
CESE4005 Lab 1

Transistors, Logic Gates, and Digital Circuits

September 11, 2024

Introduction

In this Lab the basics of CMOS logic and digital design will be introduced. If you already have
experience with these topics, the Lab should fly by. However, some of the CESE students will have
had less interaction with actual computer hardware at this tiny scale. To better understand why
computer hardware is designed the way it is, it is essential to understand what it looks like at all
levels of the technology. We will spare you device physics, but we will go into the limitations of
CMOS transistors and what this means for design choices at the lowest level of circuit design.]

To do so, you will use Virtuoso, a Cadence licensed tool. To access Virtuoso with a license, you
will log into the course server via X2GO using the username and password provided to you at the
start of the lab. This setup is explained in the next Section.

We will start the lab by making a simple Inverter circuit. This should introduce you to the
use of the Cadence tool Virtuoso, which will be used in the rest of the lab. Next, we expand this
experience by making a 2-input NAND and AND logic gate. Then, we will increase the complexity
and work on a Full Adder circuit, followed by a Ripple Carry Adder which allows us to add multi-bit
binary numbers.

Along the way you should see that even though we like to call them digital circuits, the funda-
mental components and values in the circuits are all analog. All we do is try to make these analog
devices behave as close to digital switches as possible.

To guide you through these observations we have added questions to the lab manual. These
questions are marked in red:

Question 0.0 - This is a question.

At the end of every section, you are requested to ask a T.A. to check your work. Put all your
answers/screenshots in an answer sheet (.doc, .docx, .pdf, or similar), so they can be checked easily
in one go.

Bonus

At the end of Section 4, two Bonus questions are added, marked in *Green*. Answer these
questions (and have them checked by a T.A.) to earn bonus points.

1



Setup

Server Access via VPN

The activities for this lab will be performed using Cadence licensed tools. To access these tools,
you will need to ssh into the course server. To be able to do so, you will either need to be connected
to the TU Delft local network (ethernet, eduroam does not work), or else you need to connect to
the TU Delft VPN. If you use the VPN, you can connect to the server anywhere you want.

The TU Delft recommends using eduVPN: eduVPN download . Download this program, and
use your TU Delft credentials to log in. Ensure the VPN connection is active before continuing
(i.e. switch it on in the eduVPN window).

SSH into Server using X2GO

As we will be running graphical interfaces for this lab, it is best to use X2GO to connect to the
server. Download the X2GO client (X2GO download), open it, and create a new Session. This
will open a menu window as shown in Figure 1.

2

https://www.eduvpn.org/client-apps/
https://wiki.x2go.org/doku.php/download:start


Figure 1: X2GO New Session Menu

In this menu leave all as default except:

• Under the Session tab:

– Set the Session Name to a unique name

– Set the Host to: ce-hwsec.ewi.tudelft.nl

– Set the Login field to your provided login name (cese4005-XX)

– Change the Session type to “MATE”

• Under the Connection tab: Set the Connection Speed to WAN

3



• Under the Media tab make sure “Enable sound support” and “Client side printing supported”
are disabled

Press OK. This creates the Session on the right. Click the session, and log in with the provided
password. This should start up a new window with graphical access to the server. At the top a
black icon is present to open the Terminal.

Some Notes

• To prevent resource overuse, please properly exit X2GO when done with the lab activities.
Do not leave it running, and do not just close the window. Close all programs, exit the
session, and then close the window. Note that after 4 hours of inactivity, your session will
be closed automatically, so unsaved work may be lost.

• X2GO can be a bit finicky when using multiple displays. When closing the X2GO window,
ensure it is currently in your main display (e.g. the display of your laptop). Otherwise when
starting the session again the window may open in a ghost display, with no method to get it
back except to connect to a secondary display.

4



1 Introduction to Virtuoso by Making an Inverter

In this Section the most basic/important features of the Cadence tool Virtuoso will be shown for
circuit design. Virtuoso is an all-in-one program suite for Integrated Circuit (IC) design. It is
widely used in academia and industry, mainly because it allows for seamless integration between
all the different tools needed for IC design.

To get you familiar with Virtuoso, you will use the Schematic Editor to design the most basic
of digital circuits; the inverter. We will make a simple test setup for the inverter, and simulate it
to observe its behavior.

1.1 Virtuoso

Virtuoso should be installed on the server under the provided account. In the Terminal, in your
home directory (/data/home/cese4005-XX) run:

$ virtuoso

This will start the CIW (Command Interpreter Window), from which all tools are accessible.
Press Tools >Library Manager. This opens an overview of all libraries available. You should see
a set of pre-loaded libraries in the “Library” list. Libraries are collections of cells (components,
circuits, etc.). If you click on a library, all the cells in it will be visible in the Cells list. In turn,
you can click on a Cell to show the different Views available for the Cell. These Views are different
representations of that one cell.

To keep organized, create a new Library by clicking File >New >Library in the Library Man-
ager. Give the new library the name lab1 and click OK. A popup will ask you about the new
library’s technology file. Select Attach to an existing technology library and press OK. From the
list, select analogLib and press OK. This makes it so that Virtuoso knows all Cells we create in
this library are supposed to reference technology information from this other library analogLib.

