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Announcement
• Lab 2 went much better!
• Vivado is still the most challenging pcomponent 
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Course objectives
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• Describe number representation systems and inter-conversion.

• Perform binary arithmetic operation such as addition and multiplication.
 
• Explain basic concepts of computer architecture.

• Use logic gates to implement simple combinational circuits.

• Explain system software and operating systems fundamentals, task 
management, synchronization, compilation, and interpretation. 

• Use design and automation tools to perform synthesis and optimization.



Objectives
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• Understand systems with multiple processors
• Explain the different types of parallel machines 
• Get the basic of a widely used massively parallel platform



Recap
• From bits to gates to functional units to u-architecture to computer architecture (✓)
• Now also the main memory should be more or less clear
• Differences between SRAM and DRAM memory cells 
• Anything else I miss (?)

• our main goal is “to remove magic” as you remember
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S[1:0] W X V

00 0 0 0

01 1 0 0

10 1 1 0

11 1 1 1

Switch S[1:0] S'[1:0]

0 00 00

0 01 00

0 10 00

0 11 00

1 00 01

1 01 10

1 10 11

1 11 00

Equivalent representations 



Overview
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• The lecture material is collected from various sources

• About CUDA, please refer to Wen-Mei and David 
• https://shop.elsevier.com/books/programming-massively-parallel-processors/hwu/978-0-323-91231-0

• Also NVIDIA has a lot of tutorials and recorded lectures
• https://developer.nvidia.com/educators/existing-courses

• Parallel Processing course, again Behrooz Parhami
• https://web.ece.ucsb.edu/~parhami/text_par_proc.htm#slides Maybe even

https://shop.elsevier.com/books/programming-massively-parallel-processors/hwu/978-0-323-91231-0
https://developer.nvidia.com/educators/existing-courses
https://web.ece.ucsb.edu/~parhami/text_par_proc.htm


The Main Memory System (review)
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• Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor, etc

• Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits

Processor
and caches

Main Memory Storage (SSD/HDD)

Multiple-, 
Many 

Processors



Trends in Processor Chip Density, Performance, Clock Speed, Power, and #Cores
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Original data up to 2010 collected/plotted by M. Horowitz et al.; Data for 2010-2017 extension collected by K. Rupp

Year of Introduction

Performance

Power

Cores

Clock

DensityTransistors per chip (1000s)
Relative performance
Clock speed (MHz)
Power dissipation (W)
Number of cores per chip



Evolution of Computer Performance/Cost (??)
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Mental power in four scales

From: 
“Robots After All,” 

by H. Moravec, 
CACM, pp. 90-97, 

October 2003.



Everyday Parallelism 
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• Juggling -- event-based computation

• House construction -- parallel tasks, wiring and plumbing 
performed at once

• Assembly line manufacture -- pipelining, many instances 
in process at once

• Call center -- independent tasks executed simultaneously

How do we describe execution of tasks?



Parallel vs Distributed Computing
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• Comparisons are often matters of degree

Characteristic Parallel Distributed

Overall Goal Speed Convenience

Interactions Frequent Infrequent

Granularity Fine Coarse

Reliable Assumed Not Assumed



Parallel vs Concurrent
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• In OS and DB communities execution of multiple threads 
is logically simultaneous

• In Architecture and HPC communities execution of 
multiple threads is physically simultaneous

• Issues are often the same, say with respect to races

• Parallelism can achieve states that are impossible with 
concurrent execution because two events happen at once



Consider A Simple Task …
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• Adding a sequence of numbers A[0],…,A[n-1]
• Standard way to express it

• Semantics require: 
(…((sum+A[0])+A[1])+…)+A[n-1]

• That is, sequential
• Can it be executed in parallel?

sum = 0;
for (i=0; i<n; i++) {
   sum += A[i];
}



Parallel Summation
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• To sum a sequence in parallel 

• add pairs of values producing 1st level results, 

• add pairs of 1st level results producing 2nd level results, 

• sum pairs of 2nd level results …

• That is,

(…((A[0]+A[1]) + (A[2]+A[3])) + ... + (A[n-2]+A[n-1]))…)



Express the Two Formulations
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• Graphic representation makes difference clear

• Same number of operations; different order

246 810 16 1416
10

26

52
66

36

68 76

246 810 16 1416

10 26 30 10

36 40

76

Simple



The Dream …
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• Since 70s (Illiac IV days) the dream has been to compile 
sequential programs into parallel object code

• Many decades of continual, well-funded research by smart 
people implies it’s hopeless

• For a tight loop summing numbers, its doable

• For other computations it has proved extremely challenging 
to generate parallel code, even with pragmas or other 
assistance from programmers



Compilers
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What’s the Problem?
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• It’s not likely a compiler will produce parallel code from a C specification 
any time soon…

• Fact: For most computations, a “best” sequential solution (practically, 
not theoretically) and a “best” parallel solution are usually fundamentally 
different …

• Different solution paradigms imply computations are not “simply” related

• Compiler transformations generally preserve the solution paradigm

Therefore... the programmer must discover the || solution



A Related Computation
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What advantage can ||ism give? 

• Consider computing the prefix sums

• Semantics ... 
• A[0] is unchanged
• A[1]  = A[1] + A[0]
• A[2]  = A[2] + (A[1] + A[0])
   ...
• A[n-1]  = A[n-1] + (A[n-2] + ( ... (A[1] + A[0]) … )

for (i=1; i<n; i++) {
   A[i] += A[i-1];
} A[i] is the sum of the 

first i + 1 elements 



Comparison of Paradigms
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• The sequential solution computes the prefixes … the parallel 
solution computes only the last

• or does it?

246 810 16 1416
10

26

52
66

36

68 76

246 810 16 1416

10 26 30 10

36 40

76



Parallel Prefix Algorithm
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10

0+60

44+66+06 16+1016 10+26 10 16+3616 14+52 14 2+662 8+68 8

26

10+1610

30

36+1636

10

66+266

36

0+100

40

36+3036

76

0+360

0

6        4            16         10             16         14            2           8 
6         10             26         36             52         66           68         76

Compute sum going up

Figure prefixes going down 

Invariant: Parent data is 
sum of elements to left 
of subtree 

Original paper: R.E. Ladner and M. J. Fischer, Parallel Prefix Computation, Journal of the ACM, 27(4):831-838, 1980

The Ladner-Fischer algorithm 
requires 2log n time, twice as 
much as simple tournament 
global sum, not linear time

Fundamental Tool of || Programming (useful for wide class of II operations)



Parallel Compared to Sequential Programming 
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• Has different costs, different advantages
• Requires different, unfamiliar algorithms
• Must use different abstractions
• More complex to understand a program’s behavior
• More difficult to control the interactions of the program’s components
• Knowledge/tools/understanding more primitive

But also understand your II machine

The parallel approach to computing … does require that some 
original thinking be done about numerical analysis and 
data management in order to secure efficient use. In an 
environment which has represented the absence of the need 
to think as the highest virtue, this is a decided disadvantage. 
    -- Dan Slotnick, 1967



Consider a Simple Problem
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count = 0;
  for (i=0; i<length; i++) 
    {
      if (array[i] == 3)
         count += 1;
    }

• Count the 3s in array[] of length values 
• Definitional solution …

• Sequential program 



Write A Parallel Program
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• Need to know something about the machine 
… use multicore architecture

L2

RAM
Memory

L1L1

P0 P1

How would you solve it in parallel?



Divide Into Separate Parts (Divide and Conquer) 
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2 3 0 2 3 3 1 0 0 1 3 2 2 3 1 0array

length=16  t=4

Thread 0 Thread 1 Thread 2 Thread 3

int length_per_thread = length/t;
   int start = id * length_per_thread;
   for (i=start; i<start+length_per_thread; i++)
       {
          if (array[i] == 3)
          count += 1;
       }

• Threading solution -- prepare for Multi-Threaded procs

Doesn’t actually get the right answer



Races!
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• Two processes interfere on memory writes

Thread 1                                             Thread 2
             
             count Û 0
          

                                                                              time
        
             count Û 1
             count Û 1

load

increment
store

load
increment

store!!!

Try 1 (mmm)



Protect Memory References 

27

• Protect Memory References
mutex m;

  for (i=start; i<start+length_per_thread; i++)
       {
       if (array[i] == 3)
          {
             mutex_lock(m);
               count += 1;
             mutex_unlock(m);
          }
       }

Try 2 (?)

Performance

serial Try 2

0.91

5.02
6.81

t=1 t=2

Correct Results but SLOW 
Serializing at the mutex
• The processors wait on 

each other



Closer Look: Motion of count, m
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• Lock Reference and Contention

L2

RAM
Memory

L1L1

P0 P1

mutex m;
  for (i=start; i<start+length_per_thread; i++)
       {
       if (array[i] == 3)
          {
             mutex_lock(m);
               count += 1;
             mutex_unlock(m);
          }
       }



Accumulate Into Private Count
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• Each processor adds into its own memory; 
combine at the end

for (i=start; i<start+length_per_thread; i++)
     {
        if (array[i] == 3)
           {
              private_count[t] += 1;
            }
      }
mutex_lock(m);
  count += private_count[t];
mutex_unlock(m);

Try 3

0.91
Performance

serial Try 3

0.91 1.15

t=1 t=2

Keeping up but NOT gaining
• Sequential and one 

processor match, but it’s a 
loss with two processors



False Sharing 
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• Private var ¹ private cache-line

private_count[0]

private_count[1]

Thread modifying
private_count[0]

private_count[0]

private_count[1]

Thread modifying
private_count[1]

private_count[0] private_count[1]

L2

RAM
Memory

L1L1

P0 P1
30



Force Into Different Cache Lines
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31

• Padding the private variables forces them into 
separate cache lines and removes false sharing

struct padded_int
  {  int value;
     char padding[128];
  }  private_count[MaxThreads];

Try 4

Performance

serial Try 4

0.91 0.51
t=1 t=2

0.91

Success!!! 
• Two processors are 

almost twice as fast
Is this the best solution???



