CESE4130: Computer Engineering

2024-2025, lecture 11

Scaling Out

Computer Engineering Lab

Faculty of Electrical Engineering, Mathematics & Computer Science
2024-2025

-]
5
TUDelft

« There will be example questions
« However, do not count on getting similar questions with different numbers

Course objectives

e Describe number representation systems and inter-conversion.

e Perform binary arithmetic operation such as addition and multiplication.

e Explain basic concepts of computer architecture.
e Use logic gates to implement simple combinational circuits.

e Explain system software and operating systems fundamentals, task
management, synchronization, compilation, and interpretation.

e Use design and automation tools to perform synthesis and optimization.

Objectives

Understand the Amdahl and Gustaffson laws

e Explain system scalability

e Get the basics of a widely used performance evaluation model
e More laws

» Understood parallel machines and their interconnect network basics
» Some CUDA intro (to be used in Lab3)

* More(?)
« our main goal is “to remove magic” as you remember

MEMORY MEMORY MEMORY

4 4 RISC-V CPU 4 4 RISC-V CPU 4 4 RISC-V CPU

\4 v

\4
I MDR I MAR | MDR | MAR | MDR I MAR

MAIN BUS MAIN BUS MAIN BUS

uuuuu

REG FILE REG FILE REG FILE

* The lecture material is collected from various sources

* Mikko Lipasti (UW-Madison), Samuel Williams (Lawrence Berkeley

National Lab) and more

* About Performance Modeling, please refer to Raj Jain

Raj Jain

e https://www.wiley.com/en-

us/The+Art+of+Computer+Systems+Performance+Analysis%3A+Technigues+for+Experimental+
Design%2C+Measurement%2C+Simulation%2C+and+Modeling-p-9780471503361

- B ;
i+ The Datacenterasa Computer

* For datacenters, see Luiz Barroso’s book ...

https://www.wiley.com/en-us/The+Art+of+Computer+Systems+Performance+Analysis%3A+Techniques+for+Experimental+Design%2C+Measurement%2C+Simulation%2C+and+Modeling-p-9780471503361
https://www.wiley.com/en-us/The+Art+of+Computer+Systems+Performance+Analysis%3A+Techniques+for+Experimental+Design%2C+Measurement%2C+Simulation%2C+and+Modeling-p-9780471503361
https://www.wiley.com/en-us/The+Art+of+Computer+Systems+Performance+Analysis%3A+Techniques+for+Experimental+Design%2C+Measurement%2C+Simulation%2C+and+Modeling-p-9780471503361

Speedup and Scalability

* Speedup, Scalability, strong scaling, weak scaling
* Iron law, MIPS, MFLOPS and benchmarks

* Amdahl’s law

* Gustafson’s law

* Roofline Model

e Operational laws

Performance expectation

* When using one processor, the sequential program runs for 100

seconds. When we use 10 processors, should the program run for 10
times faster?

- This works only for embarrassingly parallel computations — parallel
computations that can be divided into completely independent computations
that can be executed simultaneously. There may have no interaction
between separate processes; sometime the results need to be collected.

* Embarrassingly parallel applications are the kind that can scale up to a very large number of
processors. Examples: Monte Carlo analysis, numerical integration, 3D graphics rendering, etc.

« In other types of applications, the computation components interact and
have dependencies, which prevents the applications from using a large
number of processors.

Performance vs Cost

e Which of the following airplanes has the best performance?

Airplane Passengers Range (mi) Speed (mph)
Boeing 737-100 101 630 598
Boeing 747 470 4,150 610
BAC/Sud Concorde 132 4,000 1,350
Douglas DC-8-50 146 8,720 544

e How much faster is the Concorde vs. the 747
e How much bigger is the 747 vs. DC-8?

Performance vs Cost

« Which computer is fastest?

* Not so simple!
« Scientific simulation — FP performance
* Program development — Integer performance
» Database workload — Memory, I/0O

Performance of Computers

« Want to buy the fastest computer for what
you want to do?

« Workload is most important
» Correct measurement and analysis

« Want to design the fastest computer for
what the customer wants to pay?

 Cost is an important criterion

Defining Performance

* What is important to whom?

« Computer system user

* Minimize elapsed time for program =
lime_end — time_start

« Called response time (aka latency)

« Computer center manager
« Maximize completion rate = #jobs/second
« Called throughput

Response Time vs. Throughput

» Is throughput = 1/av. response time?
* Only if NO overlap
 Otherwise, throughput > 1/av. response time
* E.g., a lunch buffet — assume 5 entrees
 Each person takes 2 minutes/entrée
* Throughput is 1 person every 2 minutes
« BUT time to fill up tray is 10 minutes
« Why and what would the throughput be otherwise?
5 people simultaneously filling tray (overlap)
» Without overlap, throughput = 1/10

What is Performance for Computer Architects?

« Computer architects’ view
* CPU time = time spent running a program

- Intuitively, bigger should be faster, so:

 Performance = 1/X time, where X is response,
CPU execution, etc.

* Elapsed time = CPU time + I/O wait time
» Let’s consider only CPU time (any comments?)

Improve Performance

« Improve (a) response time or (b) throughput?
~aster CPU
elps both (a) and (b)
more CPUs
elps (b) and perhaps (a) due to less queueing

* AC

C

Performance Comparison

« Machine A is n times faster than machine B
itf perf(A)/perf(B) = time(B)/time(A) = n
« Machine A is x% faster than machine B
iff perf(A)/perf(B) = time(B)/time(A) = 1 + x/100
* e.g., time(A) = 10s, time(B) = 15s

« 15/10 = 1.5 => A'is 1.5 times faster than B
« 15/10 = 1.5 => A is 50% faster than B

What about “"decelerating” accelerators?

