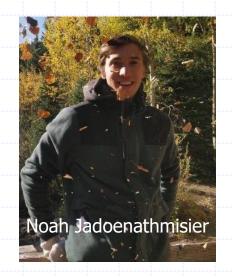
CESE4030 Embedded Systems Laboratory

Technology Introduction to Control Theory

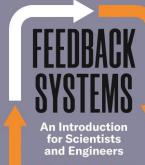
Disclaimer / acknowledgements

Koen is a computer scientist



Introduction to PID Control

Brad Schofield, BE ICS AP



Karl Johan Åström Richard M. Murray

CESE4030 ESL

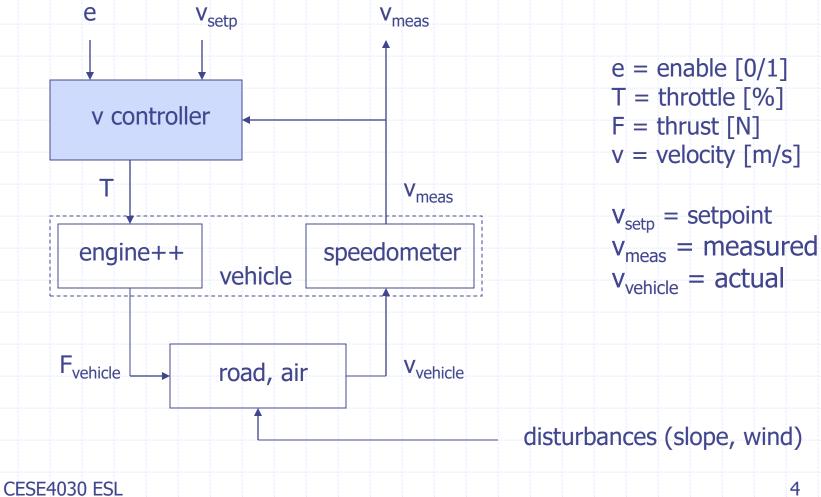
Control is Everywhere

embedded controller

0

controlled system

Cruise Control

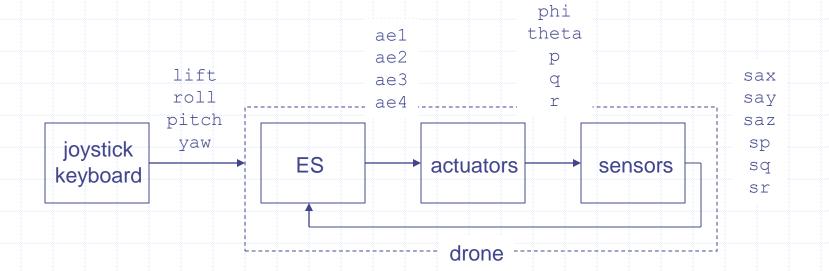


Objectives of this Crash Course

Appreciate the benefits of control
 Understand basic control principles
 Communicate with control engineers

Get you up to speed to do the QR control

Drone: Control Circuit



control loop example (yaw rate):

eps = yaw - sr; // measure deviation
N_needed = P * eps; // compute ctl action
ae1 .. ae4 = f(N_needed); // actuate, see slide 9

CESE4030 ESL

Introduction to PID Control

Brad Schofield, BE ICS AP

Brad Schofield

What is PID Control?

- Let's take a step back... What is **control**?
- **Control** is just making a dynamic process behave in the way we want
- We need 3 things to do this:
 - A way to **influence** the process
 - A way to see how the process **behaves**
 - A way to **define** how we want it to behave

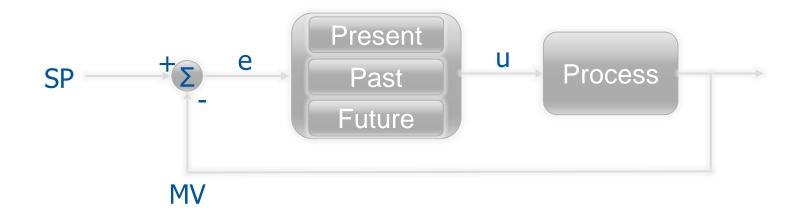
The Closed Loop

This is the 'classic' closed loop block diagram representation of a control system