Count 3s Summary
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• Recapping the experience of writing the program, we
• Wrote the obvious “break into blocks” program
• We needed to protect the count variable
• We got the right answer, but the program was slower … 

lock congestion
• Privatized memory and 1-process was fast enough, 2- 

processes slow … false sharing
• Separated private variables to own cache line

32

Try 2 Try 3• What happens when more processors 
are available?

• 4 processors
• 8 processors (look in the book)
• 256 processors
• 32,768 processors



Von Neumann (RAM) Model
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• Call the ‘standard’ model of a random access 
machine (RAM) the von Neumann model

• A processor interpreting 3-address instructions
• PC pointing to the next instruction of program in 

memory
• “Flat,” randomly accessed memory requires 1 time unit
• Memory is composed of fixed-size addressable units 
• One instruction executes at a time, and is completed 

before the next instruction executes
• The model is not literally true, e.g., memory is 
hierarchical but made to “look flat”

C directly implements this model in a HLL



Parallel RAM (PRAM) Often Proposed As A Candidate
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• PRAM ignores memory organization, collisions, 
latency, conflicts, etc. 
• Ignoring these are claimed to have benefits ...
• Portable everywhere since it is very general
• It is a simple programming model ignoring only 
insignificant details -- off by “only log P”
• Ignoring memory difficulties is OK because hardware 
can “fake” a shared memory
• Good for getting started: Begin with PRAM then refine 
the program to a practical solution if needed

What is the best II programming language?



PRAM has any number of processors
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• Every proc references any memory in “time 1”
• Memory read/write collisions must be resolved
• SMPs implement PRAMs for small P … not scalable

P1P0 P3P2 P5P4 P7P6

Memory

PRAM

A BC
or (count)

CMP AMD 100

SMP Sun Fire E25K 400-660

Cluster Itanium + Myrinet 4,100-5,100

Super BlueGene/L 5,000

Accessing remore 
memory is slower!



Types of Parallelism: A Taxonomy
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SISD 
  

SIMD 
  

MISD 
 

MIMD 
  

GMSV 
  

GMMP 
  

DMSV 
  

DMMP 
  

Single data 
stream 

Multiple data 
streams 
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Shared 
variables 

Message 
passing 

G
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l 

m
em
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y 

Di
st
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ed
 

m
em

or
y 

Uniprocessors 

Rarely used 

Array or vector 
processors 

Multiproc’s or 
mult icomputers 

Shared-memory 
multiprocessors 

Rarely used 

Distributed 
shared memory 

Distrib-memory 
multicomputers 

The Flynn-Johnson classification of computer systems. 

Data 
In

Data 
Out

I

I

I 

I

I

1

2

3 4

5

Source: Behrooz Parhami

What is the II model?



SIMD
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• Single Instruction, Multiple Data
• One instruction stream is broadcast to all processors
• Each processor, also called a processing element (PE), 

is usually simplistic and logically is essentially an ALU 
• PEs do not store a copy of the program nor have a 

program control unit
• Individual processors can remain idle during execution 

of segments of the program (based on a data test)



SIMD (cont)
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• All active processors execute the same instruction synchronously, but on different data
• Technically, on a memory access, all active processors must access the same location in 

their local memory 
• This requirement is sometimes relaxed a bit

• The data items form an array (or vector) and an instruction can act on the complete array 
in one cycle

• Examples:
• ILLIAC IV (1974) was the first SIMD computer
• The STARAN and MPP 
• Connection Machine CM2 (by Thinking Machines)
• MasPar MP-1 (for Massively Parallel) computers

Vector machines, VLIW, etc. 

How to view an SMID machine ?
Think of all soldiers in a unit
• The commander selects certain soldiers 

as active, e.g., the first row
• The commander barks out an order to 

all the active soldiers, who execute the 
order synchronously

• The remaining soldiers do not execute 
orders until they are re-activated

Single Program, Multiple Data (SPMD), e.g. CUDA != SIMD



CPUs: Latency Oriented Design 
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• High clock frequency
• Large caches

• Convert long latency memory accesses 
to short latency cache accesses

• Sophisticated control
• Branch prediction for reduced branch 

latency
• Data forwarding for reduced data 

latency
• Powerful ALU

• Reduced operation latency

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU



GPUs: Throughput Oriented Design
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• Moderate clock frequency
• Small caches

• To boost memory throughput
• Simple control

• No branch prediction
• No data forwarding

• Energy efficient ALUs
• Many, long latency but heavily pipelined for high 

throughput
• Require massive number of threads to tolerate latencies

DRAM

GPU



GPUs based system architecture
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Architecture of a CUDA-capable GPU

SP- Streaming Processor

SM- Streaming Multiprocessor

Block of Streaming Multiprocessors



Motivational example: Color image to grey–scale convert
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L = r * 0.21 + g * 0.72 + b * 0.07 
AdobeRGB color space 

The pixels can be calculated independently of each other



CUDA/OpenCL – Execution Model
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• Integrated host+device app C program
• Serial or modestly parallel parts in host C code
• Highly parallel parts in device SPMD kernel C code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<<nBlk, nTid>>>(args);

Serial Code (host)

* SPMD – Single Program 
Multiple Data

Parallel Kernel (device)
KernelA<<<nBlk, nTid>>>(args);



Arrays of Parallel Threads
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• A CUDA kernel is executed by a grid (array) of threads 
– All threads in a grid run the same kernel code. Single 

Program Multiple Data (SPMD != SIMD)
– Each thread has an index that it uses to compute memory 

addresses and make control decisions

i = blockIdx.x * blockDim.x 
+ threadIdx.x;

C[i] = A[i] + B[i];

…
0 1 2 254 255

…

pre-initialized in HW



Thread Blocks: Scalable Cooperation
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• Divide thread array into multiple blocks
• Threads within a block cooperate via shared memory, atomic 

operations and barrier synchronization
• Threads in different blocks cannot cooperate

i = blockIdx.x * blockDim.x 
+ threadIdx.x;

C[i] = A[i] + B[i];

…
0 1 2 254 255

Thread Block 0

…
1 2 254 255

Thread Block 1
0

i = blockIdx.x * blockDim.x 
+ threadIdx.x;

C[i] = A[i] + B[i];

…
1 2 254 255

Thread Block N-1
0

i = blockIdx.x * blockDim.x 
+ threadIdx.x;

C[i] = A[i] + B[i];
…

…… …
There is a maximum number of threads in a thread block: 
1,024 on CUDA 3.0 and up, 512 on earlier versions

0 1 (N-1)



blockIdx and threadIdx
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Host

Kernel 
1

Kernel 
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

• Each thread uses indices to 
decide what data to work 
on
– blockIdx: 1D, 2D, or 3D 

(CUDA 4.0)
– threadIdx: 1D, 2D, or 3D 

• Simplifies memory
addressing when 
processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– (real 2D and 3D models)
– …



Vector Addition – Conceptual View
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A[0]
vector  
A

vector  
B

vector  
C

A[1] A[2] A[3] A[4] A[N-1]

B[0] B[1] B[2] B[3]

…

B[4] … B[N-1]

C[0] C[1] C[2] C[3] C[4] C[N-1]…

+ + + + + +



Vector Addition – Traditional C Code
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// Compute vector sum C = A+B

void vecAdd(float* A, float* B, float* C, int n)
{

  for (i = 0, i < n, i++)

    C[i] = A[i] + B[i];

}

int main()
{

    // Memory allocation for A_h, B_h, and C_h
   // I/O to read A_h and B_h, N elements
   …
    vecAdd(A_h, B_h, C_h, N);
}



Heterogeneous Computing vecAdd Host Code
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#include <cuda.h>
void vecAdd(float* A, float* B, float* C, int n)
{
   int size = n* sizeof(float); 
   float* A_d, B_d, C_d;
   …
1. // Allocate device memory for A, B, and C
   // copy A and B to device memory 
    
2. // Kernel launch code – to have the device
   // to perform the actual vector addition

3. // copy C from the device memory
   // Free device vectors
}



Partial Overview of CUDA Memories
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• Device code can:
• R/W per-thread registers
• R/W per-grid global memory

• Host code can
• Transfer data to/from per grid 

global memory 

(Device) Grid

Global
Memory

Block (0, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

more detals later



CUDA Device Memory Management API functions
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Grid

Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

• cudaMalloc()
• Allocates object in the 

device global memory
• Two parameters

• Address of a pointer to 
the allocated object

• Size of allocated object in 
terms of bytes

• cudaFree()
• Frees object from device 

global memory
• Pointer to freed object

*cudaMalloc() returns a generic object making   
dynamic allocation more challenging, more later



Host-Device Data Transfer API functions
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Host

• cudaMemcpy()
• memory data transfer
• Requires four parameters

• Pointer to destination 
• Pointer to source
• Number of bytes copied
• Type/Direction of transfer

• Transfer to device is asynchronous

(Device) Grid

Global
Memory

Block (0, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Immediate return
Overlapping opportunities



Some code …
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void vecAdd(float* A, float* B, float* C, int n)
{
   int size = n * sizeof(float); 
    float* A_d, B_d, C_d;

