
Embedded Programming

CESE4030
Embedded Systems Laboratory



Embedded Software
CSE2425

 2nd year BSc course

 Fast forward (10:1) 

2



Embedded Programming
 More difficult than “classical” programming 

 Interaction with hardware 

 Real-time issues (timing)

 Concurrency (multiple threads, scheduling, deadlock)

 Event-driven programming (interrupts)

 FSMs to the rescue

 modelling tool

 programming paradigm

3



Programming State Machines

 Finite State Machines
 prime design pattern 

in embedded systems

 Transitions initiated by events
 interrupts (timers, user input, …)

 polling

 Actions
 output

 modifying system state (e.g., writing to global variables)

4



Running example

5

 See Wikipedia: Automata-based programming1

 Consider a program in C that reads a text from the 
standard input stream, line by line, and prints the first 
word of each line. Words are delimited by spaces.

1https://en.wikipedia.org/wiki/Automata-based_programming

https://en.wikipedia.org/wiki/Automata-based_programming


Exercise (5 min)

6

 Consider a program in C that reads a text from the 
standard input stream, line by line, and prints the first 
word of each line. Words are delimited by spaces.

Code



Ad-hoc solution1. #include <stdio.h>

2. #include <ctype.h>

3. int main(void)

4. {

5. int c;

6. do {

7. do

8. c = getchar();

9. while(c == ' ');

10. while(!isspace(c) && c != '\n‘ && c != EOF) {

11. putchar(c);

12. c = getchar();

13. }

14. putchar('\n');

15. while(c != '\n‘ && c != EOF)

16. c = getchar();

17. } while(c != EOF);

18. return 0;

19.}

7

skip 
leading 
spaces

print 
word

skip 
trailing 
chars



FSM

8

S = space
N = newline
A = all other chars
* = print

done

EOF



1. use crate::get_char;

2. enum State {Before, Inside, After}

3. pub fn main() -> io::Result<()> {

4. let mut inp = File::open("input.txt")?;

5. let mut state = State::Before;

6. while let Some(c) = get_char(&mut inp)? {

7. match state {

8. State::Before => {

9. if c != ' ' {

10. print!("{c}");

11. if c != '\n' {

12. state = State::Inside;

13. }

14. }

15. }

16. State::Inside => {

FSM-based solution

9



16. State::Inside => {

17. if c != ' ' {

18. print!("{c}");

19. } else if c == '\n' {

20. println!();

21. state = State::Before;

22. } else

23. state = State::After;

24. }

25. State::After => {

26. if c == '\n' {

27. println!();

28. state = State::Before;

29. }

30. }

31. }

32. }

33. Ok(())

34.}
10

FSM-based solution

does not scale to large FSMs



1. pub trait State {

2. // we say here that to be called a state, a type

3. // must have a `step` function that takes a character, and

4. // returns a new state.

5. fn step(&self, c: char) -> &dyn State;

6. }

65.pub fn main() -> io::Result<()> {

66. let mut inp = File::open("input.txt")?;

67. let mut state: &dyn State = &Before;

68. while let Some(c) = get_char(&mut inp)? {

69. state = state.step(c);

70. }

71. Ok(())

72.}

Refactored solution

11

∙∙∙



8. // we define a type "Before" which has this property that

9. // it is a state, and we implement its `step` function.

10.pub struct Before;

11.impl State for Before {

12. fn step(&self, c: char) -> &dyn State {

13. if c != ' ' {

14. print!("{c}");

15. if c != '\n' {

16. return &Inside;

17. }

18. }

19. self

20. }

21.}

22.pub struct Inside;

23.impl State for Inside {

24. fn step(&self, c: char) -> &dyn State {

Refactored solution

12



BACK TO QUADCOPTERS

What’s in the assignment?

CSSE4030 ESL 14



Quadrupel: FSM

CSSE4030 ESL 15

From the assignment
• Safe
• Panic
• Calibrate
• Yaw
• …

joystick

drone

PC link

PC

keyboard

Safe Calib

YawPanic



Quadrupel: FSM + control loop

CSSE4030 ESL 16

PC
gyro/accel (6)
motors (4)
barometer

FCB

concurrency!



17

Software Architecture Survey

 Round-Robin (polling)

 Round-Robin (with interrupts)

 [Function-Queue Scheduling]

 Real-Time OS

 Motivates added value of RTOS

 At the same time demonstrates you don’t always need to 
throw a full-fledged RTOS at your problem!



Round-Robin

 polling: response time slow and stochastic

 fragile architecture

void main(void)

{

while (TRUE) {

!! poll device A

!! service if needed

..

!! poll device Z

!! service if needed

}

} 

18



Round-Robin with Interrupts

 ISR (interrupt vs. polling!): much better response time

 main still slow (i.e., lower priority than ISRs)

void isr_deviceA(void)

{

!! service immediate needs + assert flag A

}

..

void main(void)

{

while (TRUE) {

!! poll device flag A

!! service A if set and reset flag A

..

} 

19



Real-Time OS

 includes task preemption by offering thread scheduling

 stable response times, even under code modifications

void isr_deviceA(void)

{

!! service immediate needs + set signal A

}

..

void taskA(void)

{

!! wait for signal A

!! service A

} 

..

20



Architecture Overview

high prio

low prio

everything

devA ISR
devB ISR

devZ ISR
task code

Round-Robin Round-Robin
with interrupts

devA ISR
devB ISR

devZ ISR

RTOS

task code A
task code B

task code Z

21



BACK TO QUADCOPTERS

What’s in the template?

CSSE4030 ESL 22



Gitlab & friends 

CESE4030 ESL

Computer and Embedded Systems Engineering / 
Embedded Systems Lab

• template-project

• documentation

https://gitlab.ewi.tudelft.nl/cese/embedded-systems-lab/template-project/-/tree/main/dronecode/src
https://docs.rs/tudelft-quadrupel/latest/tudelft_quadrupel/


System Architecture (today!)

Functional decomposition

Who does what?

Interfaces

CSSE4030 ESL



Communication protocol (lab 1)

PC -> Drone (send)

 periodic: pilot control

 ad hoc: mode changing, param tuning

Drone -> PC (receive)

 periodic: telemetry (for visualization)

 ad hoc: logging (for post-mortem analysis)

Dependable, robust to data loss

 header synch
CSSE4030 ESL



Design your protocol (today!)

Packet layout

 start/stop byte(s)

 header, footer?

 fixed/variable length

Message types

 values (sizes)

 frequency

CSSE4030 ESL

BW + processing 
constraints?!



Before you go

CESE4030 ESL

Safety first:
• goggles
• common sense