A Dynamic Controller

- We said that since the process is dynamic (dependent on inputs made at different times), it makes sense that the controller should be too
- How do we usually think of time?
 - 'Present'
 - 'Past'
 - 'Future'

Splitting the Controller



The 'Present'

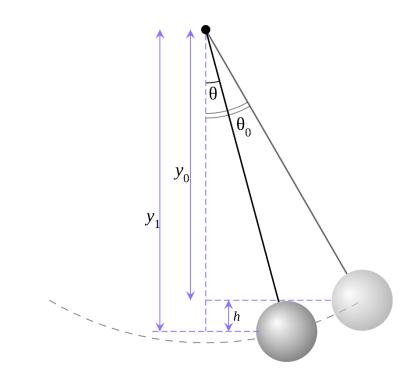
- This part of the controller is only concerned with what the error is now
- Let's take a simple law: let the control signal be proportional to the error:

 $u = k_p \times e$

Is Proportional Control enough?

- Intuitively it seems like it should be fine on its own: when the error is big, the control input is big to correct it. As the error reduced so does the control input.
- But there are problems...

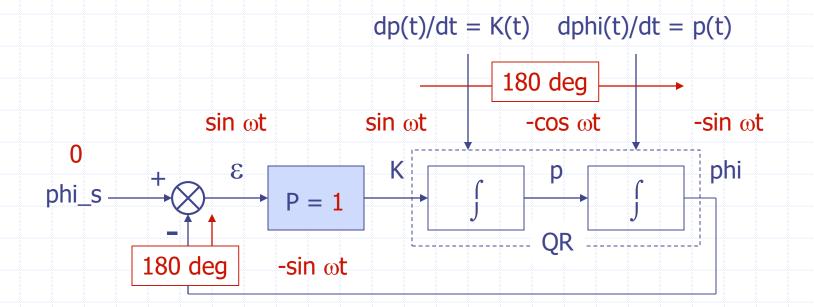
Problem 1: oscillations



Think of a pendulum. If the setpoint is hanging straight down, then gravity acts as a proportional controller for the position... Pendulum will oscillate!

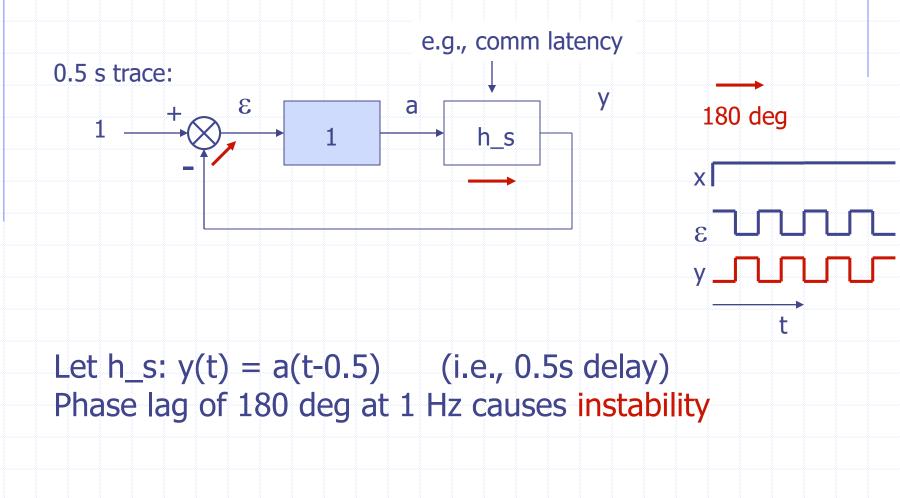
2/19/2024

Example 1: Integrator Systems



$P \ge 1$: instability! Cause: each integration adds 90 deg phase lag So 2 integrators use up all 180 deg budget!