1. // Transfer A and B to device memory 
    cudaMalloc((void **) &A_d, size);
    cudaMemcpy(A_d, A, size, cudaMemcpyHostToDevice);
    cudaMalloc((void **) &B_d, size);
    cudaMemcpy(B_d, B, size, cudaMemcpyHostToDevice);

   // Allocate device memory for
    cudaMalloc((void **) &C_d, size);

2. // Kernel invocation code – to be shown later
     …
3. // Transfer C from device to host
    cudaMemcpy(C, C_d, size, cudaMemcpyDeviceToHost);
   // Free device memory for A, B, C
    cudaFree(A_d); cudaFree(B_d); cudaFree (C_d);
} Dereferencing A_d, B_d and C_d from host is not advisable

“_d” stands for device (the latest book edition uses 
d_<XYZ>)

H --> D

D --> H



In Practice, Check for API Errors in Host Code
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cudaError_t  err = cudaMalloc((void **) &d_A, size);

if (err != cudaSuccess)  {

   printf(“%s in %s at line %d\n”,     

     cudaGetErrorString(err), __FILE__, __LINE__);

   exit(EXIT_FAILURE);

}

All CUDA calls return error codes



Example: Vector Addition Kernel
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// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__
void vecAddKernel(float* A_d, float* B_d, float* C_d, int n)

{

    int i = threadIdx.x + blockDim.x * blockIdx.x;
    if(i<n) C_d[i] = A_d[i] + B_d[i];

}

int vectAdd(float* A, float* B, float* C, int n)

{

  // A_d, B_d, C_d allocations and copies omitted

    // Run ceil(n/256) blocks of 256 threads each

    vecAddKernel<<<ceil(n/256.0), 256>>>(A_d, B_d, C_d, n);

}

Device Code

There is a maximum number of 
threads in a thread block: 

1,024 on CUDA 3.0 and 512 on earlier 
versions

(no return value)

use FP number to 
avoid truncation



Example: Vector Addition Kernel
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// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__

void vecAddkernel(float* A_d, float* B_d, float* C_d, int n)

{

    int i = threadIdx.x + blockDim.x * blockIdx.x;

    if(i<n) C_d[i] = A_d[i] + B_d[i];

}

int vecAdd(float* A, float* B, float* C, int n)

{

 // A_d, B_d, C_d allocations and copies omitted 

 // Run ceil(n/256) blocks of 256 threads each

  vecAddKernnel<<<ceil(n/256.0),256>>>(A_d, B_d, C_d, n);

}

Host Code



More on Kernel Launch
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int vecAdd(float* A, float* B, float* C, int n)

{

 // A_d, B_d, C_d allocations and copies omitted 

 // Run ceil(n/256) blocks of 256 threads each

  dim3 DimGrid(n/256, 1, 1);

  if (n%256) DimGrid.x++;

  dim3 DimBlock(256, 1, 1);

  vecAddKernel<<<DimGrid,DimBlock>>>(A_d, B_d, C_d, n);

}

• Any call to a kernel function is asynchronous from CUDA 1.0 on, 
explicit synch needed for blocking

Host Code

avoid FP and ceil()
alternative: (n-1)/256 + 1



Kernel execution in a nutshell
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__global__
void vecAddKernel(float *A_d,
     float *B_d, float *C_d, int n)
{
   int i = blockIdx.x * blockDim.x
             + threadIdx.x;

   if( i<n ) C_d[i] = A_d[i]+B_d[i];
}

__host__
Void vecAdd()
{
  dim3 DimGrid(ceil(n/256.0),1,1);
  dim3 DimBlock(256,1,1);
 
vecAddKernel<<<DimGrid,DimBlock>>>
(A_d,B_d,C_d,n);
}

KernelBlk 0 Blk N-1
• • •

GPU
M0

RAM

Mk• • •

Schedule onto streaming multiprocessors

60 

DimGrid and DimBlock 
“live” in host and can be 
called … Maria and Mary

threadIdx, blockIdx, 
blockDim and gridDim are 
on the device and part of 
the CUDA C specification



More on CUDA Function Declarations
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hosthost__host__   float HostFunc()

hostdevice__global__ void  KernelFunc()

devicedevice__device__ float DeviceFunc()

Only callable 
from the:

Executed 
on the:

•  __global__ defines a kernel function
• Each “__” consists of two underscore characters
• A kernel function must return void

•  __device__ and __host__ can be used 
together (e.g., user libraries)



Compiling a CUDA Program

62

Integrated C programs with CUDA extensions

NVCC Compiler

Host C Compiler/ Linker

Host Code Device Code (PTX)

Device Just-in-Time 
Compiler

Heterogeneous Computing Platform with
CPUs, GPUs



Summary
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• Parallel machines are here to stay
• We have to be able to build them but also model and program
• Fully automated parallelization compilers are still a dream
• Programming Massively Parallel accelerators requires tools   



Thank you
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Crash intro on Parallel Computing

Material from a BSc course on Parallel Computing



Size vs Power

• Power5 (Server)
• 389mm^2
• 120W@1900MHz

• Intel Core2 sc (laptop)
• 130mm^2
• 15W@1,000MHz

• ARM Cortex A8 (automobiles)
• 5mm^2
• 0.8W@800MHz

• Tensilica DP (cell phones / printers)
• 0.8mm^2
• 0.09W@600MHz

• Tensilica Xtensa (Cisco router)
• 0.32mm^2 for 3!
• 0.05W@600MHz

Intel Core2

ARM

TensilicaDP

Xtensa x 3

Power 5

Each processor operates with 0.3-0.1 efficiency of 
the largest chip: more threads, lower power
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Variations of Count 3s 

• What happens when more processors are available?
• 4 processors
• 8 processors (look in the book)
• 256 processors
• 32,768 processors

67

Try 2 Try 3



Variations (Try 4)

68

Performance for Try 4 solution 
on an array that does not 
contain any 3s suggests that 
memory bandwidth limitations 
are preventing performance 
gains for eight processors

Experiments: 
L3 (unified) 4MB 16-way 64B line size
L2 (unified) 1MB (per core) 8-way
L1 (I+D) 16KB/16KB 8-way SA
8 dual-core Xeon processors @ 2.6GHz

50MB random entry array with 30% 3s
Average of 1,000 program runs
GNU/Linux 2.6.19
Gcc 4.1.2 –O2 optimization on 



Our Goals In Parallel Programming

• Goal: Scalable programs with performance and 
portability 

• Correct: Obviously …
• Performance: Programs run as fast as those produced by 

experienced parallel programmers for the specific machine
• Scalable: More processors can be “usefully” added to 

solve the problem faster
• Portability: The solutions run well on all parallel platforms
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Scalability of Parallelism
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Algorithm Complexity and Data Scalability
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What’s The Deal With Hardware?

• Facts Concerning Hardware
• Parallel computers differ dramatically from each other -- there is no standard architecture

• No single programming target!
• Parallelism introduces costs not present in vN machines -- communication; influence of external 

events
• Many parallel architectures have failed 
• Details of parallel computer are of no greater concern to programmers than details of vN

The “no single target” is key problem to solve

should be
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Our Plan

• Think about the problem abstractly
• Introduce instances of basic || designs

• Multicore
• Symmetric Multiprocessors (SMPs)
• Large scale parallel machines
• Clusters
• Blue Gene/L

• Formulate a model of computation
• Assess the model of computation
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Shared Memory

• Global memory shared among ||processors is the natural 
generalization of the sequential memory model

• Thinking about it, programmers assume sequential consistency 
(SC) when they think about ||ism

• Recall Lamport’s definition of SC:
• "...the result of any execution is the same as if the operations 

of all the processors were executed in some sequential order, 
and the operations of each individual processor appear in this 
sequence in the order specified by its program."
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Sequential Consistency

• SC difficult to achieve under all circumstances 
• [Whether SC suffices as a model at all is a deep and complex issue; there’s more to say 

than today’s points.]
• The original way to achieve SC was literally to keep a single memory image and make 

sure that modifications are recorded in that memory
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The Problem

• The “single memory” view implies …
• The memory is the only source of values
• Processors use memory values one-at-a-time, not sharing or caching; 

if not available, stall
• Lock when fetched, Execute, Store & unlock

• A bus can do this, but … 

M M M M M M M M

P P P P P P P Preferences 
all visible

source of 
contention



Reduce Contention

• Replace bus with network, an early design

• Network delays cause memory latency to be higher for a single reference than with a the 
bus, but simultaneous use should help when many references are in the air (MT)

M M M M M M M M

P P P P P P P P
Interconnection Network

(Dance Hall)
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An Implementation

• W-Network is one possible interconnect
• Processor 2 references memory 6 (110)
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Backing Up In Network

• Even if processors work on different data, the requests can back up in the network
• Everyone references data in memory 6

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

000
001

010
011

100
101

110
111

000
001

010
011

100
101

110
111



One-At-A-Time Use

• The critical problem is that only one processor at a time can 
use/change data

• Cache read-only data (& programs) only
• Check-in/Check-out model most appropriate
• Conclusion: Processors stall a lot …

• Solution: Multi-threading
• When stalled, change to another waiting activity

• Must make transition quickly, keeping context
• Need ample supply of waiting activities
• Available at different granularities
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Briefly recap, Multithreading

• Multithreading: Executing multiple threads “at once”
• The threads are, of course, simply sequential programs executing a 

von Neumann model of computation
• Executed “at once” means that the context switching among them is 

not implemented by the OS, but takes place opportunistically in the 
hardware … 3 related cases
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Facts of Instruction Execution 

• The von Neumann model requires that each 
instruction be executed to completion before starting 
the next

• Once that was the way it worked
• Now it is a conceptual model

• Multi-issue architectures start many instructions at a 
time, and do them when their operands are available 
leading to out of order execution

ld r1,0(r2)
add r1,r5
mult r8,r6
sw r1,0(r2)
li r1,0xabc
sw r1,4(r2)
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Fine Grain Multithreading: Tera

Figure from: Paolo.Ienne@epfl.ch
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Coarse Grain Multithreading: Alewife
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Simultaneous Multi-threading: SMT
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Multi-threading Grain Size

• The point when the activity switches can be
• Instruction level, at memory reference: Tera MTA
• Basic block level, with L1 cache miss: Alewife
• …
• At process level, with page fault: Time sharing

• Another variation (3-address code level) is to execute many threads 
(P*log P) in batches, called Bulk Synchronous Programming 

No individual activity improved, but less wait time
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Problems with Multi-threading

• Cost (time, resources) of switching trades off with work: larger 
switching cost means more useful work completed before switch … 
instruction level too low?

