
EE1D1: Digital Systems A
BSc. EE, year 1, 2023-2024, lecture 1

Going Parallel
Computer Engineering Lab

Faculty of Electrical Engineering, Mathematics & Computer Science
2024-2025

CESE4130: Computer Engineering
2024-2025, lecture 8

1

Announcement
• Lab 2 went much better!
• Vivado is still the most challenging pcomponent

2

Course objectives

3

• Describe number representation systems and inter-conversion.

• Perform binary arithmetic operation such as addition and multiplication.

• Explain basic concepts of computer architecture.

• Use logic gates to implement simple combinational circuits.

• Explain system software and operating systems fundamentals, task
management, synchronization, compilation, and interpretation.

• Use design and automation tools to perform synthesis and optimization.

Objectives

4

• Understand systems with multiple processors
• Explain the different types of parallel machines
• Get the basic of a widely used massively parallel platform

Recap
• From bits to gates to functional units to u-architecture to computer architecture (✓)
• Now also the main memory should be more or less clear
• Differences between SRAM and DRAM memory cells
• Anything else I miss (?)

• our main goal is “to remove magic” as you remember

5

S[1:0] W X V

00 0 0 0

01 1 0 0

10 1 1 0

11 1 1 1

Switch S[1:0] S'[1:0]

0 00 00

0 01 00

0 10 00

0 11 00

1 00 01

1 01 10

1 10 11

1 11 00

Equivalent representations

Overview

6

• The lecture material is collected from various sources

• About CUDA, please refer to Wen-Mei and David
• https://shop.elsevier.com/books/programming-massively-parallel-processors/hwu/978-0-323-91231-0

• Also NVIDIA has a lot of tutorials and recorded lectures
• https://developer.nvidia.com/educators/existing-courses

• Parallel Processing course, again Behrooz Parhami
• https://web.ece.ucsb.edu/~parhami/text_par_proc.htm#slides Maybe even

https://shop.elsevier.com/books/programming-massively-parallel-processors/hwu/978-0-323-91231-0
https://developer.nvidia.com/educators/existing-courses
https://web.ece.ucsb.edu/~parhami/text_par_proc.htm

The Main Memory System (review)

7

• Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor, etc

• Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

Processor
and caches

Main Memory Storage (SSD/HDD)

Multiple-,
Many

Processors

Trends in Processor Chip Density, Performance, Clock Speed, Power, and #Cores

8

Original data up to 2010 collected/plotted by M. Horowitz et al.; Data for 2010-2017 extension collected by K. Rupp

Year of Introduction

Performance

Power

Cores

Clock

DensityTransistors per chip (1000s)
Relative performance
Clock speed (MHz)
Power dissipation (W)
Number of cores per chip

Evolution of Computer Performance/Cost (??)

9

Mental power in four scales

From:
“Robots After All,”

by H. Moravec,
CACM, pp. 90-97,

October 2003.

Everyday Parallelism

10

• Juggling -- event-based computation

• House construction -- parallel tasks, wiring and plumbing
performed at once

• Assembly line manufacture -- pipelining, many instances
in process at once

• Call center -- independent tasks executed simultaneously

How do we describe execution of tasks?

Parallel vs Distributed Computing

11

• Comparisons are often matters of degree

Characteristic Parallel Distributed

Overall Goal Speed Convenience

Interactions Frequent Infrequent

Granularity Fine Coarse

Reliable Assumed Not Assumed

Parallel vs Concurrent

12

• In OS and DB communities execution of multiple threads
is logically simultaneous

• In Architecture and HPC communities execution of
multiple threads is physically simultaneous

• Issues are often the same, say with respect to races

• Parallelism can achieve states that are impossible with
concurrent execution because two events happen at once

Consider A Simple Task …

13

• Adding a sequence of numbers A[0],…,A[n-1]
• Standard way to express it

• Semantics require:
(…((sum+A[0])+A[1])+…)+A[n-1]

• That is, sequential
• Can it be executed in parallel?

sum = 0;
for (i=0; i<n; i++) {
 sum += A[i];
}

Parallel Summation

14

• To sum a sequence in parallel

• add pairs of values producing 1st level results,

• add pairs of 1st level results producing 2nd level results,

• sum pairs of 2nd level results …

• That is,

(…((A[0]+A[1]) + (A[2]+A[3])) + ... + (A[n-2]+A[n-1]))…)

Express the Two Formulations

15

• Graphic representation makes difference clear

• Same number of operations; different order

246 810 16 1416
10

26

52
66

36

68 76

246 810 16 1416

10 26 30 10

36 40

76

Simple

The Dream …

16

• Since 70s (Illiac IV days) the dream has been to compile
sequential programs into parallel object code

• Many decades of continual, well-funded research by smart
people implies it’s hopeless

• For a tight loop summing numbers, its doable

• For other computations it has proved extremely challenging
to generate parallel code, even with pragmas or other
assistance from programmers

Compilers

17

What’s the Problem?

18

• It’s not likely a compiler will produce parallel code from a C specification
any time soon…

• Fact: For most computations, a “best” sequential solution (practically,
not theoretically) and a “best” parallel solution are usually fundamentally
different …

• Different solution paradigms imply computations are not “simply” related

• Compiler transformations generally preserve the solution paradigm

Therefore... the programmer must discover the || solution

A Related Computation

19

What advantage can ||ism give?

• Consider computing the prefix sums

• Semantics ...
• A[0] is unchanged
• A[1] = A[1] + A[0]
• A[2] = A[2] + (A[1] + A[0])
 ...
• A[n-1] = A[n-1] + (A[n-2] + (... (A[1] + A[0]) …)

for (i=1; i<n; i++) {
 A[i] += A[i-1];
} A[i] is the sum of the

first i + 1 elements

Comparison of Paradigms

20

• The sequential solution computes the prefixes … the parallel
solution computes only the last

• or does it?

246 810 16 1416
10

26

52
66

36

68 76

246 810 16 1416

10 26 30 10

36 40

76

Parallel Prefix Algorithm

21

10

0+60

44+66+06 16+1016 10+26 10 16+3616 14+52 14 2+662 8+68 8

26

10+1610

30

36+1636

10

66+266

36

0+100

40

36+3036

76

0+360

0

6 4 16 10 16 14 2 8
6 10 26 36 52 66 68 76

Compute sum going up

Figure prefixes going down

Invariant: Parent data is
sum of elements to left
of subtree

Original paper: R.E. Ladner and M. J. Fischer, Parallel Prefix Computation, Journal of the ACM, 27(4):831-838, 1980

The Ladner-Fischer algorithm
requires 2log n time, twice as
much as simple tournament
global sum, not linear time

Fundamental Tool of || Programming (useful for wide class of II operations)

Parallel Compared to Sequential Programming

22

• Has different costs, different advantages
• Requires different, unfamiliar algorithms
• Must use different abstractions
• More complex to understand a program’s behavior
• More difficult to control the interactions of the program’s components
• Knowledge/tools/understanding more primitive

But also understand your II machine

The parallel approach to computing … does require that some
original thinking be done about numerical analysis and
data management in order to secure efficient use. In an
environment which has represented the absence of the need
to think as the highest virtue, this is a decided disadvantage.
 -- Dan Slotnick, 1967

Consider a Simple Problem

23

count = 0;
 for (i=0; i<length; i++)
 {
 if (array[i] == 3)
 count += 1;
 }

• Count the 3s in array[] of length values
• Definitional solution …

• Sequential program

Write A Parallel Program

24

• Need to know something about the machine
… use multicore architecture

L2

RAM
Memory

L1L1

P0 P1

How would you solve it in parallel?

Divide Into Separate Parts (Divide and Conquer)

25

2 3 0 2 3 3 1 0 0 1 3 2 2 3 1 0array

length=16 t=4

Thread 0 Thread 1 Thread 2 Thread 3

int length_per_thread = length/t;
 int start = id * length_per_thread;
 for (i=start; i<start+length_per_thread; i++)
 {
 if (array[i] == 3)
 count += 1;
 }

• Threading solution -- prepare for Multi-Threaded procs

Doesn’t actually get the right answer

Races!

26

• Two processes interfere on memory writes

Thread 1 Thread 2

 count Û 0

 time

 count Û 1
 count Û 1

load

increment
store

load
increment

store!!!

Try 1 (mmm)

Protect Memory References

27

• Protect Memory References
mutex m;

 for (i=start; i<start+length_per_thread; i++)
 {
 if (array[i] == 3)
 {
 mutex_lock(m);
 count += 1;
 mutex_unlock(m);
 }
 }

Try 2 (?)

Performance

serial Try 2

0.91

5.02
6.81

t=1 t=2

Correct Results but SLOW
Serializing at the mutex
• The processors wait on

each other

Closer Look: Motion of count, m

28

• Lock Reference and Contention

L2

RAM
Memory

L1L1

P0 P1

mutex m;
 for (i=start; i<start+length_per_thread; i++)
 {
 if (array[i] == 3)
 {
 mutex_lock(m);
 count += 1;
 mutex_unlock(m);
 }
 }

Accumulate Into Private Count

29

• Each processor adds into its own memory;
combine at the end

for (i=start; i<start+length_per_thread; i++)
 {
 if (array[i] == 3)
 {
 private_count[t] += 1;
 }
 }
mutex_lock(m);
 count += private_count[t];
mutex_unlock(m);

Try 3

0.91
Performance

serial Try 3

0.91 1.15

t=1 t=2

Keeping up but NOT gaining
• Sequential and one

processor match, but it’s a
loss with two processors

False Sharing

30

• Private var ¹ private cache-line

private_count[0]

private_count[1]

Thread modifying
private_count[0]

private_count[0]

private_count[1]

Thread modifying
private_count[1]

private_count[0] private_count[1]

L2

RAM
Memory

L1L1

P0 P1
30

Force Into Different Cache Lines

31

31

• Padding the private variables forces them into
separate cache lines and removes false sharing

struct padded_int
 { int value;
 char padding[128];
 } private_count[MaxThreads];

Try 4

Performance

serial Try 4

0.91 0.51
t=1 t=2

0.91

Success!!!
• Two processors are

almost twice as fast
Is this the best solution???