Example 2: Time Latency



Phase Lag: examples

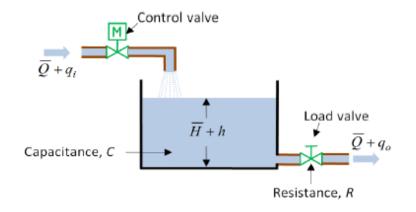
- Integration (90 deg):
 - speed -> position, flow -> volume
- First-order system (up to 90 deg):
 - Iamp, heating, car velocity, ...
- N-th order system (up to N*90 deg):
 - compositions of 1st-order systems, missiles
- Delay systems (unlimited):
 - humans, computers, sample times, cables, air

Need control theory to analyze, e.g., control stability

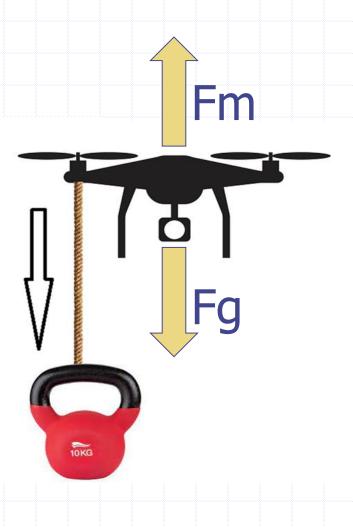
h_s

Problem 2: steady state error

- What happens when the error is zero?
- Causes problems if we need to have a nonzero control value while at our setpoint



Example: external disturbance



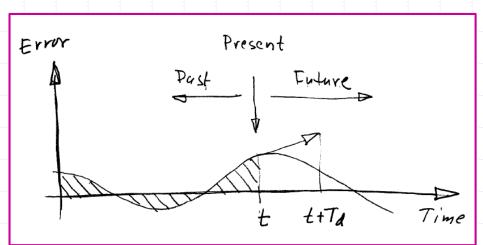
The solution to everything

PID CONTROL

PID in a nutshell

The textbook version of the PID controller is

$$u(t) = ke(t) + k_i \int_0^t e(\tau)d\tau + k_d \frac{de}{dt}$$
$$u(t) = k\left(e(t) + \frac{1}{T_i} \int_0^t e(\tau)d\tau + T_d \frac{de(t)}{dt}\right)$$



PID control

P: address errors
 D: address oscillations
 I: address steady state

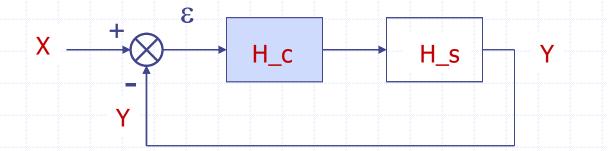
Who is the boss?

PID tuning

P: address errors
D: address oscillations
I: address steady state

Who is the boss?

Classical Control Theory



Describe x(t), y(t), h_c(t), h_s(t) in terms of their Laplace transforms X(s), Y(s), H_c(s), H_s(s), respectively

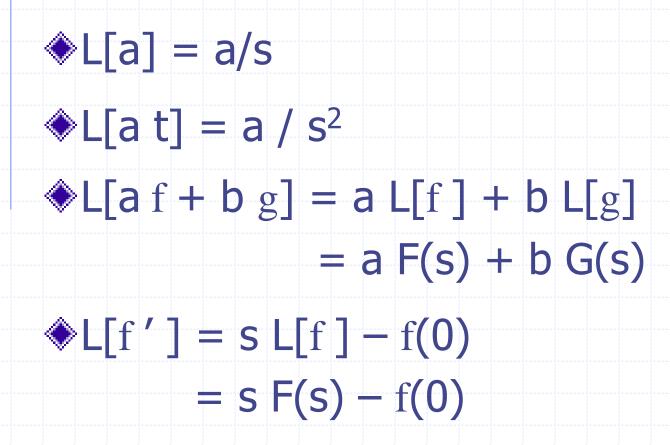
$$L[f(t)] = F(s) = \int_{-st}^{\infty} f(t)e^{-st}dt$$

