops / #Bytes) * Peak GB/s

= min

DRAM Roofline

57

§ One could hope to always attain
peak performance (FLOP/s)

§ However, finite locality (reuse) and
bandwidth limit performance.

§ Assume:
• Idealized processor/caches
• Cold start (data in DRAM)

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s
Note, Arithmetic Intensity (AI) = Flops / Bytes (as presented to DRAM)

Arithmetic Intensity

58

§ The most important concept in Roofline is Arithmetic Intensity

§ Measure of data locality (data reuse)
§ Ratio of Total Flops performed to Total Bytes moved
§ For the DRAM Roofline…

o Total Bytes to/from DRAM and includes all cache and prefetcher effects
o Can be very different from total loads/stores (bytes requested)
o Equal to ratio of sustained GFLOP/s to sustained GB/s (time cancels)

DRAM Roofline

59

§ Plot Roofline bound using
Arithmetic Intensity as the x-axis

§ Log-log scale makes it easy to
doodle, extrapolate performance
along Moore’s Law, etc…

§ Kernels with AI less than machine
balance are ultimately DRAM
bound (we’ll refine this later…)

Peak FLOP/s

At
ta

in
ab

le
 F

LO
P/

s

DRAM G
B/s

Arithmetic Intensity (FLOP:Byte)

DRAM-bound Compute-bound

Roofline Example #1 (H)

60

§ Typical machine balance is 5-10
flops per byte…
• 40-80 flops per double to exploit compute capability
• Artifact of technology and money
• Unlikely to improve

§ Consider STREAM Triad…

• 2 flops per iteration
• Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])
• AI = 0.083 flops per byte == Memory bound

At
ta

in
ab

le
 F

LO
P/

s

DRAM G
B/s

Arithmetic Intensity (FLOP:Byte)

TRIAD

GFLOP/s ≤ AI * DRAM GB/s
#pragma omp parallel for
for(i=0;i<N;i++){

 Z[i] = X[i] + alpha*Y[i];

}

0.083

Peak FLOP/s

Roofline Example #2

61

§ Conversely, 7-point constant
coefficient stencil…
• 7 flops
• 8 memory references (7 reads, 1 store) per point
• AI = 0.11 flops per byte (L1)

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
 new[k][j][i] = -6.0*old[k][j][i]
 + old[k][j][i-1]
 + old[k][j][i+1]
 + old[k][j-1][i]
 + old[k][j+1][i]
 + old[k-1][j][i]
 + old[k+1][j][i];
}}}

CPU
(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

Roofline Example #2

62

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
 new[k][j][i] = -6.0*old[k][j][i]
 + old[k][j][i-1]
 + old[k][j][i+1]
 + old[k][j-1][i]
 + old[k][j+1][i]
 + old[k-1][j][i]
 + old[k+1][j][i];
}}}

CPU
(compute, FLOP/s)

CACHE
(only compulsory misses)

Cache Bandwidth
(GB/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

§ Conversely, 7-point constant
coefficient stencil…
• 7 flops
• 8 memory references (7 reads, 1 store) per point
• Cache can filter all but 1 read and 1 write per point
• AI = 0.44 flops per byte

Roofline Example #2

63

§ Conversely, 7-point constant
coefficient stencil…
• 7 flops
• 8 memory references (7 reads, 1 store) per point
• Cache can filter all but 1 read and 1 write per point
• AI = 0.44 flops per byte == memory bound,
• but 5x the flop rate

At
ta

in
ab

le
 F

LO
P/

s

DRAM G
B/s

7-point
Stencil

GFLOP/s ≤ AI * DRAM GB/s

TRIAD

Arithmetic Intensity (FLOP:Byte)
0.083 0.44

Peak FLOP/s

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
 new[k][j][i] = -6.0*old[k][j][i]
 + old[k][j][i-1]
 + old[k][j][i+1]
 + old[k][j-1][i]
 + old[k][j+1][i]
 + old[k-1][j][i]
 + old[k+1][j][i];
}}}

Hierarchical Roofline

64

§ Processors have multiple levels of
memory/cache
• Registers
• L1, L2, L3 cache
• MCDRAM/HBM (KNL/GPU device memory)
• DDR (main memory)
• NVRAM (non-volatile memory)