Count 3s Summary

32

• Recapping the experience of writing the program, we
• Wrote the obvious “break into blocks” program
• We needed to protect the count variable
• We got the right answer, but the program was slower …

lock congestion
• Privatized memory and 1-process was fast enough, 2-

processes slow … false sharing
• Separated private variables to own cache line

32

Try 2 Try 3• What happens when more processors
are available?

• 4 processors
• 8 processors (look in the book)
• 256 processors
• 32,768 processors

Von Neumann (RAM) Model

33

• Call the ‘standard’ model of a random access
machine (RAM) the von Neumann model

• A processor interpreting 3-address instructions
• PC pointing to the next instruction of program in

memory
• “Flat,” randomly accessed memory requires 1 time unit
• Memory is composed of fixed-size addressable units
• One instruction executes at a time, and is completed

before the next instruction executes
• The model is not literally true, e.g., memory is
hierarchical but made to “look flat”

C directly implements this model in a HLL

Parallel RAM (PRAM) Often Proposed As A Candidate

34

• PRAM ignores memory organization, collisions,
latency, conflicts, etc.
• Ignoring these are claimed to have benefits ...
• Portable everywhere since it is very general
• It is a simple programming model ignoring only
insignificant details -- off by “only log P”
• Ignoring memory difficulties is OK because hardware
can “fake” a shared memory
• Good for getting started: Begin with PRAM then refine
the program to a practical solution if needed

What is the best II programming language?

PRAM has any number of processors

35

• Every proc references any memory in “time 1”
• Memory read/write collisions must be resolved
• SMPs implement PRAMs for small P … not scalable

P1P0 P3P2 P5P4 P7P6

Memory

PRAM

A BC
or (count)

CMP AMD 100

SMP Sun Fire E25K 400-660

Cluster Itanium + Myrinet 4,100-5,100

Super BlueGene/L 5,000

Accessing remore
memory is slower!

Types of Parallelism: A Taxonomy

36

SISD

SIMD

MISD

MIMD

GMSV

GMMP

DMSV

DMMP

Single data
stream

Multiple data
streams

Si
ng

le
 in

st
r

st
re

am

M
ul

tip
le

 in
st

r
st

re
am

s

Flynn’s categories

Jo
hn

so
n’

s
ex

pa
ns

io
n

Shared
variables

Message
passing

G
lo

ba
l

m
em

or
y

Di
st

rib
ut

ed

m
em

or
y

Uniprocessors

Rarely used

Array or vector
processors

Multiproc’s or
mult icomputers

Shared-memory
multiprocessors

Rarely used

Distributed
shared memory

Distrib-memory
multicomputers

The Flynn-Johnson classification of computer systems.

Data
In

Data
Out

I

I

I

I

I

1

2

3 4

5

Source: Behrooz Parhami

What is the II model?

SIMD

37

• Single Instruction, Multiple Data
• One instruction stream is broadcast to all processors
• Each processor, also called a processing element (PE),

is usually simplistic and logically is essentially an ALU
• PEs do not store a copy of the program nor have a

program control unit
• Individual processors can remain idle during execution

of segments of the program (based on a data test)

SIMD (cont)

38

• All active processors execute the same instruction synchronously, but on different data
• Technically, on a memory access, all active processors must access the same location in

their local memory
• This requirement is sometimes relaxed a bit

• The data items form an array (or vector) and an instruction can act on the complete array
in one cycle

• Examples:
• ILLIAC IV (1974) was the first SIMD computer
• The STARAN and MPP
• Connection Machine CM2 (by Thinking Machines)
• MasPar MP-1 (for Massively Parallel) computers

Vector machines, VLIW, etc.

How to view an SMID machine ?
Think of all soldiers in a unit
• The commander selects certain soldiers

as active, e.g., the first row
• The commander barks out an order to

all the active soldiers, who execute the
order synchronously

• The remaining soldiers do not execute
orders until they are re-activated

Single Program, Multiple Data (SPMD), e.g. CUDA != SIMD

CPUs: Latency Oriented Design

39

• High clock frequency
• Large caches

• Convert long latency memory accesses
to short latency cache accesses

• Sophisticated control
• Branch prediction for reduced branch

latency
• Data forwarding for reduced data

latency
• Powerful ALU

• Reduced operation latency

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU

GPUs: Throughput Oriented Design

40

• Moderate clock frequency
• Small caches

• To boost memory throughput
• Simple control

• No branch prediction
• No data forwarding

• Energy efficient ALUs
• Many, long latency but heavily pipelined for high

throughput
• Require massive number of threads to tolerate latencies

DRAM

GPU

GPUs based system architecture

41

Architecture of a CUDA-capable GPU

SP- Streaming Processor

SM- Streaming Multiprocessor

Block of Streaming Multiprocessors

Motivational example: Color image to grey–scale convert

42

L = r * 0.21 + g * 0.72 + b * 0.07
AdobeRGB color space

The pixels can be calculated independently of each other

CUDA/OpenCL – Execution Model

43

• Integrated host+device app C program
• Serial or modestly parallel parts in host C code
• Highly parallel parts in device SPMD kernel C code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<<nBlk, nTid>>>(args);

Serial Code (host)

* SPMD – Single Program
Multiple Data

Parallel Kernel (device)
KernelA<<<nBlk, nTid>>>(args);

Arrays of Parallel Threads

44

• A CUDA kernel is executed by a grid (array) of threads
– All threads in a grid run the same kernel code. Single

Program Multiple Data (SPMD != SIMD)
– Each thread has an index that it uses to compute memory

addresses and make control decisions

i = blockIdx.x * blockDim.x
+ threadIdx.x;

C[i] = A[i] + B[i];

…
0 1 2 254 255

…

pre-initialized in HW

Thread Blocks: Scalable Cooperation

45

• Divide thread array into multiple blocks
• Threads within a block cooperate via shared memory, atomic

operations and barrier synchronization
• Threads in different blocks cannot cooperate

i = blockIdx.x * blockDim.x
+ threadIdx.x;

C[i] = A[i] + B[i];

…
0 1 2 254 255

Thread Block 0

…
1 2 254 255

Thread Block 1
0

i = blockIdx.x * blockDim.x
+ threadIdx.x;

C[i] = A[i] + B[i];

…
1 2 254 255

Thread Block N-1
0

i = blockIdx.x * blockDim.x
+ threadIdx.x;

C[i] = A[i] + B[i];
…

…… …
There is a maximum number of threads in a thread block:
1,024 on CUDA 3.0 and up, 512 on earlier versions

0 1 (N-1)

blockIdx and threadIdx

48

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

• Each thread uses indices to
decide what data to work
on
– blockIdx: 1D, 2D, or 3D

(CUDA 4.0)
– threadIdx: 1D, 2D, or 3D

• Simplifies memory
addressing when
processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– (real 2D and 3D models)
– …

Vector Addition – Conceptual View

49

A[0]
vector
A

vector
B

vector
C

A[1] A[2] A[3] A[4] A[N-1]

B[0] B[1] B[2] B[3]

…

B[4] … B[N-1]

C[0] C[1] C[2] C[3] C[4] C[N-1]…

+ + + + + +

Vector Addition – Traditional C Code

50

// Compute vector sum C = A+B

void vecAdd(float* A, float* B, float* C, int n)
{

 for (i = 0, i < n, i++)

 C[i] = A[i] + B[i];

}

int main()
{

 // Memory allocation for A_h, B_h, and C_h
 // I/O to read A_h and B_h, N elements
 …
 vecAdd(A_h, B_h, C_h, N);
}

Heterogeneous Computing vecAdd Host Code

51

#include <cuda.h>
void vecAdd(float* A, float* B, float* C, int n)
{
 int size = n* sizeof(float);
 float* A_d, B_d, C_d;
 …
1. // Allocate device memory for A, B, and C
 // copy A and B to device memory

2. // Kernel launch code – to have the device
 // to perform the actual vector addition

3. // copy C from the device memory
 // Free device vectors
}

Partial Overview of CUDA Memories

52

• Device code can:
• R/W per-thread registers
• R/W per-grid global memory

• Host code can
• Transfer data to/from per grid

global memory

(Device) Grid

Global
Memory

Block (0, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

more detals later

CUDA Device Memory Management API functions

53

Grid

Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

• cudaMalloc()
• Allocates object in the

device global memory
• Two parameters

• Address of a pointer to
the allocated object

• Size of allocated object in
terms of bytes

• cudaFree()
• Frees object from device

global memory
• Pointer to freed object

*cudaMalloc() returns a generic object making
dynamic allocation more challenging, more later

Host-Device Data Transfer API functions

54

Host

• cudaMemcpy()
• memory data transfer
• Requires four parameters

• Pointer to destination
• Pointer to source
• Number of bytes copied
• Type/Direction of transfer

• Transfer to device is asynchronous

(Device) Grid

Global
Memory

Block (0, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Immediate return
Overlapping opportunities

Some code …

55

void vecAdd(float* A, float* B, float* C, int n)
{
 int size = n * sizeof(float);
 float* A_d, B_d, C_d;

1. // Transfer A and B to device memory
 cudaMalloc((void **) &A_d, size);
 cudaMemcpy(A_d, A, size, cudaMemcpyHostToDevice);
 cudaMalloc((void **) &B_d, size);
 cudaMemcpy(B_d, B, size, cudaMemcpyHostToDevice);