• Need many threads w/o dependences & …
• Threads must meet preceding criterion
• Computations grow & shrink thread count (loop control) implies 

potential thread starvation
• Fine-grain threads most numerous, but have least locality 
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Multi-core Chips

• Multi-core means more than one processor per chip – generalization of SMT
• Consequence of Moore’s Law 
• IBM’s PowerPC 2002, AMD Dual Core Opteron 2005, Intel CoreDuo 2006 

• 2022: Intel Core i9 (16 cores); AMD EPYC (64 cores)
• A small amount of multi-threading included
• Main advantage: More ops per tick
• Main disadvantages: Programming, BW
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Diversity Among Small Systems
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Intel CoreDuo

• Two 32-bit Pentiums
• Private 32K L1s
• Shared 2M-4M L2
• MESI cc-protocol
• Shared bus control
and memory bus 

L1-I L1-D

Memory Bus Controller

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

Front Side Bus



MESI Protocol

• Standard Protocol for
cache - coherent
shared memory
• Mechanism for 
 multiple caches to give
 single memory image
• We will not study it
• 4 states can be
 amazingly rich  

Thanks: Slater & Tibrewala of CMU
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MESI, Intuitively

• Upon loading, a line is marked E, subsequent reads are OK; write marks M
• Seeing another load, mark as S
• A write to an S, sends I to all, marks as M
• Another’s read to an M line, writes it back, marks it S
• Read/write to an I misses 
• Related scheme: MOESI (used by AMD)

Modified
Exclusive
Shared
Invalid

92

The only valid combinations of 
states for the same cache line

Owned state supports cache 
line updates without access to 
Main memory (interconnect is 
more complex)



AMD Dual Core Opteron
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AMD Dual Core Opteron

• Two 64-bit Opterons
• 64K private L1s
• 1 MB private L2s
• MOESI cc-protocol
• Direct connect shared memory 

System Request Interface

L1-I L1-D

Mem Ctlr

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect



Comparing Core Duo/Dual Core

L1-I L1-D

Memory Bus Controller

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

Front Side Bus

Intel

System Request Interface

L1-I L1-D

Mem Ctlr

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

AMD AMD



Comparing Core Duo/Dual Core

L1-I L1-D

Memory Bus Controller

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

Front Side Bus

System Request Interface

L1-I L1-D

Mem Ctlr

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

System Request Interface

L1-I L1-D

Mem Ctlr

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

Intel AMD AMD AMD AMD
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Symmetric Multiprocessor on a Bus

• The bus is a point that serializes references
• A serializing point is a shared mem enabler 
 

Bus

L1-I L1-D

Processor
P0

L2 Cache

Cache Control

Memory Memory Memory Memory

L1-I L1-D

Processor
P1

L2 Cache

Cache Control

L1-I L1-D

Processor
P2

L2 Cache

Cache Control

L1-I L1-D

Processor
P3

L2 Cache

Cache Control

97



Sun Fire E25K

 

Eighteen boards connected 
with crossbars for address, 
data and response; 
each board contains four 
UltraSPARC IV Cu processors; 
snoopy buses are shown as 
dashed lines



Cross-Bar Switch

• A crossbar is a network connecting each 
processor to every other processor 

• Used in CMU’s 1971 C.MMP, 16 proc PDP-
11s

• Crossbars grow as n2 making them 
impractical for large n

B0

B1

B2

B3
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Sun Fire E25K

• X-bar gives low latency for snoops allowing for shared memory
• 18 x 18 X-bar is basically the limit
• Raising the number of processors per node will, on average, increase congestion
• How could we make a larger machine?
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Co-Processor Architectures

• A powerful parallel design is to add one or more subordinate processors to standard 
design

• Floating point instructions once implemented this way
• Graphics Processing Units – massive #thr, deep pipelining
• Cell Processor - multiple SIMD units
• Attached FPGA chip(s) - compile to a circuit
• TPUs – tensor processing units (custom)

• Some of these architectures will be discussed later
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The Cell Processor
• Architecture designed to move data

• high speed I/O controllers with 76.8 GB/s
• two channels to RAM of 12.8 GB/s
• EIB is theoretically capable of 204.8 GB/s.
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Clusters

• Interconnecting with 
InfiniBand

• Switch-based technology
• Host channel adapters 

(HCA)
• Peripheral computer 

interconnect (PCI)

Thanks: IBM’s Clustering systems using InfiniBand Hardware
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Clusters

• Cheap to build using commodity technologies
• Effective when interconnect is “switched”
• Easy to extend, usually in increments of one
• Processors often have disks “nearby”
• No shared memory
• Latencies are usually large
• Programming uses message passing (tbd later)
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Networks

Torus 
(Mesh)

Hyper-
Cube

Fat Tree

Omega Network
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Supercomputer

• BlueGene/L
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BlueGene/L Specs

• A 64x32x32 torus = 65K 2-core processors
• Cut-through routing gives a worst-case latency of 6.4 µs
• Processor nodes are dual PPC-440 with “double hummer” FPUs
• Collective network performs global reduce for the “usual” functions
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Summarizing Architectures

• Two main classes
• Complete connection: CMPs, SMPs, X-bar

• Preserve single memory image
• Complete connection limits scaling to …
• Available to everyone

• Sparse connection: Clusters, Supercomputers, Networked computers used for 
parallelism (Grid)

• Separate memory images
• Can grow “arbitrarily” large
• Available to everyone with air conditioning

• Differences are significant; world views diverge
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The Parallel Programming Problem

• Some computations can be platform specific
• Most should be platform independent
• Parallel Software Development Problem: How do we neutralize the 

machine differences given that
• Some knowledge of execution behavior is needed to write programs that 

perform
• Programs must port across platforms effortlessly, meaning, by at most 

recompilation
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Options for Solving the PPP

• Leave the problem to the compiler …
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Options for Solving the PPP

• Leave the problem to the compiler …
• Very low level parallelism (ILP) is already being exploited
• Sequential languages cause us to introduce unintentional sequentiality
• Parallel solutions often require a paradigm shift
• Compiler writers’ track record over past four decades not promising … 

recall High Performance Fortran (HPF) 1995
• Bottom Line: Compilers will get more helpful, but they probably won’t 

solve the PPP (or P3) 
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Options for Solving the PPP

• Adopt a very abstract language that can target to any platform …
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Options for Solving the PPP

• Adopt a very abstract language that can target to any platform …
• No one wants to learn a new language, no matter how cool
• How does a programmer know how efficient or effective his/her code 

is? Interpreted code?
• What are the “right” abstractions and statement forms for such a 

language? 
• Emphasize programmer convenience?
• Emphasize compiler translation effectiveness?
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Options for Solving the PPP

• Agree on a set of parallel primitives (spawn process, lock location, 
etc.) and create libraries that work w/ sequential code …
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Options for Solving the PPP

• Agree on a set of parallel primitives (spawn process, lock location, 
etc.) and create libraries that work w/ sequential code …

• Libraries are a mature technology
• To work with multiple languages, limit base language assumptions … 

L.C.D. facilities
• Libraries use a stylized interface (function call) limiting possible 

parallelism-specific abstractions
• Achieving consistent semantics is difficult 
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Options for Solving the PPP

• Create an abstract machine model that accurately describes common capabilities and let 
the language facilities catch up …
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Options for Solving the PPP

• Create an abstract machine model that accurately describes common capabilities and let 
the language facilities catch up …

• Not a full solution until languages are available
• The solution works in sequential world (RAM)
• Requires discovering (and predicting) what the common capabilities are
• Solution needs to be (continually) validated against actual experience
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Summary of Options for PPP

• Leave the problem to the compiler …

• Adopt a very abstract language that 
can target to any platform …

• Agree on a set of parallel primitives 
(spawn process, lock location, etc.) 
and create libraries that work w/ 
sequential code …

• Create an abstract machine model 
that accurately describes common 
capabilities and let the language 
facilities catch up …
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Why is Sequential Programming Successful 
When we write programs in C they are ...