§ Applications have locality in each level
§ Unique data movements imply unique AI’s
§ Moreover, each level will have unique peak and

sustained bandwidths

CPU

L1 D$

DRAM

L2 D$

MCDRAM

Machine Balance

GFLOP/s
L1 GB/s

GFLOP/s
L2 GB/s

GFLOP/s
MCDRAM GB/s

GFLOP/s
DRAM GB/s

Arithmetic Intensity

GFLOPs
L1 GB

GFLOPs
L2 GB

GFLOPs
MCDRAM GB

GFLOPs
DRAM GB

Hierarchical Roofline

65

DDR Bound
DDR AI*BW <

MCDRAM AI*BW

§ Construct superposition of Rooflines…

§ Measure bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple AI’s

and multiple bounds (flops, L1, L2, … DRAM)…

• … performance is bound by the minimum At
ta

in
ab

le
 F

LO
P/

s

DDR G
B/sMCDRAM ca
ch

e G
B/s

Arithmetic Intensity (FLOP:Byte)

L2
 G

B/s

Peak FLOP/s

Hierarchical Roofline

66

§ Construct superposition of Rooflines…

§ Measure bandwidth
§ Measure AI for each level of memory
• Although an loop nest may have multiple AI’s

and multiple bounds (flops, L1, L2, … DRAM)…

• … performance is bound by the minimum At
ta

in
ab

le
 F

LO
P/

s

MCDRAM ca
ch

e G
B/s

Arithmetic Intensity (FLOP:Byte)

L2
 G

B/s

DDR bottleneck
pulls performance
below MCDRAM

Roofline

Peak FLOP/s

Why is Roofline Useful?

67

§ Imagine a mix of loop nests
§ FLOP/s alone may not be useful in

deciding which to optimize first

FL
O

P/
s

Kernel (or apps)

Why is Roofline Useful?

68

§ We can sort kernels by AI …

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

Why is Roofline Useful?

69

§ We can sort kernels by AI …
§ … and compare performance

relative to machine capabilities Peak FLOP/s

At
ta

in
ab

le
 F

LO
P/

s

DDR G
B/s

Arithmetic Intensity (FLOP:Byte)

Why is Roofline Useful?

70

§ Kernels near the roofline are making
good use of computational resources

o kernels can have low performance (GFLOP/s),
but make good use of a machine

o kernels can have high performance (GFLOP/s),
but make poor use of a machine

Peak FLOP/s

At
ta

in
ab

le
 F

LO
P/

s

DDR G
B/s

50
% of

 STREAM

Arithmetic Intensity (FLOP:Byte)

50% of Peak

How Do We Count FLOPs?

71

Manual Counting
§ Go thru each loop nest and

count the number of FP
operations

ü Works best for deterministic
loop bounds

ü or parameterize by the
number of iterations
(recorded at run time)

✘ Not scalable

Perf. Counters
§ Read counter before/after
ü More Accurate
ü Low overhead (<%) == can

run full MPI applications
ü Can detect load imbalance
✘ Requires privileged access
✘ Requires manual

instrumentation (+overhead)
or full-app characterization

✘ Broken counters = garbage
✘ May not differentiate

FMADD from FADD
✘ No insight into special

pipelines

Binary Instrumentation
§ Automated inspection of

assembly at run time
ü Most Accurate
ü FMA-, VL-, and mask-aware
ü Can count instructions by

class/type
ü Can detect load imbalance
ü Can include effects from

non-FP instructions
ü Automated application to

multiple loop nests
✘ >10x overhead (short runs /

reduced concurrency)

How Do We Measure Data Movement?

72

Manual Counting
§ Go thru each loop nest and

estimate how many bytes
will be moved

§ Use a mental model of
caches

ü Works best for simple loops
that stream from DRAM
(stencils, FFTs, spare, …)

✘ N/A for complex caches
✘ Not scalable

Perf. Counters
§ Read counter before/after
ü Applies to full hierarchy (L2,

DRAM,
ü Much more Accurate
ü Low overhead (<%) == can

run full MPI applications
ü Can detect load imbalance
✘ Requires privileged access
✘ Requires manual

instrumentation (+overhead)
or full-app characterization

Cache Simulation
§ Build a full cache simulator

driven by memory
addresses

ü Applies to full hierarchy and
multicore

ü Can detect load imbalance
ü Automated application to

multiple loop nests
✘ Ignores prefetchers
✘ >10x overhead (short runs /

reduced concurrency)

Can we do this differently?