CPU time 1,001s

CPU

Function1l — 1,000s

10G data
transferred

Some observations
At Kernel level:

Option 1 time 11s

Option 2 time 7s
ACC

ACC

Functionl — 5s

CPU Transfer 5s

Function2 — 2s

Final result only

» Kernel 1 speedup 200x (1)

» Kernel 2 “speedup” 0.5x (1)

At System level:

« Option 1 (Kernel 1 only) speedup 91x

* Option 2 (Kernels 1 and 2) speedup 143x

Some thinking about computation and data movements is required

17

Breaking Down Performance

A program is broken into instructions
« Hardware (u-architecture) is aware of instructions, not programs

* At lower level, HW breaks instructions into cycles
» Lower level state machines change state every cycle

 For example:
« 1GHz Snapdragon runs 1,000M cycles/sec, 1 cycle = 1ns
« 2.5GHz Core i7 runs 2.5G cycles/sec, 1 cycle = 0.25ns

Time
Processor Performance = ---------------
Program
_Instructions Cycles | Time
= X .
Program Instruction Cycle
(code size) (CPI) | (cycle time)

ARCHITECTURE

Concents and Evolution

Architecture --> Implementation --> Realization

Compiler Designer Processor Designer Chip Designer

Remember Blaauw Brooks?

» Instructions/Program
« Instructions executed, not static code size
« Determined by algorithm, compiler, ISA

* Cycles/Instruction
» Determined by ISA and CPU organization
« Overlap among instructions reduces this term
» Time/cycle
« Determined by technology, organization, clever circuit design

The overall CPU architect goal

 Minimize time which is the product, NOT isolated terms

« Common error to miss terms while devising optimizations
* e.g., ISA change to decrease instruction count
« BUT leads to CPU organization which makes clock slower

e Bottom line: terms are inter-related

Other Metrics

« MIPS and MFLOPS
« MIPS = instruction count/(execution time x 10°)
= clock rate/(CPI x 109)

« But MIPS has serious shortcomings

Problems with MIPS

- Example: without FP hardware, an FP op may take 50
single-cycle instructions

« With FP hardware, only one 2-cycle instruction

e Thus, adding FP hardware:

— CPI increases (why?) 50/50 => 2/1
— Instructions/program decreases (why?) 50 => 1
— Total execution time decreases 50 => 2
e BUT, MIPS gets worse! >0 MIPS => 2 MIPS

Problems with MIPS

- Ignores program

 Usually used to quote peak performance
« Ideal conditions => guaranteed not to exceed!

 When is MIPS ok?

« Same compiler, same ISA
* €.g., Same binary running on AMD Phenom, Intel Core i7
« Why? Instructions/program is constant and can be ignored

Other Metrics

 MFLOPS = FP ops in program/(execution time x 106)

» Assuming FP ops independent of compiler and ISA

» Often safe for numeric codes: matrix size determines # of
FP ops/program

« However, not always safe:
 Missing instructions (e.g., FP divide)
« Optimizing compilers

 Relative MIPS and normalized MFLOPS
« Just adds to the confusion

Which Programs?

 Execution time of what program?

* Best case — your always run the same set of programs
 Port them and time the whole workload

* In reality, use benchmarks
« Programs chosen to measure performance
* Predict performance of actual workload intel Polaris (2006)

80 cores @ 4GHz

 Saves effort and money dual- SPEP MACs /cycle

1TFLOP < 100W

 Representative? Honest? Benchmarketing...

But also: Synthetic Programs, Kernels, Instruction Mixes, Addition/MUL Instruction (?)

How to Average?

Machine A | Machine B
Program 1 |1 10
Program 2 | 1,000 100
Total 1,001 110

« One answer: for total execution time, how much faster is B? 9.1x

How to Average?

« Another: Arithmetic Mean (AM) (same result)
 Arithmetic mean of times:

« AM(A) = 1001/2 = 500.5
« AM(B) = 110/2 = 55
+ 500.5/55 = 9.1x

» Valid only if programs run equally often, so use weighted
arithmetic mean:

More in Chapter 12 of Raj Jains’ book

28

Other Averages

* e.g., 30 km/h for first 10 km, then 90 km/h for next 10 km,
what is average speed?

 Average speed = (30+90)/2 WRONG!
 Average speed = total distance / total time
= (20 / (10/30 + 10/90))
=45 km/h

Harmonic Mean

« Harmonic mean of rates =

« Use HM if forced to start and end with rates
(e.qg., reporting MIPS or MFLOPS)

« Why?
« Rate has time in denominator

« Mean should be proportional to inverse of sums of
time (not sum of inverses)

« See: J.E. Smith, “Characterizing computer
performance with a single number,” CACM Volume
31, Issue 10 (October 1988), pp. 1202-1206.

3

0

Dealing with Ratios

Machine A | Machine B
Program 1 |1 10
Program 2 | 1,000 100
Total 1,001 110
« If we take ratios with respect to machine A
Machine A | Machine B
Program 1 |1 10
Program 2 |1 0.1

Dealing with Ratios

 Average for machine A is 1, average for machine B is 5.05
« If we take ratios with respect to machine B

Machine A Machine B
Program 1 0.1 1
Program 2 10 1
Average 5.05 1

e Can’t both be truel!l!!
 Don't use arithmetic mean on ratios!