• Efficient -- programs run fast, especially if we use 
performance as a goal 

• traverse arrays in row major order to improve caching 
• Economical -- use resources well 

• represent data by packing memory
• Portable -- run well on any computer with C compiler

• all computers are universal, but with C fast programs are 
fast everywhere

• Easy to write -- we know many ‘good’ techniques
• reference data, don’t copy

These qualities all derive from von Neumman model

119



Von Neumann (RAM) Model

• Call the ‘standard’ model of a random access machine 
(RAM) the von Neumann model

• A processor interpreting 3-address instructions
• PC pointing to the next instruction of program in memory
• “Flat,” randomly accessed memory requires 1 time unit
• Memory is composed of fixed-size addressable units 
• One instruction executes at a time, and is completed 

before the next instruction executes
• The model is not literally true, e.g., memory is 

hierarchical but made to “look flat”

C directly implements this model in a HLL
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Why Use Model That’s Not Literally True?

• Simple is better, and many things--GPRs, 
floating point format--don’t matter at all

• Avoid embedding assumptions where things 
could change …

• Flat memory, though originally true, is no longer 
right, but we don’t retrofit the model; we don’t 
want people “programming to the cache” 

• Yes, exploit spatial locality
• No, avoid blocking to fit in cache line, or tricking cache 

into prefetch, etc.
• Compilers bind late, particularize and are better 

than you are!
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vN Model Contributes To Success
• The cost of C statements on the vN machine is 

“understood” by C programmers … 
• How much time does A[r][s] += B[r][s]; take? 

• Load row_size_A, row_size_B, r, s, A_base, B_base (6)
• tempa = (row_size_A * r + s) * data_size (3)
• tempb = (row_size_B * r + s) * data_size (3)
• A_base + tempa; B_base + tempb; load both values (4)
• Add values and return to memory (2)

• Same for many operations, any data size

• Result is measured in “instructions” not time

Widely known and effectively used
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123

Portability

• Most important property of the C-vN coupling: 
  It is approximately right everywhere

• Why so little variation in sequential computers?

HW vendors must run 
installed SW so follow 
vN rules

SW vendors must run on 
installed HW so follow vN 
rules 

Everyone wins … no motive 
to change
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Von Neumann Summary

• The von Neumann model “explains” the costs of C 
because C expresses the facilities of the von Neumann 
machines in programming terms

• Knowing the relationship between C and the von 
Neumann machine is essential for writing fast 
programs

• Following the rules produces good results everywhere 
because everyone benefits

• These ideas are “in our bones” … it’s how we think

What is the parallel version of vN?
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Two searching computations (vN example)

• linear search and binary search

What is the parallel version of vN?
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Flynn-Johnson Classification

SISD 
“Uniprocessor” 

SIMD 
“Array processor” 

MISD 
(Rarely used) 

MIMD 
GMSV GMMP 

DMSV DMMP 

“Shared-memory 
multiprocessor” 

“Distributed 
shared memory” 
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PRAM Often Proposed As A Candidate

• PRAM (Parallel RAM) ignores memory 
organization, collisions, latency, conflicts, etc. 

• Ignoring these are claimed to have benefits ...
• Portable everywhere since it is very general
• It is a simple programming model ignoring only 

insignificant details -- off by “only log P”
• Ignoring memory difficulties is OK because hardware 

can “fake” a shared memory
• Good for getting started: Begin with PRAM then 

refine the program to a practical solution if needed
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Recall Parallel Random-Access Machine
PRAM has any number of processors

• Every proc references any memory in “time 1”
• Memory read/write collisions must be resolved

P1P0 P3P2 P5P4 P7P6

Memory

PRAM

A BC

SMPs implement PRAMs for small P … not scalable

or (count)



Variations on PRAM

Resolving the memory conflicts considers read 
and write conflicts separately

• Exclusive read/exclusive write (EREW)
• The most limited model

• Concurrent read/exclusive write (CREW)
• Multiple readers are OK

• Concurrent read/concurrent write (CRCW)
• Various write-conflict resolutions used

• There are at least a dozen other variations

All theoretical -- not used in practice
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CTA Model

• Candidate Type Architecture: A model with P standard processors, d degree, l latency

• Node == processor + memory + NIC

…RAM RAM RAM RAM RAM

RAM

Interconnection Network
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Key Property: Local memory ref is 1, global memory is l 



What CTA Doesn’t Describe

• CTA has no global memory … but memory could be globally addressed
• Mechanism for referencing memory not specified: shared, message passing, 1-side
• Interconnection network not specified 
• l is not specified beyond l>>1 -- cannot be because every machine is different
• Controller, combining network “optional”
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More On the CTA

• Consider what the diagram means…

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

memmem



More On the CTA

• Consider what the diagram means…

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

memmem



More On the CTA

• Consider what the diagram means…

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

memmem
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More On the CTA

• Consider what the diagram doesn’t mean…

• After ACKing that CTA doesn’t model buses, accept that it’s a good first approximation

…RAM RAM RAM RAM RAM

RAM

Interconnection NetworkBUS
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Typical Values for l

• Lambda can be estimated for any machine (given numbers include no contention or 
congestion)

CMP AMD 100

SMP Sun Fire E25K 400-660

Cluster Itanium + Myrinet 4,100-5,100

Super BlueGene/L 5,000

Lg l range 
=> cannot 
be ignored
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As with merchandizing: It’s location, location, location! 



Measured Numbers
• Values (approximating) l for small systems
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Communication Mechanisms

• Shared addressing
• One consistent memory image; primitives are load and store
• Must protect locations from races
• Widely considered most convenient, though it is often tough to get a program to perform
• CTA implies that best practice is to keep as much of the problem private; use sharing only to 

communicate

138

A common pitfall: Logic is too fine grain 



Communication Mechanisms

• Message Passing
• No global memory image; primitives are send() and recv()
• Required for most large machines
• User writes in sequential language with message passing 

library:
• Message Passing Interface (MPI)
• Parallel Virtual Machine (PVM)

• CTA implies that best practice is to build and use own 
abstractions
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Lack of abstractions makes message passing brutal 



Communication Mechanisms

• One Sided Communication
• One global address space; primitives are get() and put()
• Consistency is the programmer’s responsibility
• Elevating mem copy to a comm mechanism 
• Programmer writes in sequential language with library calls -- not 

widely available unfortunately
• CTA implies that best practice is to build and use own abstractions
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One-sided is lighter weight than message passing 



Summary
• Parallel hardware is a critical component of improving performance 

through ||-ism … but there’s a Catch-22
• To have portable programs, we must abstract away from the hardware
• To write performant programs requires that we respect the hardware 

realities
• Solve the problem with CTA  --  an abstract machine with just enough 

(realizable) detail to support critical programming decisions
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Copyright
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Matrix Product: || Poster Algorithm  

• Matrix multiplication is most studied parallel algorithm (analogous to sequential sorting)
• Many solutions known

• Illustrate a variety of complications 
• Demonstrate great solutions 

• Our goal: explore variety of issues
• Amount of concurrency
• Data placement
• Granularity
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Exceptional by requiring O(n3) operations on O(n2) data



Recall the computation…

• Matrix multiplication of (square n x n) matrices A and B producing 
n x n result C where Crs = å1≤k≤n  Ark*Bks

C A B
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1
= +*

2

2
*

n

n
… +

=



Extreme Matrix Multiplication

• The multiplications are independent (do in any order) and the adds can be done in a tree

*
1

1
*

2

2
*

3

3

...

*
n

n
...

=

+ +

+

O(n) processors for 
each result element 
implies O(n3) total

Time: O(log n)

Strassen Not Relevant
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O(log n) MM in the real world … 

Good properties
• Extremely parallel … shows limit of concurrency
• Very fast -- log2 n is a good bound … faster?

Bad properties
• Ignores memory structure and reference collisions
• Ignores data motion and communication costs
• Under-uses processors -- half of the processors do only 1 operation
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Where is the data?

• Data references collisions and communication costs are important to final 
result … need a model … can generalize the standard RAM to get PRAM

P3

A BC

Memory

P7P6P5P4P2P1P0



Parallel Random Access Machine 

• Any number of processors, including nc

• Any processor can reference any memory in “unit 
time”

• Resolve Memory Collisions
• Read Collisions -- simultaneous reads to location are OK
• Write Collisions -- simultaneous writes to loc need a rule:

• Allowed, but must all write the same value
• Allowed, but value from highest indexed processor wins
• Allowed, but a random value wins
• Prohibited

Caution: The PRAM is not a model we advocate
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PRAM says O(log n) MM is good

• PRAM allows any # processors => O(n3) OK
• A and B matrices are read simultaneously, but that’s OK
• C is written simultaneously, but no location is written by more than 1 

processor => OK

PRAM model implies O(log n) algorithm is best … but in real 
world, we suspect not

We return to this point later
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Where else could data be?

• Local memories of separate processors …

• Each processor could compute block of C
• Avoid keeping multiple copies of A and B

P1P0 P3P2 P5P4 P7P6

Mem Mem Mem Mem Mem Mem Mem Mem

Point-to-point Network

Architecture common for servers
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Data Motion

• Getting rows and columns to processors

• Allocate matrices in blocks
• Ship only portion being used

A BC

P0 P0 P0P1 P1 P1

P2 P2 P2P3 P3 P3

P0

Temp



Blocking Improves Locality

• Compute a b x b block of the result

• Advantages
• Reuse of rows, columns = caching effect
• Larger blocks of local computation = high locality

A BC



Caching in Parallel Computers

• Blocking = caching … why not automatic?
• Blocking improves locality, but it is generally a manual 

optimization in sequential computation
• Caching exploits two forms of locality

• Temporal locality -- refs clustered in time
• Spatial locality -- refs clustered by address

• When multiple threads touch the data, global 
reference sequence may not exhibit clustering 
features typical of one thread -- thrashing
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Sweeter Blocking

• It’s possible to do even better blocking …

• Completely use the cached values before reloading

A BC

r rows



Best MM Algorithm?