 // Allocate device memory for
 cudaMalloc((void **) &C_d, size);

2. // Kernel invocation code – to be shown later
 …
3. // Transfer C from device to host
 cudaMemcpy(C, C_d, size, cudaMemcpyDeviceToHost);
 // Free device memory for A, B, C
 cudaFree(A_d); cudaFree(B_d); cudaFree (C_d);
} Dereferencing A_d, B_d and C_d from host is not advisable

“_d” stands for device (the latest book edition uses
d_<XYZ>)

H --> D

D --> H

In Practice, Check for API Errors in Host Code

56

cudaError_t err = cudaMalloc((void **) &d_A, size);

if (err != cudaSuccess) {

 printf(“%s in %s at line %d\n”,

 cudaGetErrorString(err), __FILE__, __LINE__);

 exit(EXIT_FAILURE);

}

All CUDA calls return error codes

Example: Vector Addition Kernel

57

// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__
void vecAddKernel(float* A_d, float* B_d, float* C_d, int n)

{

 int i = threadIdx.x + blockDim.x * blockIdx.x;
 if(i<n) C_d[i] = A_d[i] + B_d[i];

}

int vectAdd(float* A, float* B, float* C, int n)

{

 // A_d, B_d, C_d allocations and copies omitted

 // Run ceil(n/256) blocks of 256 threads each

 vecAddKernel<<<ceil(n/256.0), 256>>>(A_d, B_d, C_d, n);

}

Device Code

There is a maximum number of
threads in a thread block:

1,024 on CUDA 3.0 and 512 on earlier
versions

(no return value)

use FP number to
avoid truncation

Example: Vector Addition Kernel

58

// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__

void vecAddkernel(float* A_d, float* B_d, float* C_d, int n)

{

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 if(i<n) C_d[i] = A_d[i] + B_d[i];

}

int vecAdd(float* A, float* B, float* C, int n)

{

 // A_d, B_d, C_d allocations and copies omitted

 // Run ceil(n/256) blocks of 256 threads each

 vecAddKernnel<<<ceil(n/256.0),256>>>(A_d, B_d, C_d, n);

}

Host Code

More on Kernel Launch

59

int vecAdd(float* A, float* B, float* C, int n)

{

 // A_d, B_d, C_d allocations and copies omitted

 // Run ceil(n/256) blocks of 256 threads each

 dim3 DimGrid(n/256, 1, 1);

 if (n%256) DimGrid.x++;

 dim3 DimBlock(256, 1, 1);

 vecAddKernel<<<DimGrid,DimBlock>>>(A_d, B_d, C_d, n);

}

• Any call to a kernel function is asynchronous from CUDA 1.0 on,
explicit synch needed for blocking

Host Code

avoid FP and ceil()
alternative: (n-1)/256 + 1

Kernel execution in a nutshell

60

__global__
void vecAddKernel(float *A_d,
 float *B_d, float *C_d, int n)
{
 int i = blockIdx.x * blockDim.x
 + threadIdx.x;

 if(i<n) C_d[i] = A_d[i]+B_d[i];
}

__host__
Void vecAdd()
{
 dim3 DimGrid(ceil(n/256.0),1,1);
 dim3 DimBlock(256,1,1);

vecAddKernel<<<DimGrid,DimBlock>>>
(A_d,B_d,C_d,n);
}

KernelBlk 0 Blk N-1
• • •

GPU
M0

RAM

Mk• • •

Schedule onto streaming multiprocessors

60

DimGrid and DimBlock
“live” in host and can be
called … Maria and Mary

threadIdx, blockIdx,
blockDim and gridDim are
on the device and part of
the CUDA C specification

More on CUDA Function Declarations

61

hosthost__host__ float HostFunc()

hostdevice__global__ void KernelFunc()

devicedevice__device__ float DeviceFunc()

Only callable
from the:

Executed
on the:

• __global__ defines a kernel function
• Each “__” consists of two underscore characters
• A kernel function must return void

• __device__ and __host__ can be used
together (e.g., user libraries)

Compiling a CUDA Program

62

Integrated C programs with CUDA extensions

NVCC Compiler

Host C Compiler/ Linker

Host Code Device Code (PTX)

Device Just-in-Time
Compiler

Heterogeneous Computing Platform with
CPUs, GPUs

Summary

63

• Parallel machines are here to stay
• We have to be able to build them but also model and program
• Fully automated parallelization compilers are still a dream
• Programming Massively Parallel accelerators requires tools

Thank you

64

Crash intro on Parallel Computing

Material from a BSc course on Parallel Computing

Size vs Power

• Power5 (Server)
• 389mm^2
• 120W@1900MHz

• Intel Core2 sc (laptop)
• 130mm^2
• 15W@1,000MHz

• ARM Cortex A8 (automobiles)
• 5mm^2
• 0.8W@800MHz

• Tensilica DP (cell phones / printers)
• 0.8mm^2
• 0.09W@600MHz

• Tensilica Xtensa (Cisco router)
• 0.32mm^2 for 3!
• 0.05W@600MHz

Intel Core2

ARM

TensilicaDP

Xtensa x 3

Power 5

Each processor operates with 0.3-0.1 efficiency of
the largest chip: more threads, lower power

66

Variations of Count 3s

• What happens when more processors are available?
• 4 processors
• 8 processors (look in the book)
• 256 processors
• 32,768 processors

67

Try 2 Try 3

Variations (Try 4)

68

Performance for Try 4 solution
on an array that does not
contain any 3s suggests that
memory bandwidth limitations
are preventing performance
gains for eight processors

Experiments:
L3 (unified) 4MB 16-way 64B line size
L2 (unified) 1MB (per core) 8-way
L1 (I+D) 16KB/16KB 8-way SA
8 dual-core Xeon processors @ 2.6GHz

50MB random entry array with 30% 3s
Average of 1,000 program runs
GNU/Linux 2.6.19
Gcc 4.1.2 –O2 optimization on

Our Goals In Parallel Programming

• Goal: Scalable programs with performance and
portability

• Correct: Obviously …
• Performance: Programs run as fast as those produced by

experienced parallel programmers for the specific machine
• Scalable: More processors can be “usefully” added to

solve the problem faster
• Portability: The solutions run well on all parallel platforms

69

Scalability of Parallelism

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80

Ex
ec

ut
io

n
Ti

m
e

Compute Units

Scalable 1
Scalable 2
Not Scalable

70

Algorithm Complexity and Data Scalability

0

20

40

60

80

100

120

1000 2000 3000 4000 5000 6000 7000 8000 9000

N
um

be
r o

f O
pe

ra
tio

ns

Data Size

Quadratic
n*log(n)
Linear

© David Kirk/NVIDIA and Wen-mei W. Hwu, UIUC

71

What’s The Deal With Hardware?

• Facts Concerning Hardware
• Parallel computers differ dramatically from each other -- there is no standard architecture

• No single programming target!
• Parallelism introduces costs not present in vN machines -- communication; influence of external

events
• Many parallel architectures have failed
• Details of parallel computer are of no greater concern to programmers than details of vN

The “no single target” is key problem to solve

should be

72

Our Plan

• Think about the problem abstractly
• Introduce instances of basic || designs

• Multicore
• Symmetric Multiprocessors (SMPs)
• Large scale parallel machines
• Clusters
• Blue Gene/L

• Formulate a model of computation
• Assess the model of computation

73

Shared Memory

• Global memory shared among ||processors is the natural
generalization of the sequential memory model

• Thinking about it, programmers assume sequential consistency
(SC) when they think about ||ism

• Recall Lamport’s definition of SC:
• "...the result of any execution is the same as if the operations

of all the processors were executed in some sequential order,
and the operations of each individual processor appear in this
sequence in the order specified by its program."

74

Sequential Consistency

• SC difficult to achieve under all circumstances
• [Whether SC suffices as a model at all is a deep and complex issue; there’s more to say

than today’s points.]
• The original way to achieve SC was literally to keep a single memory image and make

sure that modifications are recorded in that memory

75

The Problem

• The “single memory” view implies …
• The memory is the only source of values
• Processors use memory values one-at-a-time, not sharing or caching;

if not available, stall
• Lock when fetched, Execute, Store & unlock

• A bus can do this, but …

M M M M M M M M

P P P P P P P Preferences
all visible

source of
contention

Reduce Contention

• Replace bus with network, an early design

• Network delays cause memory latency to be higher for a single reference than with a the
bus, but simultaneous use should help when many references are in the air (MT)

M M M M M M M M

P P P P P P P P
Interconnection Network

(Dance Hall)

77

An Implementation

• W-Network is one possible interconnect
• Processor 2 references memory 6 (110)

0 0
1 1
0 0
1 1
0 0
1 1
0 0
1 1

0 0
1 1
0 0
1 1
0 0
1 1
0 0
1 1

0 0
1 1
0 0
1 1
0 0
1 1
0 0
1 1

000
001
010
011
100
101
110
111

000
001
010
011
100
101
110
111

Pr
oc

es
so

r I
D

H
i M

em
ory Bits

78

Backing Up In Network

• Even if processors work on different data, the requests can back up in the network
• Everyone references data in memory 6

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

000
001

010
011

100
101

110
111

000
001

010
011

100
101

110
111

One-At-A-Time Use

• The critical problem is that only one processor at a time can
use/change data

• Cache read-only data (& programs) only
• Check-in/Check-out model most appropriate
• Conclusion: Processors stall a lot …

• Solution: Multi-threading
• When stalled, change to another waiting activity

• Must make transition quickly, keeping context
• Need ample supply of waiting activities
• Available at different granularities

80

Briefly recap, Multithreading

• Multithreading: Executing multiple threads “at once”
• The threads are, of course, simply sequential programs executing a

von Neumann model of computation
• Executed “at once” means that the context switching among them is

not implemented by the OS, but takes place opportunistically in the
hardware … 3 related cases

81

Facts of Instruction Execution

• The von Neumann model requires that each
instruction be executed to completion before starting
the next

• Once that was the way it worked
• Now it is a conceptual model

• Multi-issue architectures start many instructions at a
time, and do them when their operands are available
leading to out of order execution

ld r1,0(r2)
add r1,r5
mult r8,r6
sw r1,0(r2)
li r1,0xabc
sw r1,4(r2)

82

Fine Grain Multithreading: Tera

Figure from: Paolo.Ienne@epfl.ch
83

Coarse Grain Multithreading: Alewife

84

Simultaneous Multi-threading: SMT

85

Multi-threading Grain Size

• The point when the activity switches can be
• Instruction level, at memory reference: Tera MTA
• Basic block level, with L1 cache miss: Alewife
• …
• At process level, with page fault: Time sharing

• Another variation (3-address code level) is to execute many threads
(P*log P) in batches, called Bulk Synchronous Programming

No individual activity improved, but less wait time

86

Problems with Multi-threading

• Cost (time, resources) of switching trades off with work: larger
switching cost means more useful work completed before switch …
instruction level too low?