« Use geometric mean for ratios
« Geometric mean of ratios =

« Independent of reference machine

 In the example, GM for machine a is 1, for machine B is also 1
» Normalized with respect to either machine

33

« GM of ratios is not proportional to total time
* AM in example says machine B is 9.1 times faster
* GM says they are equal

« If we took total execution time, A and B are equal only if
« Program 1 is run 100 times more often than program 2

 Generally, GM will mispredict for three or more machines

Summary on averaging

* Use AM for times
* Use HM if forced to use rates
* Use GM if forced to use ratios

* Best of all, use unnormalized numbers to compute time

See also Chapter 12 of Raj Jains’
book, especially Section 12.4

Benchmarks: Standard Performance Evaluation Corporation

« System Performance Evaluation Cooperative (SPEC) IF

« Formed in 80s to combat benchmarketing
« SPEC89, SPEC92, SPEC95, SPEC2000, SPEC CPU2006, 2017

« SPEC CPU® 2017: 43 benchmarks in four suites:
« SPECspeed® 2017 Integer
« SPECspeed® 2017 Floating Point
« SPECrate® 2017 Integer
« SPECrate® 2017 Floating Point
« optional metric for energy consumption.

36

Benchmarks (INT 2017 and 2000)

SPECrate®2017 | SPECspeed®2017
Integer Integer

500.perlbench_r
502.gcc_r
505.mef_r
520.omnetpp_r
523.xalancbmk_r
525.x264_r
531.deepsjeng_r
541.leela_r
548.exchange2_r
557.Xz_r

Language(1] KLOC 2]
600.perlbench_s C 362
602.gcc_s C 1,304
605.mcf_s C 3
620.omnetpp_s C++ 134
623.xalancbmk_s C++ 520
625.x264_s C 96
631.deepsjeng_s C++ 10
641.leela_s C++ 21
648.exchange2_s Fortran 1
657.Xz_s C 33

Application Area

Perl interpreter
GNU C compiler
Route planning

Discrete Event simulation - computer network
XML to HTML conversion via XSLT

Video compression

Artificial Intelligence: alpha-beta tree search (Chess)
Artificial Intelligence: Monte Carlo tree search (Go)
Artificial Intelligence: recursive solution generator (Sudoku)

General data compression

Benchmark | Description

164.gzip Compression

175.vpr FPGA place and route
176.gcc C compiler

181.mcf Combinatorial optimization
186.crafty Chess

197.parser Word processing, grammatical analysis
252.eon Visualization (ray tracing)
253.perlbmk | PERL script execution
254.gap Group theory interpreter
255.vortex Object-oriented database
256.bzip2 Compression

300.twolf Place and route simulator

Benchmarks (FP 2017 and 2000)

SPECrate®2017 | SPECspeed®2017
Floating Point Floating Point

503.bwaves_r 603.bwaves_s

507.cactuBSSN_r 607.cactuBSSN_s

508.namd_r

510.parest_r

511.povray_r

519.lbm_r 619.lbm_s

521.wrf_r 621.wrf_s

526.blender_r

527.cam4_r 627.cam4_s
628.pop2_s

538.imagick_r 638.imagick_s

544.nab_r 644.nab_s

549.fotonik3d_r 649.fotonik3d_s

554.roms_r 654.roms_s

Language (1)

Fortran
C++, C, Fortran
C++
C++
C++, C
C
Fortran, C
C++, C
Fortran, C
Fortran, C
C
C
Fortran

Fortran

KLOC|2)

1
257

8

427
170

1

991
1,577
407
338
259
24

14
210

Application Area

Explosion modeling

Physics: relativity

Molecular dynamics

Biomedical imaging: optical tomography with finite elements
Ray tracing

Fluid dynamics

Weather forecasting

3D rendering and animation

Atmosphere modeling

Wide-scale ocean modeling (climate level)
Image manipulation

Molecular dynamics

Computational Electromagnetics

Regional ocean modeling

[1] For multi-language benchmarks, the first one listed determines library and link options (detailsc?)

[2] KLOC = line count (including comments/whitespace) for source files used in a build / 1000

Benchmark | Description

168.wupwise | Physics/Quantum Chromodynamics
171.swim Shallow water modeling

172.mgrid Multi-grid solver: 3D potential field
173.applu Parabolic/elliptic PDE

177.mesa 3-D graphics library

178.galgel Computational Fluid Dynamics
179.art Image Recognition/Neural Networks
183.equake | Seismic Wave Propagation Simulation

187.facerec

Image processing: face recognition

188.ammp Computational chemistry

189.lucas Number theory/primality testing

191.fma3d Finite-element Crash Simulation

200.sixtrack | High energy nuclear physics accelerator design
301.apsi Meteorology: Pollutant distribution

Benchmarks Pitfalls

* Benchmark not representative
* Your workload is I/O bound, SPEC is useless

* Benchmark is too old

» Benchmarks age poorly; benchmarketing pressure causes
vendors to optimize compiler/hardware/software to benchmarks

» Need to be periodically refreshed

Scalability

» Scalability of a program measures how many processors that the
program can make effective use of.

« For a computation represented by a computation graph, parallelism is a good
indicator of scalability.

Speedup and strong scaling

» Let T; be the execution time for a computation to run on one processor
and T, be the execution time for the computation (with the same input —

same problem) to run on P processors
T
speedup(P) = T—l
P
 Factor by which the use of P processors speeds up execution time relative to one
processor for the same problem
« Since the problem size is fixed, this is referred to as strong scaling

 Given a computation graph, what is the highest speedup that can be achieved?