• We haven’t decided on a good MM solution
• A variety of factors have emerged

• A processor’s connection to memory, unknown
• Number of processors available, unknown
• Locality--always important in computing--

• Using caching is complicated by multiple threads
• Contrary to high levels of parallelism

• Conclusion: Need a better understanding of the constraints of 
parallelism

155



Copyright

156

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



1935 – ABC the first electronic computer ever (John V. Atanasoff: seven processing 
units for solving a system of 30 differential equations)
1968 – Univ. Illinois built a parallel computer (lost in fire L)
1981 – DAP (4K processing units)
1986 – Connection Machine 1 (65K processors, parallel Fortran)
1990 – Parallel computing becomes mainstream in HPC
2005 – personal computers with dual-core processors
2005 – GPUs outperform CPUs on LU factorization 
2010 – multi-core processors become mainstream in high performance computing
2012 – first parallel computer with more than one million cores
2021 – still waiting for the first Exa-scale supercomputer
 

Historical Milestones
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1991 - appoints first professor of parallel computing in NL
1992 – Connection Machine CM5 (2K proc)
              first parallel computer in NL, (rank 123 in Top 500 list)
1993 – Center for HPC
1996 – Cray system (32 processors) 
2000 – first large PC cluster (256 computers)
2005 – IBM Blue Gene (12K processors)
              (rank 6 in Top 500 list)
2015 – Peregrine cluster (4,368 cores, 30 Tbyte)
2021 – the upgrade of the system is in progress
 

RUG Milestones
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Top500 list:  www.top500.org
Released in June and November since 1993 

Benchmark: Linpack kernel used in solvers of dense systems of linear 
equations. (DAXPY performance does not reflect the real performance of a 
given system)

• Rmax - performance on Linpack (used for Top500 rank)

• Rpeak – theoretical peak performance (number of arithmetic floating 
point operations a system can execute per second)

 
There is also the Green500 list (performance per Watt): 
https://www.top500.org/lists/green500/list/2020/11/

Q: How do you think are these two lists related?

https://www.top500.org/lists/green500/list/2020/11/


The DAXPY loop (the core of Linpack)
void daxpy(size_t n, double a, const double x[], double y[])
{
   for (size_t i = 0; i < n; i++) {
      y[i] = a * x[i] + y[i];
   }
}
 

Q: How useful is the above kernel for sequence alignment?

Real genomics problem: Identify the Fragile X syndrome (FXS) condition

In nucleic acid sequences, e.g., AACCTGA…, look for the following pattern:
• One occurrence of GCG
• Followed by any number of CGG or AGG (typically 55..200)
• Followed by CTG

Q2: How relevant is the Linpack performance of your machine?



What are flop/s?
• flop/s (FLOPS) - floating-point operations per second 
Common abbreviations
• Megaflop/s (Mflop/s) = 106 flop/s 1975
• Gigaflop/s   (Gflop/s) = 109 flop/s 1985
• Teraflop/s    (Tflop/s) = 1012 flop/s 1997
• Petaflop/s   (Pflop/s) = 1015 flop/s 2008
• Exaflop/s     (Xflop/s) = 1018 flop/s  202?

161

Q: Why the exaflop deadline for a single machine keeps shifting?
Q2: Are the DAXPY flop/s a fair metric?
Q3: What about single-(half-) precision floating-point?

Wikipedia: In April 2020, the distributed computing Folding@home network 
attained one exaFLOPS of computing performance.



Flynn-Johnson Classification

SISD 
“Uniprocessor” 

SIMD 
“Array processor” 

MISD 
(Rarely used) 

MIMD 
GMSV GMMP 

DMSV DMMP 

“Shared-memory 
multiprocessor” 

“Distributed 
shared memory” 

“Distrib-memory 
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SIMD
• Single Instruction, Multiple Data
• One instruction stream is broadcast to all processors
• Each processor, also called a processing element (PE), is usually 

simplistic and logically is essentially an ALU 
• PEs do not store a copy of the program nor have a 

program control unit
• Individual processors can remain idle during execution of segments 

of the program (based on a data test)
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SIMD (cont.)
• All active processors execute the same instruction synchronously, but 

on different data
• Technically, on a memory access, all active processors must access the 

same location in their local memory 
• This requirement is sometimes relaxed a bit

• The data items form an array (or vector) and an instruction can act on 
the complete array in one cycle

• Examples:
• ILLIAC IV (1974) was the first SIMD computer
• The STARAN and MPP 
• Connection Machine CM2 (by Thinking Machines)
• MasPar MP-1 (for Massively Parallel) computers
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How to View a SIMD Machine
• Think of all soldiers in a unit
• The commander selects certain soldiers as active, e.g., the first 

row
• The commander barks out an order to all the active soldiers, who 

execute the order synchronously
• The remaining soldiers do not execute orders until they are re-

activated
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MIMD
• Multiple Instructions, Multiple Data
• Processors are asynchronous (execute independently different 

programs on different data sets)
• Communications  are handled either 

• through Shared Memory (SM) (multiprocessors)
• by use of Message Passing (MP) (multicomputers)

• MIMD’s have been widely considered to include the most powerful 
and least restricted computers

166



MIMD (cont. 2/4)
• Have very major communication costs

• When compared to SIMDs
• Internal ‘housekeeping activities’ are often overlooked

• Maintaining distributed memory & distributed databases 
• Synchronization or scheduling of tasks
• Load balancing between processors

• One method for programming MIMDs is for all processors to execute 
the same program

• Execution of tasks by processors is still asynchronous
• Called SPMD method (Single Program, Multiple Data)
• Usual method for massive number of processors (GPU)
• Considered to be a “data parallel programming” style for MIMDs
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MIMD (cont 3/4)
• A more common prog. technique is multi-tasking:

• The problem solution is broken up into various tasks
• Tasks are distributed among processors initially
• If new tasks are produced during executions, these may handled by 

parent processor or distributed
• Each processor concurrently executes its collection of tasks

• If some of its tasks must wait for results from other tasks or new data, the 
processor will focus the remaining tasks

• Larger programs usually run a load balancing algorithm in the 
background that re-distributes the tasks assigned to the processors 
during execution

• Either dynamic load balancing or called at specific times
• Dynamic scheduling algorithms may be needed to assign a higher 

execution priority to time-critical tasks
• e.g., on critical path, more important, earlier deadline, etc.
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MIMD (cont 4/4)
• Recall, there are two principle types of MIMD computers:

• Multiprocessors (with shared memory)
• Multicomputers (with message passing)

• Both are important and are covered in great detail
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Multiprocessors (Shared Memory)
• All processors have access to all memory 

locations 

• Two types: UMA and NUMA
• UMA (uniform memory access)

• Frequently called symmetric multiprocessors or SMPs
• Similar to uniprocessor, except additional, identical 

CPU’s are added to the bus
• Each processor has equal access to memory and can 

do anything that any other processor can do
• SMPs have been and remain very popular
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Multiprocessors (cont.)

• NUMA (non-uniform memory access)
• Has a distributed memory system
• Each memory location has the same address for all 

PEs
• Memory access time to a given location varies 

considerably for different CPUs
• Normally,  fast cache is used to reduce the 

problem of different NUMA memory access times
• Creates problem of ensuring all copies of the same 

data in different memory locations are identical
Q: Why is the latter important?
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Multicomputers (Message-Passing)
• Processors are connected by a network

• Interconnection network connections is one possibility
• Also, may be connected by Ethernet links or a bus

• Each processor has a local memory and can only access 
its own local memory

• Data is passed between processors using messages, 
when specified by the program

•  Message passing between processors is controlled by a 
message passing language (typically MPI)

• The problem is divided into processes or tasks that can 
be executed concurrently on individual processors.  Each 
processor is normally assigned multiple processes.
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Multiprocessors vs Multicomputers

• Programming disadvantages of message-passing
• Programmers must make explicit message-passing calls in the code
• This is low-level programming and is quite error prone
• Data is not shared between processors but copied, which increases the 

total data size
• Data integrity problem: Difficulty to maintain correctness of multiple 

copies of a data item
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Multiprocessors vs Multicomputers (cont) 
• Programming advantages of message-passing

• No problem with simultaneous access to data
• Allows different PCs to operate on the same data independently
• Allows PCs on a network to be easily upgraded when faster processors 

become available

• Mixed “distributed shared memory” systems exist
• Lots of current interest in a cluster of SMPs

• Easier to build systems with a very large number 
of processors
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The Six Parallel Architectures
• Multi-cores

• Intel Core2Duo
• AMD Opteron

• Symmetric Multiprocessor (SMP)
• SunFire E25K

• Heterogeneous Architecture (will ignore for now)
• IBM Cell B/E

• Clusters (will ignore for now)
• Commodity desktops (typically PCs) with high-speed 

interconnect
• Supercomputers

• IBM BG/L
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Recall Parallel Random-Access Machine
PRAM has any number of processors

• Every proc references any memory in “time 1”
• Memory read/write collisions must be resolved

P1P0 P3P2 P5P4 P7P6

Memory

PRAM

A BC

SMPs implement PRAMs for small P … not scalable
176
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Variations on PRAM

Resolving the memory conflicts considers read 
and write conflicts separately

• Exclusive read/exclusive write (EREW)
• The most limited model

• Concurrent read/exclusive write (CREW)
• Multiple readers are OK

• Concurrent read/concurrent write (CRCW)
• Various write-conflict resolutions used

• There are at least a dozen other variations

All theoretical -- not used in practice
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CTA Model