• Need many threads w/o dependences & …
• Threads must meet preceding criterion
• Computations grow & shrink thread count (loop control) implies

potential thread starvation
• Fine-grain threads most numerous, but have least locality

87

Multi-core Chips

• Multi-core means more than one processor per chip – generalization of SMT
• Consequence of Moore’s Law
• IBM’s PowerPC 2002, AMD Dual Core Opteron 2005, Intel CoreDuo 2006

• 2022: Intel Core i9 (16 cores); AMD EPYC (64 cores)
• A small amount of multi-threading included
• Main advantage: More ops per tick
• Main disadvantages: Programming, BW

88

Diversity Among Small Systems

89

Intel CoreDuo

• Two 32-bit Pentiums
• Private 32K L1s
• Shared 2M-4M L2
• MESI cc-protocol
• Shared bus control
and memory bus

L1-I L1-D

Memory Bus Controller

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

Front Side Bus

MESI Protocol

• Standard Protocol for
cache - coherent
shared memory
• Mechanism for
 multiple caches to give
 single memory image
• We will not study it
• 4 states can be
 amazingly rich

Thanks: Slater & Tibrewala of CMU
91

MESI, Intuitively

• Upon loading, a line is marked E, subsequent reads are OK; write marks M
• Seeing another load, mark as S
• A write to an S, sends I to all, marks as M
• Another’s read to an M line, writes it back, marks it S
• Read/write to an I misses
• Related scheme: MOESI (used by AMD)

Modified
Exclusive
Shared
Invalid

92

The only valid combinations of
states for the same cache line

Owned state supports cache
line updates without access to
Main memory (interconnect is
more complex)

AMD Dual Core Opteron

93

AMD Dual Core Opteron

• Two 64-bit Opterons
• 64K private L1s
• 1 MB private L2s
• MOESI cc-protocol
• Direct connect shared memory

System Request Interface

L1-I L1-D

Mem Ctlr

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

Comparing Core Duo/Dual Core

L1-I L1-D

Memory Bus Controller

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

Front Side Bus

Intel

System Request Interface

L1-I L1-D

Mem Ctlr

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

AMD AMD

Comparing Core Duo/Dual Core

L1-I L1-D

Memory Bus Controller

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

Front Side Bus

System Request Interface

L1-I L1-D

Mem Ctlr

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

System Request Interface

L1-I L1-D

Mem Ctlr

Processor
P0

Processor
P1

L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

Intel AMD AMD AMD AMD

96

Symmetric Multiprocessor on a Bus

• The bus is a point that serializes references
• A serializing point is a shared mem enabler

Bus

L1-I L1-D

Processor
P0

L2 Cache

Cache Control

Memory Memory Memory Memory

L1-I L1-D

Processor
P1

L2 Cache

Cache Control

L1-I L1-D

Processor
P2

L2 Cache

Cache Control

L1-I L1-D

Processor
P3

L2 Cache

Cache Control

97

Sun Fire E25K

Eighteen boards connected
with crossbars for address,
data and response;
each board contains four
UltraSPARC IV Cu processors;
snoopy buses are shown as
dashed lines

Cross-Bar Switch

• A crossbar is a network connecting each
processor to every other processor

• Used in CMU’s 1971 C.MMP, 16 proc PDP-
11s

• Crossbars grow as n2 making them
impractical for large n

B0

B1

B2

B3

99

Sun Fire E25K

• X-bar gives low latency for snoops allowing for shared memory
• 18 x 18 X-bar is basically the limit
• Raising the number of processors per node will, on average, increase congestion
• How could we make a larger machine?

100

Co-Processor Architectures

• A powerful parallel design is to add one or more subordinate processors to standard
design

• Floating point instructions once implemented this way
• Graphics Processing Units – massive #thr, deep pipelining
• Cell Processor - multiple SIMD units
• Attached FPGA chip(s) - compile to a circuit
• TPUs – tensor processing units (custom)

• Some of these architectures will be discussed later

101

The Cell Processor
• Architecture designed to move data

• high speed I/O controllers with 76.8 GB/s
• two channels to RAM of 12.8 GB/s
• EIB is theoretically capable of 204.8 GB/s.

102

Clusters

• Interconnecting with
InfiniBand

• Switch-based technology
• Host channel adapters

(HCA)
• Peripheral computer

interconnect (PCI)

Thanks: IBM’s Clustering systems using InfiniBand Hardware
103

Clusters

• Cheap to build using commodity technologies
• Effective when interconnect is “switched”
• Easy to extend, usually in increments of one
• Processors often have disks “nearby”
• No shared memory
• Latencies are usually large
• Programming uses message passing (tbd later)

104

Networks

Torus
(Mesh)

Hyper-
Cube

Fat Tree

Omega Network
105

Supercomputer

• BlueGene/L

106

BlueGene/L Specs

• A 64x32x32 torus = 65K 2-core processors
• Cut-through routing gives a worst-case latency of 6.4 µs
• Processor nodes are dual PPC-440 with “double hummer” FPUs
• Collective network performs global reduce for the “usual” functions

107

Summarizing Architectures

• Two main classes
• Complete connection: CMPs, SMPs, X-bar

• Preserve single memory image
• Complete connection limits scaling to …
• Available to everyone

• Sparse connection: Clusters, Supercomputers, Networked computers used for
parallelism (Grid)

• Separate memory images
• Can grow “arbitrarily” large
• Available to everyone with air conditioning

• Differences are significant; world views diverge

108

The Parallel Programming Problem

• Some computations can be platform specific
• Most should be platform independent
• Parallel Software Development Problem: How do we neutralize the

machine differences given that
• Some knowledge of execution behavior is needed to write programs that

perform
• Programs must port across platforms effortlessly, meaning, by at most

recompilation

109

Options for Solving the PPP

• Leave the problem to the compiler …

110

Options for Solving the PPP

• Leave the problem to the compiler …
• Very low level parallelism (ILP) is already being exploited
• Sequential languages cause us to introduce unintentional sequentiality
• Parallel solutions often require a paradigm shift
• Compiler writers’ track record over past four decades not promising …

recall High Performance Fortran (HPF) 1995
• Bottom Line: Compilers will get more helpful, but they probably won’t

solve the PPP (or P3)

111

Options for Solving the PPP

• Adopt a very abstract language that can target to any platform …

112

Options for Solving the PPP

• Adopt a very abstract language that can target to any platform …
• No one wants to learn a new language, no matter how cool
• How does a programmer know how efficient or effective his/her code

is? Interpreted code?
• What are the “right” abstractions and statement forms for such a

language?
• Emphasize programmer convenience?
• Emphasize compiler translation effectiveness?

113

Options for Solving the PPP

• Agree on a set of parallel primitives (spawn process, lock location,
etc.) and create libraries that work w/ sequential code …

114

Options for Solving the PPP

• Agree on a set of parallel primitives (spawn process, lock location,
etc.) and create libraries that work w/ sequential code …

• Libraries are a mature technology
• To work with multiple languages, limit base language assumptions …

L.C.D. facilities
• Libraries use a stylized interface (function call) limiting possible

parallelism-specific abstractions
• Achieving consistent semantics is difficult

115

Options for Solving the PPP

• Create an abstract machine model that accurately describes common capabilities and let
the language facilities catch up …

116

Options for Solving the PPP

• Create an abstract machine model that accurately describes common capabilities and let
the language facilities catch up …

• Not a full solution until languages are available
• The solution works in sequential world (RAM)
• Requires discovering (and predicting) what the common capabilities are
• Solution needs to be (continually) validated against actual experience

117

Summary of Options for PPP

• Leave the problem to the compiler …

• Adopt a very abstract language that
can target to any platform …

• Agree on a set of parallel primitives
(spawn process, lock location, etc.)
and create libraries that work w/
sequential code …

• Create an abstract machine model
that accurately describes common
capabilities and let the language
facilities catch up …

118

Why is Sequential Programming Successful
When we write programs in C they are ...