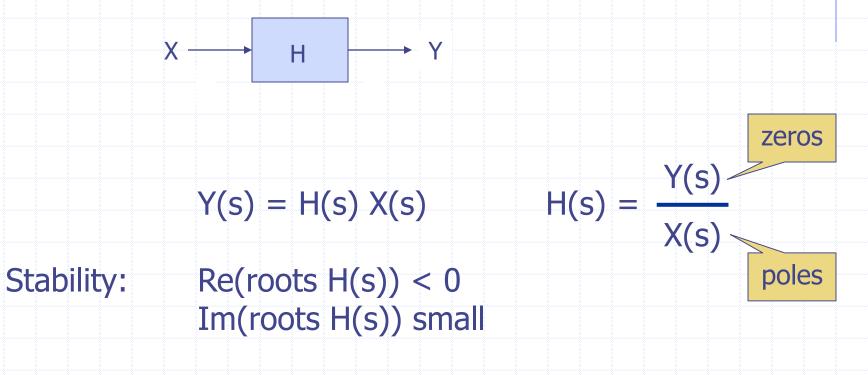
()

Classical Control Theory

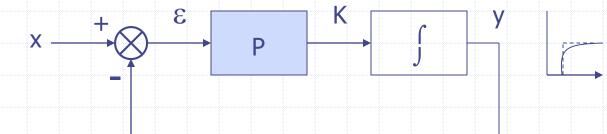
For <u>linear</u> system h it holds Y(s) = H(s) ■ X(s) (i.e. composition in time domain reduces to multiplication in the Laplace domain). This allows for easy analysis.

Laplace cheat sheet





Example: Rate Control



 $\begin{aligned} Y(s) &= P H(s) (X(s) - Y(s)) \\ Y(s) &= (P H(s) / (1 + P H(s))) X(s) = H_{PC}(s) X(s) \end{aligned}$

H(s) = 1/s $H_{PC}(s) = (P/s) / (1 + P/s) = P / (s + P)$

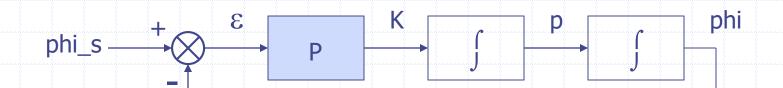
First-order system with time constant 1/P(root: s = -P => Re < 0, Im = 0) so stable

CESE4030 ESL

Angle control using P controller

P controller for roll angle:

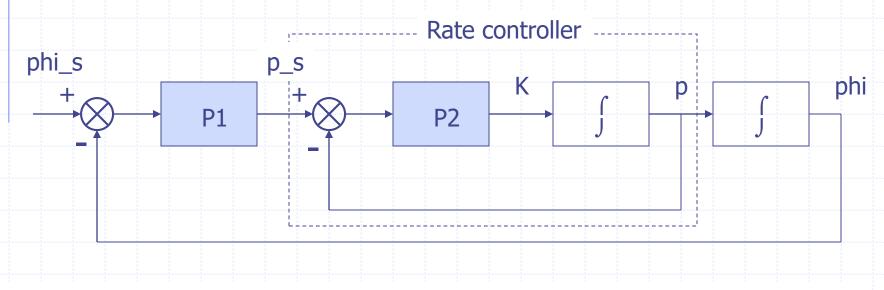
$$dp(t)/dt = K(t) dphi(t)/dt = p(t)$$



P < 1: useless control performance $P \ge 1$: instability

Angle control using cascaded P control

Embedded rate controller "neutralizes" one integrator



Cascaded P Controller: stable (for not too high P1 and P2! and P2 >> P1)

Summary

Feedback control offers many advantages
Is ubiquitous (cars, planes, missiles, QRs ..)
Potential stability problems
Need control theory
This was merely introduction into the field
Get a feel by applying to QR!