Speedup

» speedup(P) = 1—1
P
* Typically, 1 < speedup(P) <P
» The speedup is ideal if speedup(P) = P
 Linear speedup: speedup(P) = kxP for some constant 0 < k < 1

Q: Can speedup be > P

42

Efficiency

» The efficiency of an || program using P processors is:
Efficiency =speedup(P) /P

« Efficiency estimates how well-utilized the processors are in running
the parallel program
« Ideal speedup means Efficiency = 1 (100% efficiency)

* 'l Performance
//, / /'.
Speedu ——
Programl —
//, e Program?2 —
0 / 64
Processors

Issues with Speedup, Efficiency

« Speedup is best applied when hardware is constant, or
for family within a generation
* Need to have computation, communication in same ratio

 Great sensitivity to the 7svalue

» 7sshould be the time of the best sequential program on 1 processor
of the [|-machine

701 # Ts Measures relative speedup

P, P, P3 Py P, P3
me== HiEE
R

Relative speedup is often important
but it must be labeled as such

4

4

Amdahl’s Law (fixed size speedup, strong scaling)

 Given a program, let Fbe the fraction that must be sequential and 7-fbe
the fraction that can be parallelized

* Tp=fT1 + (1_£)T1

. _ T _ Ty — 1
Speedup(P) = - = 14900 FH-f)/P

« When P - o, Speedup(P) = %
 Original paper: Amdahl, Gene M. (196/). "Validity of the Single

Processor Approach to Achieving Large-Scale Computing Capabilities” .
AFIPS Conference Proceedings (30): 483—-485.

https://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
https://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf

Amdahl’'s Law

Amdahl’s law: As P increases, the percentage of work in the
parallel region reduces, performance is more and more
dominated by the sequential region

time

P=1 P=2 P=4 P=8

Implications of Amdahl’s Law

Amdahl's Law

» For strong scaling, the speedup is I B e e e —
bounded by the percentage of 12 - _
sequential portion of the program, 16 / jlooig
not by the number of processors! - / T

/ —— 95%

» Strong scaling will be hard to 12
achieve for many programs

10

Speedup

2

5

1
1024
2048
4096
8192
16384
32768
65536

Number of processors

Gustafson’s Law (scaled speedup, weak scaling)

 Large scale parallel/distributed systems are expected to allow
for solving problem faster or larger problems
« Amdahl’s Law indicates that there is a limit on how faster it can go

« How about bigger problems? This is what Gustafson’s Law sheds
lights on!

« In Amdahl’s law, as the number of processors increases, the
amount of work in each node decreases (/770re processors
sharing the parallel part)

« In Gustafson’s law, as the number of processors increases, the
amount of work in each node remains the same (do/ing more
work collectively)

Gustafson’s Law

As P increases, the total work on each process

Gustafson’s law

remains the same. So the total work increases with P.

v

time

P=8

P=4

P=2

P=1

Gustafson’s Law (scaled speedup, weak scaling)

« The work on each processor is 1 (f is the fraction for sequential program,
(1-f) is the fraction for parallel program.

« With P processor (with the same T, = 1), the total amount of useful work
isf+@1—f)P.Thus, Ty =f+ (1 — f)P.

» Thus, speedup(P) = f+ (1 — f)P.

No of PEs Strong scaling speedup Weak scaling speedup
(Amdalh’s law, f = 10%) (Gustafson’s law, f = 10%)

2 1.82 1.9
4 3.07 3.7
4.71 7.3
16 6.40 14.5
100 9.90 90.1

Implication of Gustafson’s Law

« For weak scaling, speedup(P) = f + (1 — f)P
« Speedup is now proportional to P.

 Scalability is much better when the problem size can increase

« Many application can use more computing power to solve larger problems
« Weather prediction, large deep learning models.

» Gustafson, John L. (May 1988). 'Reevaluating Amdahl’s Law'.
Communications of the ACM, 31 (5): 532-3.

THE ENDJS
| ERROR

Unum Computing 4

he also came up with

http://www.johngustafson.net/pubs/pub13/amdahl.htm
https://en.wikipedia.org/wiki/Communications_of_the_ACM

Modeling Performance: Roofline Model

= Roofline Model is a throughput-oriented
performance model

= Tracks rates not times
= Uses bound and bottleneck analysis

» Independent of ISA and architecture (applies =

to CPUs, GPUs, Google TPUs!, etc...)

1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017.

\|I COMPUTATIONAL RESEARCH

BERKELEY LAB

~CRD
Performance and Algorithms Research

PERFORMANCE
AND

ALGORITHMS
RESEARCH

Research

Auto-tuning

EDGAR
HipGISAXS
HPGMG
Roofline
SciDAC
TOP500

Previous Projects

Facebook
qQ

Google+

Twitter

PERFORMANCE AND ALGORITHMS RESEARCH STAFF

23
i
@

& crd.Ibl.gov <) Ul =

U.S. DEPARTMENT OF

SEARCH...

RESEARCH PUBLICATIONS

Home » Performance and Algorithms Research » Research » Roofline

Roofline Performance Model

Roofiine is a visually intuitive performance model used to bound the performance of various numerical methods and operations running on
multicore, manycore, or accelerator processor architectures. Rather than simply using percent-of-peak estimates, the model can be used to
assess the quallty of attained performance by combining locality, bandwidth, and different parallelization paradigms into a single
performance figure. One can examine the resultant Roofline figure in order to determine both the implementation and inherent performance
limitations.

Arithmetic Intensity

The core parameter behind the Roofline model is Arithmetic Intensity. Arithmetic Intensity is the ratio of total floating-point operations to
total data movement (bytes). A BLAS-1 vector-vector increment (x[il+=y[i]) would have a very low arithmetic intensity of 0.0417 (N FLOPS
124N Bytes) and would be independent of the vector size. Conversely, FFT's perform 5*N*logN flops for a N-point double complex
transform. If out of place on a write allocate cache architecture, the transform would move at least 48N bytes. As such, FFT's
would have an arithmetic intensity of 0.104*logN and would grow slowly with data size. Unfortuantely, cache capacities would
limit FFT arithmetic intensity to perhaps 2 flops per byte. Finally, BLAS3 and N-Body Particle-Particle methods would have
arithmetic intensity grow very quickly.