• Efficient -- programs run fast, especially if we use
performance as a goal

• traverse arrays in row major order to improve caching
• Economical -- use resources well

• represent data by packing memory
• Portable -- run well on any computer with C compiler

• all computers are universal, but with C fast programs are
fast everywhere

• Easy to write -- we know many ‘good’ techniques
• reference data, don’t copy

These qualities all derive from von Neumman model

119

Von Neumann (RAM) Model

• Call the ‘standard’ model of a random access machine
(RAM) the von Neumann model

• A processor interpreting 3-address instructions
• PC pointing to the next instruction of program in memory
• “Flat,” randomly accessed memory requires 1 time unit
• Memory is composed of fixed-size addressable units
• One instruction executes at a time, and is completed

before the next instruction executes
• The model is not literally true, e.g., memory is

hierarchical but made to “look flat”

C directly implements this model in a HLL

120

Why Use Model That’s Not Literally True?

• Simple is better, and many things--GPRs,
floating point format--don’t matter at all

• Avoid embedding assumptions where things
could change …

• Flat memory, though originally true, is no longer
right, but we don’t retrofit the model; we don’t
want people “programming to the cache”

• Yes, exploit spatial locality
• No, avoid blocking to fit in cache line, or tricking cache

into prefetch, etc.
• Compilers bind late, particularize and are better

than you are!

121

vN Model Contributes To Success
• The cost of C statements on the vN machine is

“understood” by C programmers …
• How much time does A[r][s] += B[r][s]; take?

• Load row_size_A, row_size_B, r, s, A_base, B_base (6)
• tempa = (row_size_A * r + s) * data_size (3)
• tempb = (row_size_B * r + s) * data_size (3)
• A_base + tempa; B_base + tempb; load both values (4)
• Add values and return to memory (2)

• Same for many operations, any data size

• Result is measured in “instructions” not time

Widely known and effectively used

122

123

Portability

• Most important property of the C-vN coupling:
 It is approximately right everywhere

• Why so little variation in sequential computers?

HW vendors must run
installed SW so follow
vN rules

SW vendors must run on
installed HW so follow vN
rules

Everyone wins … no motive
to change

123

Von Neumann Summary

• The von Neumann model “explains” the costs of C
because C expresses the facilities of the von Neumann
machines in programming terms

• Knowing the relationship between C and the von
Neumann machine is essential for writing fast
programs

• Following the rules produces good results everywhere
because everyone benefits

• These ideas are “in our bones” … it’s how we think

What is the parallel version of vN?

124

Two searching computations (vN example)

• linear search and binary search

What is the parallel version of vN?

125

Flynn-Johnson Classification

SISD
“Uniprocessor”

SIMD
“Array processor”

MISD
(Rarely used)

MIMD
GMSV GMMP

DMSV DMMP

“Shared-memory
multiprocessor”

“Distributed
shared memory”

“Distrib-memory
multicomputer

Data stream(s)

C
on

tro
l s

tre
am

(s
)

Single Multiple

M
ul

tip
le

Si

ng
le

M
em

or
y

D
is

tri
b

G
lo

ba
l

Communication/
Synchronization

Shared
variables

Message
passing

SIMD
versus
MIMD

Global
versus

Distributed
memory

The Flynn-Johnson classification of computer systems

Data
In

Data
Out

I

I

I

I

I

1

2

3 4

5

Source: Behrooz Parhami

126

PRAM Often Proposed As A Candidate

• PRAM (Parallel RAM) ignores memory
organization, collisions, latency, conflicts, etc.

• Ignoring these are claimed to have benefits ...
• Portable everywhere since it is very general
• It is a simple programming model ignoring only

insignificant details -- off by “only log P”
• Ignoring memory difficulties is OK because hardware

can “fake” a shared memory
• Good for getting started: Begin with PRAM then

refine the program to a practical solution if needed

127

Recall Parallel Random-Access Machine
PRAM has any number of processors

• Every proc references any memory in “time 1”
• Memory read/write collisions must be resolved

P1P0 P3P2 P5P4 P7P6

Memory

PRAM

A BC

SMPs implement PRAMs for small P … not scalable

or (count)

Variations on PRAM

Resolving the memory conflicts considers read
and write conflicts separately

• Exclusive read/exclusive write (EREW)
• The most limited model

• Concurrent read/exclusive write (CREW)
• Multiple readers are OK

• Concurrent read/concurrent write (CRCW)
• Various write-conflict resolutions used

• There are at least a dozen other variations

All theoretical -- not used in practice

129

CTA Model

• Candidate Type Architecture: A model with P standard processors, d degree, l latency

• Node == processor + memory + NIC

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

130

Key Property: Local memory ref is 1, global memory is l

What CTA Doesn’t Describe

• CTA has no global memory … but memory could be globally addressed
• Mechanism for referencing memory not specified: shared, message passing, 1-side
• Interconnection network not specified
• l is not specified beyond l>>1 -- cannot be because every machine is different
• Controller, combining network “optional”

131

More On the CTA

• Consider what the diagram means…

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

memmem

More On the CTA

• Consider what the diagram means…

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

memmem

More On the CTA

• Consider what the diagram means…

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

memmem

134

More On the CTA

• Consider what the diagram doesn’t mean…

• After ACKing that CTA doesn’t model buses, accept that it’s a good first approximation

…RAM RAM RAM RAM RAM

RAM

Interconnection NetworkBUS

135

Typical Values for l

• Lambda can be estimated for any machine (given numbers include no contention or
congestion)

CMP AMD 100

SMP Sun Fire E25K 400-660

Cluster Itanium + Myrinet 4,100-5,100

Super BlueGene/L 5,000

Lg l range
=> cannot
be ignored

136

As with merchandizing: It’s location, location, location!

Measured Numbers
• Values (approximating) l for small systems

137

Communication Mechanisms

• Shared addressing
• One consistent memory image; primitives are load and store
• Must protect locations from races
• Widely considered most convenient, though it is often tough to get a program to perform
• CTA implies that best practice is to keep as much of the problem private; use sharing only to

communicate

138

A common pitfall: Logic is too fine grain

Communication Mechanisms

• Message Passing
• No global memory image; primitives are send() and recv()
• Required for most large machines
• User writes in sequential language with message passing

library:
• Message Passing Interface (MPI)
• Parallel Virtual Machine (PVM)

• CTA implies that best practice is to build and use own
abstractions

139

Lack of abstractions makes message passing brutal

Communication Mechanisms

• One Sided Communication
• One global address space; primitives are get() and put()
• Consistency is the programmer’s responsibility
• Elevating mem copy to a comm mechanism
• Programmer writes in sequential language with library calls -- not

widely available unfortunately
• CTA implies that best practice is to build and use own abstractions

140

One-sided is lighter weight than message passing

Summary
• Parallel hardware is a critical component of improving performance

through ||-ism … but there’s a Catch-22
• To have portable programs, we must abstract away from the hardware
• To write performant programs requires that we respect the hardware

realities
• Solve the problem with CTA -- an abstract machine with just enough

(realizable) detail to support critical programming decisions

141

Copyright

142

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Matrix Product: || Poster Algorithm

• Matrix multiplication is most studied parallel algorithm (analogous to sequential sorting)
• Many solutions known

• Illustrate a variety of complications
• Demonstrate great solutions

• Our goal: explore variety of issues
• Amount of concurrency
• Data placement
• Granularity

143

Exceptional by requiring O(n3) operations on O(n2) data

Recall the computation…

• Matrix multiplication of (square n x n) matrices A and B producing
n x n result C where Crs = å1≤k≤n Ark*Bks

C A B

+*
1

1
= +*

2

2
*

n

n
… +

=

Extreme Matrix Multiplication

• The multiplications are independent (do in any order) and the adds can be done in a tree

*
1

1
*

2

2
*

3

3

...

*
n

n
...

=

+ +

+

O(n) processors for
each result element
implies O(n3) total

Time: O(log n)

Strassen Not Relevant

145

O(log n) MM in the real world …

Good properties
• Extremely parallel … shows limit of concurrency
• Very fast -- log2 n is a good bound … faster?

Bad properties
• Ignores memory structure and reference collisions
• Ignores data motion and communication costs
• Under-uses processors -- half of the processors do only 1 operation

146

Where is the data?

• Data references collisions and communication costs are important to final
result … need a model … can generalize the standard RAM to get PRAM

P3

A BC

Memory

P7P6P5P4P2P1P0

Parallel Random Access Machine

• Any number of processors, including nc

• Any processor can reference any memory in “unit
time”

• Resolve Memory Collisions
• Read Collisions -- simultaneous reads to location are OK
• Write Collisions -- simultaneous writes to loc need a rule:

• Allowed, but must all write the same value
• Allowed, but value from highest indexed processor wins
• Allowed, but a random value wins
• Prohibited

Caution: The PRAM is not a model we advocate

148

PRAM says O(log n) MM is good

• PRAM allows any # processors => O(n3) OK
• A and B matrices are read simultaneously, but that’s OK
• C is written simultaneously, but no location is written by more than 1

processor => OK

PRAM model implies O(log n) algorithm is best … but in real
world, we suspect not

We return to this point later

149

Where else could data be?

• Local memories of separate processors …

• Each processor could compute block of C
• Avoid keeping multiple copies of A and B

P1P0 P3P2 P5P4 P7P6

Mem Mem Mem Mem Mem Mem Mem Mem

Point-to-point Network

Architecture common for servers
150

Data Motion

• Getting rows and columns to processors

• Allocate matrices in blocks
• Ship only portion being used

A BC

P0 P0 P0P1 P1 P1

P2 P2 P2P3 P3 P3

P0

Temp

Blocking Improves Locality

• Compute a b x b block of the result

• Advantages
• Reuse of rows, columns = caching effect
• Larger blocks of local computation = high locality

A BC

Caching in Parallel Computers

• Blocking = caching … why not automatic?
• Blocking improves locality, but it is generally a manual

optimization in sequential computation
• Caching exploits two forms of locality

• Temporal locality -- refs clustered in time
• Spatial locality -- refs clustered by address

• When multiple threads touch the data, global
reference sequence may not exhibit clustering
features typical of one thread -- thrashing

153

Sweeter Blocking

• It’s possible to do even better blocking …

• Completely use the cached values before reloading

A BC

r rows

Best MM Algorithm?