• Candidate Type Architecture: A model with P standard processors, d degree, l latency

• Node == processor + memory + NIC

…RAM RAM RAM RAM RAM

RAM

Interconnection Network
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Key Property: Local memory ref is 1, global memory is l 



What CTA Doesn’t Describe

• CTA has no global memory … but memory could be globally addressed
• Mechanism for referencing memory not specified: shared, message passing, 1-side
• Interconnection network not specified 
• l is not specified beyond l>>1 -- cannot be because every machine is different
• Controller, combining network “optional”
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Communication Mechanisms (1)

• Shared addressing
• One consistent memory image; primitives are load and store
• Must protect locations from races
• Widely considered most convenient, though it is often tough to get a program to perform
• CTA implies that best practice is to keep as much of the problem private; use sharing only to 

communicate
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A common pitfall: Logic is too fine grain 



Communication Mechanisms (2)

• Message Passing
• No global memory image; primitives are send() and recv()
• Required for most large machines
• User writes in sequential language with message passing 

library:
• Message Passing Interface (MPI)
• Parallel Virtual Machine (PVM)

• CTA implies that best practice is to build and use own 
abstractions
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Lack of abstractions makes message passing brutal 



Communication Mechanisms (3)

• One Sided Communication
• One global address space; primitives are get() and put()
• Consistency is the programmer’s responsibility
• Elevating mem copy to a comm mechanism 
• Programmer writes in sequential language with library calls -- not 

widely available unfortunately
• CTA implies that best practice is to build and use own abstractions
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One-sided is lighter weight than message passing 



• The CTA is supposed to guide us in finding good computations to run 
on parallel machines

• Using it should
• Aid in producing programs exploiting locality
• Insure the program distributes work ‘well’
• Other features (to be discussed later)
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• Task: Recognize the well-formedness of ((xyz))
• An easy sequential solution …

open = 0;         // keep count of opens
for (i=0; i<n; i++) {  // proceeding L to R
   if (A[i] == '(' ) open++; // found one
   if (A[i] == ')' ) {  // here’s a match
          open--;
          if (open < 0) break;   // oops, mismatch
   }
}
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¡ Allocate a contiguous sequence of symbols to a processor

¡ Each processor gets an ill-formed subsequence
§ ( x ) ) ( ( ( x ) x x x ( x ) )

¡ Begin by resolving locally
§ ( x ) ) ( ( ( x ) x x x ( x ) )
Leaving unresolved closes and opens

P0 P1 P2 P3
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• The unresolved values from each subproblem produce a similar 
problem, except optimized

) ( becomes 1 1 and ) ( ( ( ( becomes 1 4
• Adjacent pairs combine their unresolved counts to a new pair 

describing the larger sequence:  
1 1 and 1 4 become 1 4
2 4 and 1 2 become 2 5

• Resolved to the root: 0 0 is balanced
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• Allocate contiguous subsequences of size n/P to each processor, starting 
with P0

• Sequentially, locally resolve, creating c o     cn/P
• Combine pairs to produce new c o descriptors by inducing a tree on PE 

indices: [0-1][2-3] … for level 1, [0-3][4-7] … for level 2, etc.
• Log levels of the tree to produce a final descriptor: c o        

         cllog2P
• Only a result of 0 0 means balanced
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• First step: Allocated work to processors, generally by dividing it evenly
• Second step: Found local, independent work to perform
• Next step: Focused on combining subproblems into a tree network
• Made correctness and termination conditions explicit
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• Controller
• Not strictly needed
• Often available

• How well does
the CTA match other
parallel architectures?

• CMPs & SMPs
• Clusters
• Blue Gene

…RAM RAM RAM RAM RAM

RAM

Interconnection Network
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• The CTA is a ‘machine model’ – an abstraction
• How can it be wrong?

•  Architecture has more features – shared memory
• CTA predicts a certain behavior and features in the architecture make 

the program much faster
• If it mispredicts … it’s “in trouble”

•  Isn’t it a mistake for the CTA to ignore all the great stuff architects 
put in a processor?
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• Why should we believe it’s right?
• In his thesis (1993) Calvin Lin did a careful study of using the CTA as a 

programming model against the models used by others (whatever they 
were)

• CTA consistently pointed programmers to better solutions
• The CTA’s effectiveness was independent of architecture
• The apparent value of the model is emphasizing locality – always a benefit in 

computing

• The greatest value of the CTA would be if it is the basis for parallel 
programming languages
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• A thread consists of program code, a program counter, call stack, and 
a small amount of thread-specific data

• Threads share access to memory (and the file system) with other 
threads

• Threads communicate through the shared memory
• Though it may seem odd, apply the CTA model to thread programming -

- emphasize locality, expect sharing to be costly (slow)
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Threads are familiar, but don’t use standard model



• A process is a thread in its own private address space
• Processes do not communicate through shared memory, but need 

another mechanism like message passing
• Key issue: How is the problem divided among the processes, which 

includes data and work
• Processes (logically subsume) threads
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• Both have code, PC, call stack, local data
• Threads -- One address space
• Processes -- Separate address spaces

• Weight and Agility
• Threads: lighter weight, faster to setup, tear down, more dynamic
• Processes: heavier weight, setup and tear down more time consuming, 

communication is slower
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• Terms used to refer to a unit of parallel computation include: thread, 
process, processor, …

• Technically, thread and process are software (SW), processor (including 
simultaneous multithreading) is hardware (HW)

• Usually, it doesn’t matter
• We will (try to) use “thread/process” for logical parallelism, and 

“processor” when we mean physical parallelism
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• Naïvely, many people think that applying P processors to a T time 
computation will result in T/P time performance

• Generally wrong
• For a few problems (Monte Carlo) it is possible to apply more processors 

directly to the solution
• For most problems, using P processors requires a paradigm shift in 

approach/thinking
• Assume “P processors => T/P time” to be the best case possible to 

achieve
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• (Because of the presumed paradigm shift) the 
sequential and parallel solutions differ so we do 
not expect a simple performance relationship 
between the two 

• More or fewer instructions must be executed
• Examples of other differences

• The hardware is different
• Parallel solution has difficult-to-quantify costs such as 

communication time, wait time, etc. that the serial 
solution does not have
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• To implement parallel computations requires overhead that 
sequential computations do not need

• All costs associated with communication are overhead: locks, cache 
flushes, coherency, message passing protocols, etc.

• All costs associated with thread/process setup
• Lost optimizations -- many compiler optimizations not available in 

parallel setting
• Instruction reordering
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• Threads and processes incur overhead

• Obviously, the cost of creating a thread or process 
must be recovered through parallel performance:

(t1 + osu + otd + cost(t2))/2 < t2

Thread

Process

Setup Tear down

tp = p proc execution time
osu = setup, otd = tear down
cost(t2) = all other || costs
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• Redundant execution can avoid communication -- a parallel 
optimization

New random number needed for loop iteration: 
(a) Generate one copy, have all threads ref it … 
requires communication
(b) Communicate seed once, then each thread 
generates its own random number … removes 
communication and gets parallelism, but by 
increasing instruction load
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A common (and recommended) programming trick



• Searches illustrate the possibility of parallelism 
requiring fewer instructions

• Independently searching subtrees means an item is 
likely to be found faster than sequential
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• Sequential hardware ≠ parallel hardware
• There is more parallel hardware, e.g., memory
• There is more cache on parallel machines
• Sequential computer ≠ 1 processor of || computer, 

because of coherence HW, power, etc.
• Important in multicore context

• Parallel channels to memory and disk (possibly)

?
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These differences tend to favor || machine



• Additional cache is an advantage of ||ism

• The effect is to make execution time < T/P because data (& 
program) memory references are faster

• Cache-effects help mitigate other || costs

PS P0 P1 P2 P3
vs
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• Wait: All computations must wait at points, but serial computation 
waits are well known

• Parallel waiting …
• For serialization to assure correctness
• Congestion in communication facilities

• Bus contention; network congestion; etc.
• Stalls: data not available/recipient busy

• These costs are generally time-dependent, implying that they are 
highly variable
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• Applying P processors to a problem with a time T (serial) solution can 
be either …

  better or worse … 
• It’s up to programmers to exploit the advantages and avoid the 

disadvantages
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• If 1/S of a computation is inherently sequential, then the 
maximum performance improvement is limited to a factor of S

 TP = 1/S × TS + (1-1/S) × TS / P

• Remember? Amdahl’s Law, ~ the Law of Supply and Demand, is a 
fact

TS=sequential time
TP=parallel time
P =no. processors
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Gene Amdahl -- IBM Mainframe Architect



• Consider the equation

• With no charge for || costs, let P ® ¥ then TP ® 1/S ´ TS

• Amdahl’s Law applies to problem instances

TP = 1/S × TS + (1-1/S) × TS / P

The best parallelism can do to is to eliminate the 
parallelizable work; the sequential work remains

Parallelism seemingly has little potential



• Amdahl’s Law assumes a fixed problem instance: Fixed n, fixed input, 
perfect speedup 

• The algorithm can change to become more ||
• Problem instances grow implying proportion of work that is sequential 

may be smaller %
• … Many, many realities including parallelism in ‘sequential’ execution 

imply analysis is simplistic 
• Amdahl is a fact; it’s not a show-stopper 
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• As an artifact of P-completeness theory, we have the idea of 
Inherently Sequential   -- computations not appreciably improved by 
parallelism

• Probably not much of a limitation

Circuit Value Problem: 
Given a circuit a over Boolean inputs, values b1, …, bn and 
designated output value y, is the circuit true for y? 
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Gustaffson’s Law (another approach)
• Comes with the concept of Scalable Computing where 

problem sizes increase with the machine sizes
• J. L. Gustafson, G. R. Montry, and R. E. Benner, “Development of 

Parallel Methods for a 1024-Processor Hypercube,” SIAM Journal on 
Scientific and Statistical Computing, Vol. 9, No.4, 1988 

• John Gustafson, “Reevaluation of Amdahl’s Law,” Communications of 
the ACM, Vol. 31, No. 5, May 1988 

• Large machines are not (only) to solve existing problems 
faster, they should solve otherwise unsolvable large problems

• assuming problem size increases with the machine size 

S’p =  Uniprocessor Time of Solving W’ / Parallel Time of Solving W’ =
       = Uniprocessor Time of Solving W’ / Uniprocessor Time of Solving W = 
       = W’ / W
 
where the problem size is scaled from W to W'

Is the assumption more work 
within the same time T 
generally applicable?