73

• of course …
• e.g., using Operational Laws (what Laws?)
• Operational Laws are similar to the elementary laws of motion,

for example:

• Notice that distance d, acceleration a, and time t are
operational quantities. No need to consider them as
expected values of random variables or to assume a distribution

Operational Laws

74

• Relationships that do not require any assumptions about the
distribution of service times or inter-arrival times

• Identified originally by Buzen (1976) and later extended by
Denning and Buzen (1978)

• Operational ⇒ Directly measured
• Operationally testable assumptions ⇒ assumptions that can

be verified by measurements
• For example, whether number of job arrivals is equal to the number

of completions?
• This assumption, called job flow balance, is operationally testable
• A set of observed service times is or is not a sequence of

independent random variables is or is not operationally testable

Operational Quantities

75

• Quantities that can be directly measured during a finite
observation period

• T = Observation interval Ai = #arrivals
• Ci = #completions Bi = Busy Time

Utilization Law

76

Motivational Example:
• Consider a network gateway at which the packets arrive at a rate of 125 packets per

second and the gateway takes an average of two milliseconds (2ms) to forward them
• Throughput Xi = Exit rate = Arrival rate = 125 packets/second
• Service time Si = 0.002 seconds
• Utilization Ui= Xi Si = 125 × 0.002 = 0.25 = 25%
• This result is valid for any arrival or service process. Even if inter-arrival times and service

times to are not IID* random variables with exponential distribution (operational)

* IID: Independent and Identically Distributed random variables

Forced Flow Law

77

• Relates the system throughput to individual device throughputs
• In an open model, System throughput = #jobs leaving the

system per unit time
• In a closed model, System throughput = #jobs traversing

OUT to IN link per unit time
• If observation period T is such that Ai = Ci
⇒ Device satisfies the assumption of job flow balance

• Each job makes Vi requests for ith device in the system
• Ci = C0 Vi or Vi =Ci/C0 , Vi is called visit ratio

Forced Flow Law (cont)

78

Jobs 1

2

M

i
Vi
visits per job

Forced Flow Law (cont)

79

• Throughput of ith device:

• In other words for throughput:

• This is the Forced Flow Law

Bottleneck Device

80

• Combining the forced flow law and the utilization law, we get:

• Here Di=Vi Si is the total service demand on the device for all

visits of a job
• The device with the highest Di has the highest utilization and

is the bottleneck device

And there are more related Laws

81

Raj Jain, “The Art of Computer Systems Performance Analysis,” Wiley, 1991

th
ro

ug
hp

ut

1/Dmax
N/(D + Z)

N*=(D + Z)/Dmax
number of users

D the sum of all demands on all devices
Dmax the bottleneck device demand
N #jobs in the system
Z the user response time (think time)

82

Raj Jain, “The Art of Computer Systems
Performance Analysis,” Wiley, 1991

Will also find excellent
source for excuses …

Recommended read!

Summary

83

• Fair performance comparison is tricky (do not cook the numbers)
• Real application level performance matters but is not easy
• Best serial program has not much to do with the best || program

Thank you

84

Simple Motivational Example
› Assume a repetitive task reading a record (tI), processing (tC)

it and then storing the results back (tO)
• It is irrelevant if tI and tO represent I/O or Memory accesses

› Serial execution (no overlap):

85

tI

tO
tC

tI

tO
tC

tI

tO
tC

Throughput = 1/(tI + tC + tO) [records/sec]

Simple Motivational Example (cont.)
› Assume a repetitive task reading a record (tI), processing (tC)

it and then storing the results back (tO)
• Irrelevant if tI and tO represent I/O or Memory access

› Two-way restricted parallel (C-I or O-C) (degree of overlap 2):

86

Throughput = 1/(tI + tO)

tC < tI + tO tC ≥ tI + tO

tI

tO
tC tCtC

tO

tI

Throughput = 1/(tC)

tO

tItI

tO

tI

tO
tC tC tC

Simple Motivational Example (cont.)
› Assume a repetitive task reading a record (tI), processing (tC)

it and then storing the results back (tO)
• Irrelevant if tI and tO represent I/O or Memory access

› Two-way parallel (C-I or O-C or I-O) (degree of overlap 2):

87

tI

tO
tC

tI

tO
tCtC

Throughput = 2/(tI + tC + tO)

tC < tI + tO tC ≥ tI + tO

tI

tO
tC tCtC

tO

tI

Throughput = 1/(tC)

tO

tItI

tO

Simple Motivational Example (cont.)
› Assume a repetitive task reading a record (tI), processing (tC)

it and then storing the results back (tO)
› Three-way parallel (I-C-O) (degree of overlap 3):