• We haven’t decided on a good MM solution
• A variety of factors have emerged

• A processor’s connection to memory, unknown
• Number of processors available, unknown
• Locality--always important in computing--

• Using caching is complicated by multiple threads
• Contrary to high levels of parallelism

• Conclusion: Need a better understanding of the constraints of
parallelism

155

Copyright

156

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1935 – ABC the first electronic computer ever (John V. Atanasoff: seven processing
units for solving a system of 30 differential equations)
1968 – Univ. Illinois built a parallel computer (lost in fire L)
1981 – DAP (4K processing units)
1986 – Connection Machine 1 (65K processors, parallel Fortran)
1990 – Parallel computing becomes mainstream in HPC
2005 – personal computers with dual-core processors
2005 – GPUs outperform CPUs on LU factorization
2010 – multi-core processors become mainstream in high performance computing
2012 – first parallel computer with more than one million cores
2021 – still waiting for the first Exa-scale supercomputer

Historical Milestones

157

1991 - appoints first professor of parallel computing in NL
1992 – Connection Machine CM5 (2K proc)
 first parallel computer in NL, (rank 123 in Top 500 list)
1993 – Center for HPC
1996 – Cray system (32 processors)
2000 – first large PC cluster (256 computers)
2005 – IBM Blue Gene (12K processors)
 (rank 6 in Top 500 list)
2015 – Peregrine cluster (4,368 cores, 30 Tbyte)
2021 – the upgrade of the system is in progress

RUG Milestones

158

159

Top500 list: www.top500.org
Released in June and November since 1993

Benchmark: Linpack kernel used in solvers of dense systems of linear
equations. (DAXPY performance does not reflect the real performance of a
given system)

• Rmax - performance on Linpack (used for Top500 rank)

• Rpeak – theoretical peak performance (number of arithmetic floating
point operations a system can execute per second)

There is also the Green500 list (performance per Watt):
https://www.top500.org/lists/green500/list/2020/11/

Q: How do you think are these two lists related?

https://www.top500.org/lists/green500/list/2020/11/

The DAXPY loop (the core of Linpack)
void daxpy(size_t n, double a, const double x[], double y[])
{
 for (size_t i = 0; i < n; i++) {
 y[i] = a * x[i] + y[i];
 }
}

Q: How useful is the above kernel for sequence alignment?

Real genomics problem: Identify the Fragile X syndrome (FXS) condition

In nucleic acid sequences, e.g., AACCTGA…, look for the following pattern:
• One occurrence of GCG
• Followed by any number of CGG or AGG (typically 55..200)
• Followed by CTG

Q2: How relevant is the Linpack performance of your machine?

What are flop/s?
• flop/s (FLOPS) - floating-point operations per second
Common abbreviations
• Megaflop/s (Mflop/s) = 106 flop/s 1975
• Gigaflop/s (Gflop/s) = 109 flop/s 1985
• Teraflop/s (Tflop/s) = 1012 flop/s 1997
• Petaflop/s (Pflop/s) = 1015 flop/s 2008
• Exaflop/s (Xflop/s) = 1018 flop/s 202?

161

Q: Why the exaflop deadline for a single machine keeps shifting?
Q2: Are the DAXPY flop/s a fair metric?
Q3: What about single-(half-) precision floating-point?

Wikipedia: In April 2020, the distributed computing Folding@home network
attained one exaFLOPS of computing performance.

Flynn-Johnson Classification

SISD
“Uniprocessor”

SIMD
“Array processor”

MISD
(Rarely used)

MIMD
GMSV GMMP

DMSV DMMP

“Shared-memory
multiprocessor”

“Distributed
shared memory”

“Distrib-memory
multicomputer

Data stream(s)

C
on

tro
l s

tre
am

(s
)

Single Multiple

M
ul

tip
le

Si

ng
le

M
em

or
y

D
is

tri
b

G
lo

ba
l

Communication/
Synchronization

Shared
variables

Message
passing

SIMD
versus
MIMD

Global
versus

Distributed
memory

The Flynn-Johnson classification of computer systems

Data
In

Data
Out

I

I

I

I

I

1

2

3 4

5

Source: Behrooz Parhami

162

SIMD
• Single Instruction, Multiple Data
• One instruction stream is broadcast to all processors
• Each processor, also called a processing element (PE), is usually

simplistic and logically is essentially an ALU
• PEs do not store a copy of the program nor have a

program control unit
• Individual processors can remain idle during execution of segments

of the program (based on a data test)

163

SIMD (cont.)
• All active processors execute the same instruction synchronously, but

on different data
• Technically, on a memory access, all active processors must access the

same location in their local memory
• This requirement is sometimes relaxed a bit

• The data items form an array (or vector) and an instruction can act on
the complete array in one cycle

• Examples:
• ILLIAC IV (1974) was the first SIMD computer
• The STARAN and MPP
• Connection Machine CM2 (by Thinking Machines)
• MasPar MP-1 (for Massively Parallel) computers

164

How to View a SIMD Machine
• Think of all soldiers in a unit
• The commander selects certain soldiers as active, e.g., the first

row
• The commander barks out an order to all the active soldiers, who

execute the order synchronously
• The remaining soldiers do not execute orders until they are re-

activated

165

Single Program Multiple Data (SPMD), e.g., GPUs, is not == SIMD

MIMD
• Multiple Instructions, Multiple Data
• Processors are asynchronous (execute independently different

programs on different data sets)
• Communications are handled either

• through Shared Memory (SM) (multiprocessors)
• by use of Message Passing (MP) (multicomputers)

• MIMD’s have been widely considered to include the most powerful
and least restricted computers

166

MIMD (cont. 2/4)
• Have very major communication costs

• When compared to SIMDs
• Internal ‘housekeeping activities’ are often overlooked

• Maintaining distributed memory & distributed databases
• Synchronization or scheduling of tasks
• Load balancing between processors

• One method for programming MIMDs is for all processors to execute
the same program

• Execution of tasks by processors is still asynchronous
• Called SPMD method (Single Program, Multiple Data)
• Usual method for massive number of processors (GPU)
• Considered to be a “data parallel programming” style for MIMDs

167

MIMD (cont 3/4)
• A more common prog. technique is multi-tasking:

• The problem solution is broken up into various tasks
• Tasks are distributed among processors initially
• If new tasks are produced during executions, these may handled by

parent processor or distributed
• Each processor concurrently executes its collection of tasks

• If some of its tasks must wait for results from other tasks or new data, the
processor will focus the remaining tasks

• Larger programs usually run a load balancing algorithm in the
background that re-distributes the tasks assigned to the processors
during execution

• Either dynamic load balancing or called at specific times
• Dynamic scheduling algorithms may be needed to assign a higher

execution priority to time-critical tasks
• e.g., on critical path, more important, earlier deadline, etc.

168

MIMD (cont 4/4)
• Recall, there are two principle types of MIMD computers:

• Multiprocessors (with shared memory)
• Multicomputers (with message passing)

• Both are important and are covered in great detail

169

Multiprocessors (Shared Memory)
• All processors have access to all memory

locations

• Two types: UMA and NUMA
• UMA (uniform memory access)

• Frequently called symmetric multiprocessors or SMPs
• Similar to uniprocessor, except additional, identical

CPU’s are added to the bus
• Each processor has equal access to memory and can

do anything that any other processor can do
• SMPs have been and remain very popular

170

Multiprocessors (cont.)

• NUMA (non-uniform memory access)
• Has a distributed memory system
• Each memory location has the same address for all

PEs
• Memory access time to a given location varies

considerably for different CPUs
• Normally, fast cache is used to reduce the

problem of different NUMA memory access times
• Creates problem of ensuring all copies of the same

data in different memory locations are identical
Q: Why is the latter important?

171

Multicomputers (Message-Passing)
• Processors are connected by a network

• Interconnection network connections is one possibility
• Also, may be connected by Ethernet links or a bus

• Each processor has a local memory and can only access
its own local memory

• Data is passed between processors using messages,
when specified by the program

• Message passing between processors is controlled by a
message passing language (typically MPI)

• The problem is divided into processes or tasks that can
be executed concurrently on individual processors. Each
processor is normally assigned multiple processes.