0.1-1.0 flops per byte Typically < 2 flops per byte 0(10) flops per byte
A A A

r N7 N \

SpMV.
BLAS1.2
Stencils (PDEs)

FFTs,
Spectral Methods

Lattice Bolzmann Linear Aigebra
Methods)
\ J)
Y Y Y
o(1) O(log(N)) O(N)

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

52

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of
these components.

: #FP operations FLOP/s
' Cache data movement Cache GB/s
. DRAM data movement DRAM G

PCle data movement PCle bandw
Depth OMP O

MPI Message Size Networ
MPI Send:Wait ratio Network Gag
#MPI| Wait’s Network Later ¢y

Williams et al, "Roofline: An Insightful Visual Performance Model For Multicore Architectures", CACM, 2009.

DRAM Roofline

= One could hope to always attain
peak performance (FLOP/s)

= However, finite locality (reuse) and CPU
bandwidth limit performance. (compute, FLOP/s)
DRAM Bandwidth

= Assume: DRAM

» Idealized processor/caches
. Cold start (data in DRAM) 'ﬂ'?ﬁ‘!‘)"

#FP ops /| Peak GFLOP/s
Time = max
#Bytes /| Peak GB/s

DRAM Roofline

= One could hope to always attain
peak performance (FLOP/s)

= However, finite locality (reuse) and CPU
bandwidth limit performance. (compute. FLOP/S)

[] Assume: (DGRéO/\IS\’/I) Bandwidth
» Idealized processor/caches
. Cold start (data in DRAM) 'ﬂ'?ﬁ‘!‘)"

Time 1/ Peak GFLOP/s
= max
#Bytes /| #FP ops / Peak GB/s

— 5

DRAM Roofline

= One could hope to always attain
peak performance (FLOP/s)

= However, finite locality (reuse) and CPU
bandwidth limit performance. (compute. FLOP/S)

[] Assume: (DGRéO/\IS\’/I) Bandwidth
» Idealized processor/caches
. Cold start (data in DRAM) 'ﬂ'?ﬁ‘!‘)"

#FP ops _ - Peak GFLOP/s
Time (#FP ops | #Bytes) * Peak GB/s

— 6

DRAM Roofline

= One could hope to always attain
peak performance (FLOP/s)

= However, finite locality (reuse) and CPU
bandwidth limit performance. (compute. FLOP/S)
[] Assume: (DGRéO/\IS\’/I) Bandwidth
» Idealized processor/caches
. Cold start (data in DRAM) 'ﬂ'?ﬁ‘!‘)"
Peak GFLOP/s

GFLOP/s = min
Al * Peak GB/s

Note, Arithmetic Intensity (Al) = Flops / Bytes (as presented to DRAM)

— 7

Arithmetic Intensity

= The most important concept in Roofline is Arithmetic Intensity

= Measure of data locality (data reuse)

= Ratio of Total Flops performed to Total Bytes moved

= For the DRAM Roofline...
o Total Bytes to/from DRAM and includes all cache and prefetcher effects
o Can be very different from total loads/stores (bytes requested)
o Equal to ratio of sustained GFLOP/s to sustained GB/s (time cancels)

DRAM Roofline

= Plot Roofline bound using
Arithmetic Intensity as the x-axis

= Log-log scale makes it easy to Peak FLOP/s
doodle, extrapolate performance
along Moore’s Law, etc...

= Kernels with AI less than machine
balance are ultimately DRAM
bound (we'll refine this later...)

DRAM-bound ; Compute-bound
<>

Attainable FLOP/s

Arithmetic Intensity (FLOP:Byte)

A

Roofline Example #1 ()

= Typical machine balance is 5-10)
flops per byte... “
+ 40-80 flops per double to exploit compute capability

« Artifact of technology and money
Unlikely to improve

Peak FLOP/s

= Consider STREAM Triad...

for(i=0;i<N;i++){

Attainable FLOP/s

z[1] = x[i] + alpha*Y[il;
}

« 2 flops per iteration

« Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i]) Arithmetic Intensity (FLOP:Byte)
Al = 0.083 flops per byte == Memory bound

Roofline Example #2

= Conversely, 7-point constant
coefficient stencil... CPU

« 7 flops (compute, FLOP/s)

« 8 memory references (7 reads, 1 store) per point
« AI = 0.11 flops per byte (L1)

#pragma omp parallel for
for(k=1;k<dim+1;k++){

for(j=1;j<dim+1;j++){ DRAM Bandwidth

for(i=1;<dim+1;i+6){ (GB/s)
new[k][j]1[i] = -6.0%old[k 1[j 1[i 1]
+oldlk 1[j 1[i-1]

old[k 1[j J[i+1] DRAM

old[k 1[j-11[i 1
old[k 1[j+11[1] (data, GB)
old[k-1][7 1[i 1
old[k+11[j 1[0 1;

’

Roofline Example #2

= Conversely, 7-point constant
coefficient stencil...

7 flops

8 memory references (7 reads, 1 store) per point
Cache can filter all but 1 read and 1 write per point
Al = 0.44 flops per byte

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1l;j++){
orci=1, r<aimyLl;i++){

| new[k][j][iJ 100 101]

103 J[i-1]
103 J[i+1]
103-1101]
103+1][1

OO LR

]
old[k+1103 101]

CPU

(compute, FLOP/s)

Cache Bandwidth
(GBI/s)

CACHE

(only compulsory misses)

7'y

DRAM Bandwidth
(GB/s)

DRAM

(data, GB)

Roofline Example #2

= Conversely, 7-point constant
coefficient stencil...

