
Embedded Programming

CESE4030
Embedded Systems Laboratory



Embedded Software
CSE2425

 2nd year BSc course

 Fast forward (10:1) 

2



Embedded Programming
 More difficult than “classical” programming 

 Interaction with hardware 

 Real-time issues (timing)

 Concurrency (multiple threads, scheduling, deadlock)

 Event-driven programming (interrupts)

 FSMs to the rescue

 modelling tool

 programming paradigm

3



Programming State Machines

 Finite State Machines
 prime design pattern 

in embedded systems

 Transitions initiated by events
 interrupts (timers, user input, …)

 polling

 Actions
 output

 modifying system state (e.g., writing to global variables)

4



Running example

5

 See Wikipedia: Automata-based programming1

 Consider a program in C that reads a text from the 
standard input stream, line by line, and prints the first 
word of each line. Words are delimited by spaces.

1https://en.wikipedia.org/wiki/Automata-based_programming

https://en.wikipedia.org/wiki/Automata-based_programming


Exercise (5 min)

6

 Consider a program in C that reads a text from the 
standard input stream, line by line, and prints the first 
word of each line. Words are delimited by spaces.

Code



Ad-hoc solution1. #include <stdio.h>

2. #include <ctype.h>

3. int main(void)

4. {

5. int c;

6. do {

7. do

8. c = getchar();

9. while(c == ' ');

10. while(!isspace(c) && c != '\n‘ && c != EOF) {

11. putchar(c);

12. c = getchar();

13. }

14. putchar('\n');

15. while(c != '\n‘ && c != EOF)

16. c = getchar();

17. } while(c != EOF);

18. return 0;

19.}

7

skip 
leading 
spaces

print 
word

skip 
trailing 
chars



FSM

8

S = space
N = newline
A = all other chars
* = print

done

EOF



1. use crate::get_char;

2. enum State {Before, Inside, After}

3. pub fn main() -> io::Result<()> {

4. let mut inp = File::open("input.txt")?;

5. let mut state = State::Before;

6. while let Some(c) = get_char(&mut inp)? {

7. match state {

8. State::Before => {

9. if c != ' ' {

10. print!("{c}");

11. if c != '\n' {

12. state = State::Inside;

13. }

14. }

15. }

16. State::Inside => {

FSM-based solution

9



16. State::Inside => {

17. if c != ' ' {

18. print!("{c}");

19. } else if c == '\n' {

20. println!();

21. state = State::Before;

22. } else

23. state = State::After;

24. }

25. State::After => {

26. if c == '\n' {

27. println!();

28. state = State::Before;

29. }

30. }

31. }

32. }

33. Ok(())

34.}
10

FSM-based solution

does not scale to large FSMs



1. pub trait State {

2. // we say here that to be called a state, a type

3. // must have a `step` function that takes a character, and

4. // returns a new state.

5. fn step(&self, c: char) -> &dyn State;

6. }

65.pub fn main() -> io::Result<()> {

66. let mut inp = File::open("input.txt")?;

67. let mut state: &dyn State = &Before;

68. while let Some(c) = get_char(&mut inp)? {

69. state = state.step(c);

70. }

71. Ok(())

72.}

Refactored solution

11

∙∙∙



8. // we define a type "Before" which has this property that

9. // it is a state, and we implement its `step` function.

10.pub struct Before;

11.impl State for Before {

12. fn step(&self, c: char) -> &dyn State {

13. if c != ' ' {

14. print!("{c}");

15. if c != '\n' {

16. return &Inside;

17. }

18. }

19. self

20. }

21.}

22.pub struct Inside;

23.impl State for Inside {

24. fn step(&self, c: char) -> &dyn State {

Refactored solution

12



BACK TO QUADCOPTERS

What’s in the assignment?

CSSE4030 ESL 14



Quadrupel: FSM

CSSE4030 ESL 15

From the assignment
• Safe
• Panic
• Calibrate
• Yaw
• …

joystick

drone

PC link

PC

keyboard

Safe Calib

YawPanic



Quadrupel: FSM + control loop

CSSE4030 ESL 16

PC
gyro/accel (6)
motors (4)
barometer

FCB

concurrency!



17

Software Architecture Survey

 Round-Robin (polling)

 Round-Robin (with interrupts)

 [Function-Queue Scheduling]

 Real-Time OS

 Motivates added value of RTOS

 At the same time demonstrates you don’t always need to 
throw a full-fledged RTOS at your problem!



Round-Robin

 polling: response time slow and stochastic

 fragile architecture

void main(void)

{

while (TRUE) {

!! poll device A

!! service if needed

..

!! poll device Z

!! service if needed

}

} 

18



Round-Robin with Interrupts

 ISR (interrupt vs. polling!): much better response time

 main still slow (i.e., lower priority than ISRs)

void isr_deviceA(void)

{

!! service immediate needs + assert flag A

}

..

void main(void)

{

while (TRUE) {

!! poll device flag A

!! service A if set and reset flag A

..

} 

19



Real-Time OS

 includes task preemption by offering thread scheduling

 stable response times, even under code modifications

void isr_deviceA(void)

{

!! service immediate needs + set signal A

}

..

void taskA(void)

{

!! wait for signal A

!! service A

} 

..

20



Architecture Overview

high prio

low prio

everything

devA ISR
devB ISR

devZ ISR
task code

Round-Robin Round-Robin
with interrupts

devA ISR
devB ISR

devZ ISR

RTOS

task code A
task code B

task code Z

21



BACK TO QUADCOPTERS

What’s in the template?

CSSE4030 ESL 22



Gitlab & friends 

CESE4030 ESL

Computer and Embedded Systems Engineering / 
Embedded Systems Lab

• template-project

• documentation

https://gitlab.ewi.tudelft.nl/cese/embedded-systems-lab/template-project/-/tree/main/dronecode/src
https://docs.rs/tudelft-quadrupel/latest/tudelft_quadrupel/


System Architecture (today!)

Functional decomposition

Who does what?

Interfaces

CSSE4030 ESL



Communication protocol (lab 1)

PC -> Drone (send)

 periodic: pilot control

 ad hoc: mode changing, param tuning

Drone -> PC (receive)

 periodic: telemetry (for visualization)

 ad hoc: logging (for post-mortem analysis)

Dependable, robust to data loss

 header synch
CSSE4030 ESL



Design your protocol (today!)

Packet layout

 start/stop byte(s)

 header, footer?

 fixed/variable length

Message types

 values (sizes)

 frequency

CSSE4030 ESL

BW + processing 
constraints?!



Before you go

CESE4030 ESL

Safety first:
• goggles
• common sense