172

Multiprocessors vs Multicomputers

• Programming disadvantages of message-passing
• Programmers must make explicit message-passing calls in the code
• This is low-level programming and is quite error prone
• Data is not shared between processors but copied, which increases the

total data size
• Data integrity problem: Difficulty to maintain correctness of multiple

copies of a data item

173

Multiprocessors vs Multicomputers (cont)
• Programming advantages of message-passing

• No problem with simultaneous access to data
• Allows different PCs to operate on the same data independently
• Allows PCs on a network to be easily upgraded when faster processors

become available

• Mixed “distributed shared memory” systems exist
• Lots of current interest in a cluster of SMPs

• Easier to build systems with a very large number
of processors

174

The Six Parallel Architectures
• Multi-cores

• Intel Core2Duo
• AMD Opteron

• Symmetric Multiprocessor (SMP)
• SunFire E25K

• Heterogeneous Architecture (will ignore for now)
• IBM Cell B/E

• Clusters (will ignore for now)
• Commodity desktops (typically PCs) with high-speed

interconnect
• Supercomputers

• IBM BG/L

Sh
ar

ed
 M

em
or

y
Di

st
rib

ut
ed

 M
em

or
y

175

Recall Parallel Random-Access Machine
PRAM has any number of processors

• Every proc references any memory in “time 1”
• Memory read/write collisions must be resolved

P1P0 P3P2 P5P4 P7P6

Memory

PRAM

A BC

SMPs implement PRAMs for small P … not scalable
176

or (count)

Variations on PRAM

Resolving the memory conflicts considers read
and write conflicts separately

• Exclusive read/exclusive write (EREW)
• The most limited model

• Concurrent read/exclusive write (CREW)
• Multiple readers are OK

• Concurrent read/concurrent write (CRCW)
• Various write-conflict resolutions used

• There are at least a dozen other variations

All theoretical -- not used in practice

177

CTA Model

• Candidate Type Architecture: A model with P standard processors, d degree, l latency

• Node == processor + memory + NIC

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

178

Key Property: Local memory ref is 1, global memory is l

What CTA Doesn’t Describe

• CTA has no global memory … but memory could be globally addressed
• Mechanism for referencing memory not specified: shared, message passing, 1-side
• Interconnection network not specified
• l is not specified beyond l>>1 -- cannot be because every machine is different
• Controller, combining network “optional”

179

Communication Mechanisms (1)

• Shared addressing
• One consistent memory image; primitives are load and store
• Must protect locations from races
• Widely considered most convenient, though it is often tough to get a program to perform
• CTA implies that best practice is to keep as much of the problem private; use sharing only to

communicate

180

A common pitfall: Logic is too fine grain

Communication Mechanisms (2)

• Message Passing
• No global memory image; primitives are send() and recv()
• Required for most large machines
• User writes in sequential language with message passing

library:
• Message Passing Interface (MPI)
• Parallel Virtual Machine (PVM)

• CTA implies that best practice is to build and use own
abstractions

181

Lack of abstractions makes message passing brutal

Communication Mechanisms (3)

• One Sided Communication
• One global address space; primitives are get() and put()
• Consistency is the programmer’s responsibility
• Elevating mem copy to a comm mechanism
• Programmer writes in sequential language with library calls -- not

widely available unfortunately
• CTA implies that best practice is to build and use own abstractions

182

One-sided is lighter weight than message passing

• The CTA is supposed to guide us in finding good computations to run
on parallel machines

• Using it should
• Aid in producing programs exploiting locality
• Insure the program distributes work ‘well’
• Other features (to be discussed later)

183

• Task: Recognize the well-formedness of ((xyz))
• An easy sequential solution …

open = 0; // keep count of opens
for (i=0; i<n; i++) { // proceeding L to R
 if (A[i] == '(') open++; // found one
 if (A[i] == ')') { // here’s a match
 open--;
 if (open < 0) break; // oops, mismatch
 }
}

184

Does this look totally sequential??

¡ Allocate a contiguous sequence of symbols to a processor

¡ Each processor gets an ill-formed subsequence
§ (x)) (((x) x x x (x))

¡ Begin by resolving locally
§ (x)) (((x) x x x (x))
Leaving unresolved closes and opens

P0 P1 P2 P3

185

• The unresolved values from each subproblem produce a similar
problem, except optimized

) (becomes 1 1 and) ((((becomes 1 4
• Adjacent pairs combine their unresolved counts to a new pair

describing the larger sequence:
1 1 and 1 4 become 1 4
2 4 and 1 2 become 2 5

• Resolved to the root: 0 0 is balanced

186

• Allocate contiguous subsequences of size n/P to each processor, starting
with P0

• Sequentially, locally resolve, creating c o cn/P
• Combine pairs to produce new c o descriptors by inducing a tree on PE

indices: [0-1][2-3] … for level 1, [0-3][4-7] … for level 2, etc.
• Log levels of the tree to produce a final descriptor: c o

 cllog2P
• Only a result of 0 0 means balanced

187

• First step: Allocated work to processors, generally by dividing it evenly
• Second step: Found local, independent work to perform
• Next step: Focused on combining subproblems into a tree network
• Made correctness and termination conditions explicit

188

• Controller
• Not strictly needed
• Often available

• How well does
the CTA match other
parallel architectures?

• CMPs & SMPs
• Clusters
• Blue Gene

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

189

• The CTA is a ‘machine model’ – an abstraction
• How can it be wrong?

• Architecture has more features – shared memory
• CTA predicts a certain behavior and features in the architecture make

the program much faster
• If it mispredicts … it’s “in trouble”

• Isn’t it a mistake for the CTA to ignore all the great stuff architects
put in a processor?

190

The CTA focuses on the parts that matter

• Why should we believe it’s right?
• In his thesis (1993) Calvin Lin did a careful study of using the CTA as a

programming model against the models used by others (whatever they
were)

• CTA consistently pointed programmers to better solutions
• The CTA’s effectiveness was independent of architecture
• The apparent value of the model is emphasizing locality – always a benefit in

computing

• The greatest value of the CTA would be if it is the basis for parallel
programming languages

191

• A thread consists of program code, a program counter, call stack, and
a small amount of thread-specific data

• Threads share access to memory (and the file system) with other
threads

• Threads communicate through the shared memory
• Though it may seem odd, apply the CTA model to thread programming -

- emphasize locality, expect sharing to be costly (slow)

192

Threads are familiar, but don’t use standard model

• A process is a thread in its own private address space
• Processes do not communicate through shared memory, but need

another mechanism like message passing
• Key issue: How is the problem divided among the processes, which

includes data and work
• Processes (logically subsume) threads

193

• Both have code, PC, call stack, local data
• Threads -- One address space
• Processes -- Separate address spaces

• Weight and Agility
• Threads: lighter weight, faster to setup, tear down, more dynamic
• Processes: heavier weight, setup and tear down more time consuming,

communication is slower

194

Mostly ‘thread’ & ‘process’ are used interchangeably in the book

• Terms used to refer to a unit of parallel computation include: thread,
process, processor, …

• Technically, thread and process are software (SW), processor (including
simultaneous multithreading) is hardware (HW)

• Usually, it doesn’t matter
• We will (try to) use “thread/process” for logical parallelism, and

“processor” when we mean physical parallelism

195

• Naïvely, many people think that applying P processors to a T time
computation will result in T/P time performance

• Generally wrong
• For a few problems (Monte Carlo) it is possible to apply more processors

directly to the solution
• For most problems, using P processors requires a paradigm shift in

approach/thinking
• Assume “P processors => T/P time” to be the best case possible to

achieve

196

• (Because of the presumed paradigm shift) the
sequential and parallel solutions differ so we do
not expect a simple performance relationship
between the two

• More or fewer instructions must be executed
• Examples of other differences

• The hardware is different
• Parallel solution has difficult-to-quantify costs such as

communication time, wait time, etc. that the serial
solution does not have

197

• To implement parallel computations requires overhead that
sequential computations do not need

• All costs associated with communication are overhead: locks, cache
flushes, coherency, message passing protocols, etc.

• All costs associated with thread/process setup
• Lost optimizations -- many compiler optimizations not available in

parallel setting
• Instruction reordering

198

• Threads and processes incur overhead

• Obviously, the cost of creating a thread or process
must be recovered through parallel performance:

(t1 + osu + otd + cost(t2))/2 < t2

Thread

Process

Setup Tear down

tp = p proc execution time
osu = setup, otd = tear down
cost(t2) = all other || costs

199

• Redundant execution can avoid communication -- a parallel
optimization

New random number needed for loop iteration:
(a) Generate one copy, have all threads ref it …
requires communication
(b) Communicate seed once, then each thread
generates its own random number … removes
communication and gets parallelism, but by
increasing instruction load

200

A common (and recommended) programming trick

• Searches illustrate the possibility of parallelism
requiring fewer instructions

• Independently searching subtrees means an item is
likely to be found faster than sequential

201

• Sequential hardware ≠ parallel hardware
• There is more parallel hardware, e.g., memory
• There is more cache on parallel machines
• Sequential computer ≠ 1 processor of || computer,

because of coherence HW, power, etc.
• Important in multicore context

• Parallel channels to memory and disk (possibly)

?

202

These differences tend to favor || machine

• Additional cache is an advantage of ||ism

• The effect is to make execution time < T/P because data (&
program) memory references are faster

• Cache-effects help mitigate other || costs

PS P0 P1 P2 P3
vs

203

• Wait: All computations must wait at points, but serial computation
waits are well known

• Parallel waiting …
• For serialization to assure correctness
• Congestion in communication facilities

• Bus contention; network congestion; etc.
• Stalls: data not available/recipient busy

• These costs are generally time-dependent, implying that they are
highly variable

204

• Applying P processors to a problem with a time T (serial) solution can
be either …

 better or worse …
• It’s up to programmers to exploit the advantages and avoid the

disadvantages

205

• If 1/S of a computation is inherently sequential, then the
maximum performance improvement is limited to a factor of S

 TP = 1/S × TS + (1-1/S) × TS / P

• Remember? Amdahl’s Law, ~ the Law of Supply and Demand, is a
fact

TS=sequential time
TP=parallel time
P =no. processors

206

Gene Amdahl -- IBM Mainframe Architect

• Consider the equation

• With no charge for || costs, let P ® ¥ then TP ® 1/S ´ TS

• Amdahl’s Law applies to problem instances

TP = 1/S × TS + (1-1/S) × TS / P

The best parallelism can do to is to eliminate the
parallelizable work; the sequential work remains

Parallelism seemingly has little potential

• Amdahl’s Law assumes a fixed problem instance: Fixed n, fixed input,
perfect speedup

• The algorithm can change to become more ||
• Problem instances grow implying proportion of work that is sequential

may be smaller %
• … Many, many realities including parallelism in ‘sequential’ execution

imply analysis is simplistic
• Amdahl is a fact; it’s not a show-stopper

208

• As an artifact of P-completeness theory, we have the idea of
Inherently Sequential -- computations not appreciably improved by
parallelism

• Probably not much of a limitation

Circuit Value Problem:
Given a circuit a over Boolean inputs, values b1, …, bn and
designated output value y, is the circuit true for y?