7 flops

8 memory references (7 reads, 1 store) per point

Cache can filter all but 1 read and 1 write per point

AI = 0.44 flops per byte == memory bound,
but 5x the flop rate

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+l;j++){
for(i=1;i<dim+l;i++){
new[k]J[jI[i] = -6.0*old[k 1[j 1[i 1
+ old[k 1[j 1[i-1]

old[k 1[3 1[i+1]
old[k J[j-1][i 1]
old[k J[j+1][i 1]
old[k-1][j 1[i 1]
old[k+1][j I[i 13

Attainable FLOP/s

Peak FLOP/s

GFLOP/s <Al * DRAM GB/s

7-point
Stencil

\ 4

1
0.083 0.44
Arithmetic Intensity (FLOP:Byte)

Hierarchical Roofline

= Processors have multiple levels of Machine Balance Arithmetic Intensity

memory/cache m
GFLOP/s GFLOPs
» Registers L1 GB/s L1 GB

* L1,12,13 cache GFLOP/s L1“D$ GFLOPs

« MCDRAM/HBM (KNL/GPU device memory) L2 GB/s] [2GB

« DDR (main memory) L2 D$

* NVRAM (non-volatile memory) MC%F#%PEB,S MS;;—?\{;ZB
= Applications have locality in each level MCDRAM

= Unique data movements imply unique Al's D%s ' DGI:,L__I\(ZPGSB

= Moreover, each level will have unique peak and DRAM

sustained bandwidths

Hierarchical Roofline

= Construct superposition of Rooflines...

= Measure bandwidth
= Measure Al for each level of memory

» Although an loop nest may have multiple Al's
and multiple bounds (flops, L1, L2, ... DRAM)...

Peak FLOP/s

DDR Bound
DDR AI*BW <
MCDRAM AI*BW

Attainable FLOP/s

... performance is bound by the minimum

\ 4

Arithmetic Intensity (FLOP:Byte)

Hierarchical Roofline

= Construct superposition of Rooflines...

= Measure bandwidth . Peak FLOP/s
= Measure Al for each level of memory

» Although an loop nest may have multiple Al's
and multiple bounds (flops, L1, L2, ... DRAM)...

)
~~
ol
o
-
T
Qo
e

@

c
8
R

... performance is bound by the minimum

DDR bottleneck
pulls performance
below MCDRAM
Roofline

\ 4

Why is Roofline Useful?

= Imagine a mix of loop nests

= FLOP/s alone may not be useful in
deciding which to optimize first

FLOP/s

Kernel (or apps)

Why is Roofline Useful?

= We can sort kernels by AI ...

Attainable FLOP/s

Arithmetic Intensity (FLOP:Byte)

Why is Roofline Useful?

= We can sort kernels by AI ...

= ... and compare performance
relative to machine capabilities Peak FLOP/s

Attainable FLOP/s

Arithmetic Intensity (FLOP:Byte)

Why is Roofline Useful?

= Kernels near the roofline are making
good use of computational resources

Peak FLOP/s
0

"*",7‘;"?:' 50% of Peak

o kernels can have low performance (GFLOP/s),
but make good use of a machine

o kernels can have high performance (GFLOP/s),
but make poor use of a machine

Attainable FLOP/s

A

How Do We Count FLOPs?

Manual Counting

Go thru each loop nest and
count the number of FP
operations

Works best for deterministic
loop bounds

or parameterize by the
number of iterations
(recorded at run time)

Not scalable

Perf. Counters

v
v

AN

x X

x X

Read counter before/after
More Accurate

Low overhead (<%) == can
run full MPI applications

Can detect load imbalance
Requires privileged access

Requires manual
instrumentation (+overhead)
or full-app characterization

Broken counters = garbage

May not differentiate
FMADD from FADD

No insight into special
pipelines

Binary Instrumentation

» Automated inspection of
assembly at run time

AN

Most Accurate

AN

FMA-, VL-, and mask-aware

v' Can count instructions by
class/type

AN

Can detect load imbalance

v" Can include effects from
non-FP instructions

v" Automated application to
multiple loop nests

X >10x overhead (short runs /
reduced concurrency)

How Do We Measure Data Movement?

Manual Counting Perf. Counters Cache Simulation

= Gothrueachloop nestand = Read counter before/after = Build a full cache simulator
estimate how many bytes v Applies to full hierarchy (L2, driven by memory
will be moved DRAM addresses

= Use a mental model of v Much more Accurate v" Applies to full hierarchy and

h Iti

cacnes _ v" Low overhead (<%) == can mdeore _

v" Works best for simple loops run full MPI applications v" Can detect load imbalance
that stream from DRAM v Can detect load imbalance ¥ Automated application to

(stencils, FFTs, spare, ...) multiple loop nests

x

Requires privileged access

x

N/A for complex caches X Ignores prefetchers

x

Requires manual
instrumentation (+overhead) X >10x overhead (short runs/

or full-app characterization reduced concurrency)

Not scalable

x

Can we do this differently?

- of course ...
* e.g., using Operational Laws (what Laws?)

» Operational Laws are similar to the elementary laws of motion,

for example:
1

d - §CLt2

 Notice that distance d, acceleration g, and time tare

operational quantities. No need to consider them as
expected values of random variables or to assume a distribution

Operational Laws

 Relationships that do not require any assumptions about the
distribution of service times or inter-arrival times

« Identified originally by Buzen (1976) and later extended by
Denning and Buzen (1978)

« Operational = Directly measured

» Operationally testable assumptions = assumptions that can

be verified by measurements

« For example, whether number of job arrivals is equal to the number
of completions?