Both Laws Together
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Amdhal’s view
(fixed problem size)

Gustaffson’s view
(scalable problem size)

Amdhal (v.2):
Tp = 𝛼 ·Tbase + (1-𝛼)·Tbase / p
where, 𝛼 is the fraction of the serial code and
p – the speedup factor of the parallel portion

Tp = (𝛼 + (1-𝛼) / p)·Ts

Sp = Ts / Tp = 1/(𝛼 + (1-𝛼)/p);  lim∞= 1/𝛼

Gustaffson:
Sp = Work (p) / Work (1) = 
     = (𝛼·W + (1-𝛼)·p·W)/W = 𝛼 + (1-𝛼) · p
linear speedup is assumed

With 𝛼 = 0.1 (10% serial code)
Amdahl’s speedup is maximal 10, while 
Gustaffson claims 0.1 + 0.9·p



• Latency -- time required before a requested value is available
• Latency, measured in seconds; called transmit time or execution time 

or just time
• Throughput -- amount of work completed in a given amount of 

time
• Throughput, measured in “work”/sec, where “work” can be bits, 

instructions, jobs, etc.; also called bandwidth in communication
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Both terms apply to computing and communications



• Reducing latency (execution time) is a principal goal of parallelism
•  There is upper limit on reducing latency

• Speed of light, especially for bit transmissions
• In networks, switching time (node latency)
• (Clock rate) x (issue width), for instructions
• Diminishing returns (overhead) for problem instances
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Hitting the upper limit is rarely a worry



• Throughput improvements are often easier to 
achieve by adding hardware

• More wires improve bits/second
• Use processors to run separate jobs
• Pipelining is a powerful technique to execute more 

(serial) operations in unit time
timeinstructions

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB
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Better throughput often hyped as if better latency



• Reduce wait times by switching to work on different operation 
(multithreading)

• Old idea, dating back to Multics
• In parallel computing it’s called latency hiding

• Idea most often used to lower impact of  l cost
• Have many threads ready to go …
• Execute a thread until it makes nonlocal ref
• Switch to next thread
• When nonlocal ref is filled, add to ready list



• Latency hiding requires …
• Consistently large supply of threads ~ l/e
where e = average # cycles between nonlocal refs
• Enough network throughput to have many requests in the 

air at once

• Latency hiding has been claimed to make shared 
memory feasible in the presence of large l 

t1
t2

t3
t4

t5
t1

Nonlocal data
reference time

There are difficulties



• Challenges to supporting shared memory
• Threads must be numerous, and the shorter the interval between 

nonlocal refs, the more
• Running out of threads stalls the processor

• Context switching to next thread has overhead
• Many hardware contexts -- or --
• Waste time storing and reloading context

• Tension between latency hiding & caching
• Shared data must still be protected somehow

• Other technical issues
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• Contention -- the action of one processor interferes 
with another processor’s actions -- is an elusive 
quantity
• Lock contention: One processor’s lock stops other 

processors from referencing; they must wait
• Bus contention: Bus wires are in use by one processor’s 

memory reference
• Network contention: Wires are in use by one packet, 

blocking other packets
• Bank contention: Multiple processors try to access 

different locations on one memory chip simultaneously

Contention is very time dependent, that is, variable



• Load imbalance, work not evenly assigned to the processors, 
underutilizes parallelism

• The assignment of work, not data, is key
• Static assignments, being rigid, are more prone to imbalance
• Because dynamic assignment carries overhead, the quantum of work 

must be large enough to amortize the overhead
• With flexible allocations, load balance can be solved late in the design 

programming cycle
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• Performance is maximized if processors execute continuously on 
local data without interacting with other processors

• To unify the ways in which processors could interact, we adopt the 
concept of dependence

• A dependence is an ordering relationship between two computations
• Dependences are usually induced by read/write
• Dependences that cross process boundaries induce a need to synchronize 

the threads 
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Dependences are well-studied in compilers



• Dependences are orderings that must be 
maintained to guarantee correctness

• Flow-dependence: read after write (RaW)
• Anti-dependence: write after read (WaR)
• Output-dependence: write after write (WaW)

• True dependences affect correctness
• False dependences arise from memory reuse

True
False
False 
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• Both true and false dependences

1. sum = a + 1;
2. first_term = sum * scale1;
3. sum = b + 1;
4. second_term = sum * scale2;
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• Both true and false dependences

• Flow-dependence read after write; must be preserved for correctness
• Anti-dependence write after read; can be eliminated with additional memory

1. sum = a + 1;
2. first_term = sum * scale1;
3. sum = b + 1;
4. second_term = sum * scale2;
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• Change variable names

1. first_sum = a + 1;
2. first_term = first_sum * scale1;
3. second_sum = b + 1;
4. second_term = second_sum * scale2;

1. sum = a + 1;
2. first_term = sum * scale1;
3. sum = b + 1;
4. second_term = sum * scale2;



• Granularity is used in many contexts…here granularity is the amount 
of work between cross-processor dependences

• Important because interactions are usually costly
• Generally, larger grain is better

+ fewer interactions, more local work
-  can lead to load imbalance

• Batching is an effective way to increase grain
• (aggregate work)
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• The CTA motivates us to maximize locality
• Caching is the traditional way to exploit locality … but it doesn’t translate 

directly to ||ism
• Redesigning algorithms for parallel execution often means repartitioning 

to increase locality
• Locality often requires redundant storage and redundant computation, 

but in limited quantities they help
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• Execution time … what’s time?
• ‘Wall clock’ time
• Processor execution time
• System time

• Paging and caching can affect time
• Cold start vs warm start

• Conflicts w/ other users/system components
• Measure kernel or whole program
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• Floating Point Operations Per Second is a common measurement for 
scientific programs

• Even scientific computations use many integers
• Results can often be influenced by small, low-level tweaks having little 

generality: multiply/add
• Translates poorly across machines because it is hardware dependent
• Limited application … but it won’t go away!
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In 2007 Intel made an experimental multi-core (80) POLARIS 
1 to 2 TFLOPS for 100 to 200W. Dedicated programming model (Ct) but ... 



• Speedup is the factor of improvement for P processors: TS/TP

0

Processors

Performance

640

Program1

Program2

48

Speedup

Efficiency =
Speedup/P



• Speedup is best applied when hardware is constant, or for family 
within a generation

• Need to have computation, communication in same ratio
• Great sensitivity to the TS value

• TS should be the time of the best sequential program on 1 processor of the 
||-machine

• TP=1  ¹ TS Measures relative speedup

Relative speedup is often important 
but it must be labeled as such



• As P increases, the amount of work per processor diminishes, often 
below the amount needed to amortize costs

• Speedup curves bend down
• Scaled speedup keeps 
 the work per processor
 constant, allowing other 
 effects to be seen
• Both are important 0

Processors

Performance

640

Program1
Program2

48

Speedup

If not explicitly stated, 
speedup is fixed speedup



Strong Scaling vs Weak Scaling (intermezzo)

• Amdahl’s Law — Strong Scaling
• Fixed Problem Size
• How much does parallelism reduce the 

execution time of a problem?

• Gustafson’s Law — Weak Scaling
• Fixed Execution Time
• How much longer does it take for the problem 

without parallelism? 

Main question: How well does the parallel 
fraction scale among P processors?

Main question: How much faster am I with P 
processors for fixed problem size?

I wrote a shared memory code. How well does my code run in parallel? (strong or weak?)



• The sequential computation should not be charged for any || costs 
… consider

• If referencing memory in other processors takes time (l) and data 
is distributed, then one processor solving the problem results in 
greater t compared to true sequential

P0 P1 P2 P3 P0 P1 P2 P3
vs

This complicates methodology for large problems



• Cases arise when sequential doesn’t fit in 1 processor of parallel 
machine

• Best solution is relative speed-up
• Measure Tp=smallest possible
• Measure TP, compute Tp/TP as having P/p potential improvement 

234



• Many issues regarding parallelism have been introduced, but they 
require further discussion … we will return to them when they are 
relevant
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• Amdahl’s Law is a fact but it doesn’t impede us much
• Inherently sequential problems (probably) exist, but they don’t 

impede us either
• Latency hiding could hide the impact of l with sufficiently many 

threads and much (interconnection) bandwidth
• Impediments to parallel speedup are numerous: overhead, 

contention, inherently sequential code, waiting time, etc.
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• Concerns while parallel programming are also numerous: locality, 
granularity, dependences (both true and false), load balance, etc.

• Happily: Parallel and sequential computers are different: More 
hardware means more fast memory (cache, RAM), implying the 
possibility of superlinear speedup

• Measuring improvement is complicated
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