209

Gustaffson’s Law (another approach)
• Comes with the concept of Scalable Computing where

problem sizes increase with the machine sizes
• J. L. Gustafson, G. R. Montry, and R. E. Benner, “Development of

Parallel Methods for a 1024-Processor Hypercube,” SIAM Journal on
Scientific and Statistical Computing, Vol. 9, No.4, 1988

• John Gustafson, “Reevaluation of Amdahl’s Law,” Communications of
the ACM, Vol. 31, No. 5, May 1988

• Large machines are not (only) to solve existing problems
faster, they should solve otherwise unsolvable large problems

• assuming problem size increases with the machine size

S’p = Uniprocessor Time of Solving W’ / Parallel Time of Solving W’ =
 = Uniprocessor Time of Solving W’ / Uniprocessor Time of Solving W =
 = W’ / W

where the problem size is scaled from W to W'

Is the assumption more work
within the same time T
generally applicable?

Both Laws Together

211

Amdhal’s view
(fixed problem size)

Gustaffson’s view
(scalable problem size)

Amdhal (v.2):
Tp = 𝛼 ·Tbase + (1-𝛼)·Tbase / p
where, 𝛼 is the fraction of the serial code and
p – the speedup factor of the parallel portion

Tp = (𝛼 + (1-𝛼) / p)·Ts

Sp = Ts / Tp = 1/(𝛼 + (1-𝛼)/p); lim∞= 1/𝛼

Gustaffson:
Sp = Work (p) / Work (1) =
 = (𝛼·W + (1-𝛼)·p·W)/W = 𝛼 + (1-𝛼) · p
linear speedup is assumed

With 𝛼 = 0.1 (10% serial code)
Amdahl’s speedup is maximal 10, while
Gustaffson claims 0.1 + 0.9·p

• Latency -- time required before a requested value is available
• Latency, measured in seconds; called transmit time or execution time

or just time
• Throughput -- amount of work completed in a given amount of

time
• Throughput, measured in “work”/sec, where “work” can be bits,

instructions, jobs, etc.; also called bandwidth in communication

212

Both terms apply to computing and communications

• Reducing latency (execution time) is a principal goal of parallelism
• There is upper limit on reducing latency

• Speed of light, especially for bit transmissions
• In networks, switching time (node latency)
• (Clock rate) x (issue width), for instructions
• Diminishing returns (overhead) for problem instances

213

Hitting the upper limit is rarely a worry

• Throughput improvements are often easier to
achieve by adding hardware

• More wires improve bits/second
• Use processors to run separate jobs
• Pipelining is a powerful technique to execute more

(serial) operations in unit time
timeinstructions

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

214

Better throughput often hyped as if better latency

• Reduce wait times by switching to work on different operation
(multithreading)

• Old idea, dating back to Multics
• In parallel computing it’s called latency hiding

• Idea most often used to lower impact of l cost
• Have many threads ready to go …
• Execute a thread until it makes nonlocal ref
• Switch to next thread
• When nonlocal ref is filled, add to ready list

• Latency hiding requires …
• Consistently large supply of threads ~ l/e
where e = average # cycles between nonlocal refs
• Enough network throughput to have many requests in the

air at once

• Latency hiding has been claimed to make shared
memory feasible in the presence of large l

t1
t2

t3
t4

t5
t1

Nonlocal data
reference time

There are difficulties

• Challenges to supporting shared memory
• Threads must be numerous, and the shorter the interval between

nonlocal refs, the more
• Running out of threads stalls the processor

• Context switching to next thread has overhead
• Many hardware contexts -- or --
• Waste time storing and reloading context

• Tension between latency hiding & caching
• Shared data must still be protected somehow

• Other technical issues

217

• Contention -- the action of one processor interferes
with another processor’s actions -- is an elusive
quantity
• Lock contention: One processor’s lock stops other

processors from referencing; they must wait
• Bus contention: Bus wires are in use by one processor’s

memory reference
• Network contention: Wires are in use by one packet,

blocking other packets
• Bank contention: Multiple processors try to access

different locations on one memory chip simultaneously

Contention is very time dependent, that is, variable

• Load imbalance, work not evenly assigned to the processors,
underutilizes parallelism

• The assignment of work, not data, is key
• Static assignments, being rigid, are more prone to imbalance
• Because dynamic assignment carries overhead, the quantum of work

must be large enough to amortize the overhead
• With flexible allocations, load balance can be solved late in the design

programming cycle

219

• Performance is maximized if processors execute continuously on
local data without interacting with other processors

• To unify the ways in which processors could interact, we adopt the
concept of dependence

• A dependence is an ordering relationship between two computations
• Dependences are usually induced by read/write
• Dependences that cross process boundaries induce a need to synchronize

the threads

220

Dependences are well-studied in compilers

• Dependences are orderings that must be
maintained to guarantee correctness

• Flow-dependence: read after write (RaW)
• Anti-dependence: write after read (WaR)
• Output-dependence: write after write (WaW)

• True dependences affect correctness
• False dependences arise from memory reuse

True
False
False

221

• Both true and false dependences

1. sum = a + 1;
2. first_term = sum * scale1;
3. sum = b + 1;
4. second_term = sum * scale2;

222

• Both true and false dependences

• Flow-dependence read after write; must be preserved for correctness
• Anti-dependence write after read; can be eliminated with additional memory

1. sum = a + 1;
2. first_term = sum * scale1;
3. sum = b + 1;
4. second_term = sum * scale2;

223

• Change variable names

1. first_sum = a + 1;
2. first_term = first_sum * scale1;
3. second_sum = b + 1;
4. second_term = second_sum * scale2;

1. sum = a + 1;
2. first_term = sum * scale1;
3. sum = b + 1;
4. second_term = sum * scale2;

• Granularity is used in many contexts…here granularity is the amount
of work between cross-processor dependences

• Important because interactions are usually costly
• Generally, larger grain is better

+ fewer interactions, more local work
- can lead to load imbalance

• Batching is an effective way to increase grain
• (aggregate work)

225

• The CTA motivates us to maximize locality
• Caching is the traditional way to exploit locality … but it doesn’t translate

directly to ||ism
• Redesigning algorithms for parallel execution often means repartitioning

to increase locality
• Locality often requires redundant storage and redundant computation,

but in limited quantities they help

226

• Execution time … what’s time?
• ‘Wall clock’ time
• Processor execution time
• System time

• Paging and caching can affect time
• Cold start vs warm start

• Conflicts w/ other users/system components
• Measure kernel or whole program

227

• Floating Point Operations Per Second is a common measurement for
scientific programs

• Even scientific computations use many integers
• Results can often be influenced by small, low-level tweaks having little

generality: multiply/add
• Translates poorly across machines because it is hardware dependent
• Limited application … but it won’t go away!

228

In 2007 Intel made an experimental multi-core (80) POLARIS
1 to 2 TFLOPS for 100 to 200W. Dedicated programming model (Ct) but ...

• Speedup is the factor of improvement for P processors: TS/TP

0

Processors

Performance

640

Program1

Program2

48

Speedup

Efficiency =
Speedup/P

• Speedup is best applied when hardware is constant, or for family
within a generation

• Need to have computation, communication in same ratio
• Great sensitivity to the TS value

• TS should be the time of the best sequential program on 1 processor of the
||-machine

• TP=1 ¹ TS Measures relative speedup

Relative speedup is often important
but it must be labeled as such

• As P increases, the amount of work per processor diminishes, often
below the amount needed to amortize costs

• Speedup curves bend down
• Scaled speedup keeps
 the work per processor
 constant, allowing other
 effects to be seen
• Both are important 0

Processors

Performance

640

Program1
Program2

48

Speedup

If not explicitly stated,
speedup is fixed speedup

Strong Scaling vs Weak Scaling (intermezzo)

• Amdahl’s Law — Strong Scaling
• Fixed Problem Size
• How much does parallelism reduce the

execution time of a problem?

• Gustafson’s Law — Weak Scaling
• Fixed Execution Time
• How much longer does it take for the problem

without parallelism?

Main question: How well does the parallel
fraction scale among P processors?

Main question: How much faster am I with P
processors for fixed problem size?

I wrote a shared memory code. How well does my code run in parallel? (strong or weak?)

• The sequential computation should not be charged for any || costs
… consider

• If referencing memory in other processors takes time (l) and data
is distributed, then one processor solving the problem results in
greater t compared to true sequential

P0 P1 P2 P3 P0 P1 P2 P3
vs

This complicates methodology for large problems

• Cases arise when sequential doesn’t fit in 1 processor of parallel
machine

• Best solution is relative speed-up
• Measure Tp=smallest possible
• Measure TP, compute Tp/TP as having P/p potential improvement

234

• Many issues regarding parallelism have been introduced, but they
require further discussion … we will return to them when they are
relevant

235

• Amdahl’s Law is a fact but it doesn’t impede us much
• Inherently sequential problems (probably) exist, but they don’t

impede us either
• Latency hiding could hide the impact of l with sufficiently many

threads and much (interconnection) bandwidth
• Impediments to parallel speedup are numerous: overhead,

contention, inherently sequential code, waiting time, etc.

236

• Concerns while parallel programming are also numerous: locality,
granularity, dependences (both true and false), load balance, etc.

• Happily: Parallel and sequential computers are different: More
hardware means more fast memory (cache, RAM), implying the
possibility of superlinear speedup

• Measuring improvement is complicated

237

Copyright

238

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