 This assumption, called job flow balance, is operationally testable

« A set of observed service times is or is not a sequence of
independent random variables is or is not operationally testable

Operational Quantities

 Quantities that can be directly measured during a finite
observation period

« 7 = Observation interval A;= #arrivals Black
« ;= #completions B;= Busy Time Box

Number of arrivals A;

Arrival Rate \; = _
IT1vVa alte Tlme T

Throughput X; = Number Of, completions — Ci
Time T

Busy Time B,
Utilization U; = = —
HHZaon Total Time T

Total time Served B;

Mean service time S; = —
Number served C;

75

Utilization Law

Black
Utilization [/ Busy Time B; Box
ilization U; = : A
Total Time T

C; 9 B; Completions y Busy Time
T C;, Time Completions
= Throughput x Mean Service Time = X;5;

Motivational Example:

« Consider a network gateway at which the packets arrive at a rate of 125 packets per
second and the gateway takes an average of two milliseconds (2ms) to forward them

« Throughput X; = Exit rate = Arrival rate = 125 packets/second

 Service time S5/ = 0.002 seconds

« Utilization U= X;S; = 125 x 0.002 = 0.25 = 25%

« This result is valid for any arrival or service process. Even if inter-arrival times and service
times to are not IID* random variables with exponential distribution (operational)

* IID: Independent and Identically Distributed random variables

Forced Flow Law

 Relates the system throughput to individual device throughputs

« In an open model, System throughput = #jobs leaving the
system per unit time

* In a closed model, System throughput = #jobs traversing
OUT to IN link per unit time

« If observation period 7is such that 4; = G
= Device satisfies the assumption of job flow balance

- Each job makes V;requests for " device in the system
« C=CyVor V,=C/Cy, V;is called visit ratio

Forced Flow Law (cont)

Black
—»| >

Box

Jobs completed @
Total time T

System throughput X =

78

Forced Flow Law (cont)

« Throughput of " device:

||
X
|

Ci
Device Throughput X; = T

« In other words for throughput:

X; =XV

e This is the Forced Flow Law

Bottleneck Device

« Combining the forced flow law and the utilization law, we get:

Utilization of ith device U = X;5S;

= XVi5;
U, = XD,

« Here D;=V; S;is the total service demand on the device for all
visits of a job

« The device with the highest D; has the highest utilization and
is the bottleneck device

And there are more related

Utilization Law: Ui = X;S;=XD;
Forced Flow Law: X, = XV
Little’s Law: Q: = X;R;
: M
General Response Time Law: i = YW
Interactive Response Time Law: R = —%— -7
@totic B@ R > mazx{D,ND,.. — Z}
X < min{l/Dye., N/(D+ Z)}
WILEY PROFESSIONAL COMPUTING
+— A
= / N/(D +Z) b
L 1
THE ART OF fso y e YDe
COMPUTER S Ve
SYSTEMS = yau
PERFORMANCE - | D the sum of all demands on all devices
ANALYSIS e i D, the bottleneck device demand
Techniques for i ’ ! N #jobs in the system
Sl e / | Z the user response time (think time)
and Modeling % !

N*=(D + Z)/Dias number of users

GETRET

Raj Jain, “The Art of Computer Systems Performance Analysis,” Wiley, 1991

Will also find excellent
source for excuses ...

WILEY PROFESSIONAL COMPUTING

THE ART OF
COMPUTER
SYSTEMS
PERFORMANCE
ANALYSIS

Techniques for
Experimental Design,
Measurement, Simulation,
and Modeling

GEIREI]

1
Z
3°

4.

6.

7

®

0

10.
11.
28
13.
14.

Box 10.2 Reaso!

ns for Not Accepting the Results of oy, Analm
s

more analysis.
petter understanding of the workload.
. rformance oniy for long 1/O’s, packets, j
Zlém,ﬁi,‘!fff‘.’ﬁe 1/O’s, packets, jobs, and files are shory, " fileg
hort I/O’s, packets, i
. ves performance only for s packets, job,
It improves P " he performance of short 1/O’s, packets mﬁa

ho cares :
zrets,wns the long ones that impact the system. i
It needs too much memory/CPU/bandwidth and mem"WCPUn,.M_‘ |

This needs
You need 2

width isn’t free. ; /]
It only saves us memory/CPU/bandwidth and MEMmOry/CPY gy, #
width is cheap. - *d‘
There is no point in making the networks (similarly, CPUg/g; Ll\

i

faster; our CPUs/disks (any component other than the one being d:;.
cussed) aren’t fast enough to use them.

It improves the performance by a factor of x, but it doespt ,
matter at the user level because everything else is so slow. T

It is going to increase the complexity and cost.

Let us keep it simple stupid (and your idea is not stupid),
It is not simple. (Simplicity is in the eyes of the beholder.) 1
It requires too much state. Recommended I'ead!
Nobody has ever done that before. (You have a new idea.) .

It is not going to raise the price of our stock by even an eighth,

(Nothing ever does, except rumors.)

158
16.

This will violate the IEEE, KN§I, CCIT1 , Or 1SO standard.

It may violate some future standard.

17.
18.

19.

25!
26.

The standard says nothing about this and so it must not be impor-

tant.

Our competitors don’t do it. If it was a good idea, they would have
done it.

Our competition does it this way and you don’t make money by copy-
ing others.

lt. will introduce randomness into the system and make debugging
difficult.

+ It is too deterministic; it may lead the system into a cycle.
. It’s not interoperable, |
- This impacts hardware, §
& $) 9, i ” i

That’s beyond today’s technology. Performance AnaIySIS’ Wlley’ 1991

Raj Jain, “The Art of Computer Systems

It is not self-stabilizing,
Why change—it’s working OK.

82

* Fair performance comparison is tricky (do not cook the numbers)
 Real application level performance matters but is not easy
» Best serial program has not much to do with the best || program

v v
CPU CPU
Y
oo L1

e e

PCle Switches PCle Switches

NVLink PCle QPI

Thank you

university of
groningen

Simple Motivational Example

> Assume a repetitive task reading a record (t;), processing (t.)
it and then storing the results back ()
« Itisirrelevant if t; and t,represent I/O or Memory accesses

> Serial execution (no overlap):

Throughput = 1/(t; + t- + t,) [records/sec]

85

miveraicr
Simple Motivational Example (cont.)
> Assume a repetitive task reading a record (t;), processing (t.)

it and then storing the results back ()
« Irrelevant if t; and t,represent I/O or Memory access

> Two-way restricted parallel (C-I or O-C) (degree of overlap 2):
to <t + L, to=t+t,

Throughput = 1/(t; + t,) Throughput = 1/(t.)