88

tI

tO
tC

tI

tO
tC

Throughput = 1/(max(tI ,tO)

tC < tI + tO
tC ≥ tI + tO

tI

tO
tC tCtC

tO

tI

Throughput = 1/(tC)

tO

tI

tC
tI

tI

tO
tC

tO
tC

tI tI
tC

tO

tI
tC

Simple Motivational Example (cont.)
› The presented model is rough and quite optimistic
› Average times are used

• Suits well streaming with FIFOs used to balance data moves

› Provides an upper bound for what is achievable for your
application on a given computing platform
• tI, tC and tO summarize platform and application properties
• They are determined by platform capabilities and application needs

• How much data is moved and how much computation for each data element

› The model’s simplicity enables early strategic decisions and
will prevent you of committing on impossible targets

89

Iron Law Example

90

• Machine A: clock 1ns, CPI 2.0, for program x
• Machine B: clock 2ns, CPI 1.2, for program x

• Which is faster and how much?
 Time/Program = instr/program x cycles/instr x sec/cycle
 Time(A) = N x 2.0 x 1 = 2N
 Time(B) = N x 1.2 x 2 = 2.4N
 Compare: Time(B)/Time(A) = 2.4N/2N = 1.2

• So, Machine A is 20% faster than Machine B for this program

Iron Law Example

91

Keep clock(A) @ 1ns and clock(B) @2ns
For equal performance, if CPI(B)=1.2, what is CPI(A)?

Time(B)/Time(A) = 1 = (Nx2x1.2)/(Nx1xCPI(A))
CPI(A) = 2.4

Iron Law Example

92

Keep CPI(A)=2.0 and CPI(B)=1.2
For equal performance, if clock(B)=2ns, what is clock(A)?

Time(B)/Time(A) = 1 = (N x 2.0 x clock(A))/(N x 1.2 x 2)
clock(A) = 1.2ns

Both Laws Together

93

Amdhal’s view
(fixed problem size)

Gustaffson’s view
(scalable problem size)

Amdhal (v.2):
Tp = 𝛼 ·Tbase + (1-𝛼)·Tbase / p
where, 𝛼 is the fraction of the serial code and
p – the speedup factor of the parallel portion

Tp = (𝛼 + (1-𝛼) / p)·Ts

Sp = Ts / Tp = 1/(𝛼 + (1-𝛼)/p); lim∞= 1/𝛼

Gustaffson:
Sp = Work (p) / Work (1) =
 = (𝛼·W + (1-𝛼)·p·W)/W = 𝛼 + (1-𝛼) · p
linear speedup is assumed

With 𝛼 = 0.1 (10% serial code)
Amdahl’s speedup is maximal 10,
while Gustaffson claims 0.1 + 0.9·p

The Roofline Model (Arithmetic Intensity)

94

for (i=0; i < N;
i=i+1)
 a[i] = b[i]+c[i]

for (i=0; i < N; i=i+1)
 a[i] = b[i]*c[i]+b[i]

for (i=0; i < N; i=i+1) {
 I1 = A_offset[i]; I2 = A_offset[i+1];
 sum = 0.0;
 for (j = 0; j < (I2-I1); ++j)
 sum += A[I1+j] * x[col_index[I2+j]];
 y[i] = sum;
}

one (1) ADD
two (2) LOADs (8 Bytes)
one (1) WRITE (8 Bytes)
AI = 1/(2*8+8) = 1/24*

one (1) ADD
one (1) MUL
two (2) LOADs (8 Bytes)
one (1) WRITE (8 Bytes)
AI = 2/(2*8+8) = 1/12*

one (1) ADD
one (1) MUL
two (2) LOADs (8 Bytes)
one (1) LOAD (4 Bytes)
one (1) WRITE (8 Bytes)
AI = 2/(2*8+4+8) = 1/14

* on cache-based systems kernel would actually require an extra read for a[]
(because of write-allocate traffic) leading to even lower AI

The Roofline Model (Arithmetic Intensity, 2)

95

Particle Methods

BLAS L3

FFT Stencil

BLAS L1, SpMv

AI

• New architectures with decreased machine balance
• the point where the bandwidth roof meets the ceiling moves to the right

• More and more algorithms are going to find themselves memory bound
• Even DGEMM can run into trouble depending on the blocking factor chosen