86

miveraicr
Simple Motivational Example (cont.)
> Assume a repetitive task reading a record (t;), processing (t.)

it and then storing the results back ()
« Irrelevant if t; and t,represent I/O or Memory access

> Two-way parallel (C-I or O-C or I-O) (degree of overlap 2):

to <t + L, te=t+ t,

Throughput = 2/(t;+ to + ty) Throughput = 1/(t.)

87

univorsity of
Simple Motivational Example (cont.)

> Assume a repetitive task reading a record (t;), processing (t.)
it and then storing the results back ()

> Three-way parallel (I-C-O) (degree of overlap 3):

to < ti+ t,

Throughput = 1/(max(t;,t,) Throughput = 1/(t.)

88

university of
groningen

Simple Motivational Example (cont.)

> The presented model is rough and quite optimistic

> Average times are used
 Suits well streaming with FIFOs used to balance data moves

> Provides an upper bound for what is achievable for your
application on a given computing platform
* 1, tc and ty summarize platform and application properties
« They are determined by platform capabilities and application needs

« How much data is moved and how much computation for each data element

> The model’s simplicity enables early strategic decisions and
will prevent you of committing on impossible targets

89

Iron Law Example

» Machine A: clock 1ns, CPI 2.0, for program x
» Machine B: clock 2ns, CPI 1.2, for program x

« Which is faster and how much?
Time/Program = instr/program x cycles/instr x sec/cycle
Time(A) = Nx2.0x1=2N
Time(B) = Nx1.2x2 = 24N
Compare: Time(B)/Time(A) = 2.4N/2N = 1.2

» S0, Machine A is 20% faster than Machine B for this program

Iron Law Example
Keep clock(A) @ 1ns and clock(B) @2ns
For equal performance, if CPI(B)=1.2, what is CPI(A)?

Time(B)/Time(A) = 1 = (Nx2x1.2)/(Nx1xCPI(A))
CPI(A) = 2.4

Iron Law Example
Keep CPI(A)=2.0 and CPI(B)=1.2
For equal performance, if clock(B)=2ns, what is clock(A)?

Time(B)/Time(A) = 1 = (N x 2.0 x clock(A))/(N x 1.2 x 2)
clock(A) = 1.2ns

p- Ny . .
Ey university of
%ﬁ groningen

Both Laws Together Amdhal (v.2): “=
‘ Tp =a 'Tbase + (1'a)°Tbase /p
- Amount where, « is the fraction of the serial code and

of

of Work ' W, W, |W,|W, W, Work

p — the speedup factor of the parallel portion

T, = (a + (1-a) /p)-T;
Sy =Ty /T, =1/(a + (1-2)/p); lim.=1/a

1 2 3 45 1 2 3 45
Number of Processors (p) Number of Processors (p)
‘ Pl (1-a)p
Elapsed - :
e Gustaffson: al Ia . time

Time

S, = Work (p) / Work (1) =

T, T,|T, [T, | T, =(aW+ (1-a)pW)/W=a+ (1-a) - p
H linear speedup is assumed

1 2 3 45 1 2 3 45

Number of Processors () Number of Processors (p) With a = 0.1 (10% serial code)

Amdhal’s view Gustaffson’s view Amdahl’s speedup is maximal 10,
(fixed problem size) (scalable problem size) while Gustaffson claims 0.1 + 0.9-p

93

university of
groningen

The Roofline Model (Arithmetic Intensity)

for (i=0; 1 < N; one (1) ADD
o1 ‘ two (2) LOADs (8 Bytes)
ali] = b[il+c[i] one (1) WRITE (8 Bytes)
Al =1/(2*8+8) =1/24"
one (1) ADD
for (i=0; 1 < N; 1i=i+1) one (1) MUL
al[i] = b[i]l*c[i]+b[i] two (2) LOADs (8 Bytes)
one (1) WRITE (8 Bytes)
Al =2/(2*8+8) =1/12"
for (i=0; i < N; i=i+1) { gﬁzg%l\%glg
iir:_Aaogfset[i]; I2 = A offset[i+l]; two (2) LOADs (8 Bytes)
for (3 =07 3 < (12-11); ++3) ﬁﬁiﬂlﬁﬁﬁé“(gyﬁﬁi@
Isum += A[I1+3] * x[col index[I2+3]]; Al = 2/(2%8+4+8) = 1/14
y[i] = sum;

*on cache-based systems kernel would actually require an extra read for a []
(because of write-allocate traffic) leading to even lower Al

94

university of
groningen

The Roofline Model (Arithmetic Intensity, 2)

2048 T T T T
—Intel Sandy Bridge
——AMD Abu Dhabi /

10247 —|BM BG/Q

—Fujitsu FX10
512/ —NVIDIA Kepler

@
g
S Intel Xeon Phi
. (0]
Particle Methods £ 56!
£ .
5) : :
5 128 ; ; ;
BLAS L3 g : , :
Al = T z
. g :
FEFT Stencil a £ E :
2 3 e e ;
BLAS Ll, SpMV 16 s s: = s:
= = O =
[V [T (m) L

fHe6 18 14 12 1 2 4 8 16 32 64 128 256
Operational intensity (flop/byte)
* New architectures with decreased machine balance
* the point where the bandwidth roof meets the ceiling moves to the right
* More and more algorithms are going to find themselves memory bound
» Even DGEMM can run into trouble depending on the blocking factor chosen

95