Go to the newly created library, and click File >New >Cell View. Fill the name “inverter” in
for the Cell, and press OK. This will create a Schematic view for our new component and open
it using the Schematic Editor. (Note: if any prompts pop up regarding licensing, simply press
Always to ensure you retrieve a valid license). The Schematic Editor allows us to place instances
of existing Cells and connect them together, thereby creating larger circuits.

The following is a list of keyboard shortcuts to perform the most important actions. Note that
each of these actions are also available via the buttons in the GUI at the top:

i Add instance c Copy
w Create wire p Add pin
f Fit design to screen SHIFT+z Zoom out
l Add label for wire CTRL+z Zoom in
q Show instance properties

1.2 Building the Inverter

The basic building blocks of almost all digital circuits are CMOS (complementary metal-oxide
semiconductor) transistors. These are semiconductor-based devices that perform the task of a
switch, and can be scaled to incredibly small sizes with relatively little issues, hence their use in
ICs. The two main types of CMOS transistors are the PMOS and NMOS, which are complementary
counterparts of each other.

5



Place an instance of an NMOS transistor by pressing “i”, selecting the analogLib library, and
within the library selecting the nmos4 cell. Press Enter and click to place. The schematic repre-
sentation of the NMOS has four terminals: the Drain at the top, the Source at the bottom, the
Gate to the side, and finally a Bulk connection. The NMOS conducts more current between its
Drain and Source with a higher voltage on its gate. The Bulk can be used for biasing, but this is
outside the scope of the course.

Similar to the NMOS, place a PMOS transistor above the NMOS. (see library analogLib, cell
pmos). The PMOS transistor has its Source at the top and Drain at the bottom instead. The
PMOS conducts more current with a lower voltage on its gate. This complementary behavior is
what we use to make digital circuits.

Connect the PMOS and NMOS transistors like in Figure 2, and add labels for the Power (VDD)
and Ground (VSS) to the wires as shown, as well as an IN and OUT. Note how we connect the Bulk
of the NMOS to VSS and the Bulk of the PMOS to VDD. This biases the transistors optimally.
When making more circuits in this lab, simply connect the Bulks ot the transistors in this way.

Figure 2: Basic Inverter structure.

This configuration forms a basic inverter. If the IN voltage is close to VDD (high, or ’1’), the
NMOS will have a low resistance and conduct current well (the switch is open). On the other hand,
the PMOS will be in a high resistance state and barely conduct current (the switch is closed). As
a result, the connection between VSS and OUT has low resistance, while the connection between
VDD and OUT has a much higher resistance. Thus, the voltage at OUT will be much closer to
VSS than VDD, i.e. low, or ’0’. If IN were to be low (’0’) the opposite would happen. This means
the voltage on IN will be inverted at OUT.

1.3 Creating the Simulation Setup

We will now simulate what happens when we set these voltages at the Inverter terminals. However,
first we want to go up one level of abstraction. This means seeing the Inverter as a standalone Cell,
so we do not have to deal with all the wiring that we just did anymore; the inverter is finished.

To do so, we first need to create input/output Pins for the Cell. Press the Create Pin button,

6



set the Direction to inputOutput, and create a Pin for IN, OUT, VDD, and VSS. Now, to ensure
all wiring is correct, click the Save button with the checkmark (Check and Save). Always press
this button before progressing with any step. The result should look as in Figure 3.

Figure 3: Inverter including Pins.

To go up a level of abstraction, click Create >Cellview >From Cellview. Click OK to start
creating a Symbol for the Cell . In the Symbol Generation Options window, you should see fields
to put Pins at the left, right, top and bottom, and you should see a list of the Pins you created:
IN, OUT, VDD and VSS. Put the IN pin left, OUT right, VDD top, and VSS bottom, and press
OK. This will create a box-shaped symbol for our Inverter, which will be opened in the Symbol
Editor. You can adjust this box to make it look more like an inverter using the drawing tools, or
leave it as-is. Again, always press Check and Save, after which you can close the Symbol Editor
window.

In the Library created earlier, create a new Cell called testbench. Open the new cell, open the
instance placement menu, navigate to your library lab1, and place an instance of the newly created
inverter. This will be our device under test. We now need to take care of the connections to each
Pin:

1.3.1 VDD and VSS

We need to set up a voltage source for VDD and VSS. To do so, place two vdc (DC voltage
sources) instances from the analogLib library, as well as a gnd (ground) instance. Connect the
negative terminals of the voltage sources to the ground component with wires. Additionally, make
wire stubs at their positive terminals; label one as VDD and the other as VSS. By cliking on the
sources, one can adjust their parameters in the Property Editor on the left. For now we are only
interested in their DC voltage; set this to a variable VDD for the source connected to label VDD,
and to 0 for the other source. This should look like Figure 4.

7



Figure 4: Voltage Sources

Connect the VDD and VSS wires to the Inverter.

1.3.2 IN

We want to stimulate the inverter using a variable voltage source, so we can see changes in time.
To do this, place a vsource instance from analogLib. In its settings, ensure the Source type is set
to bit ; this will enable us to pass a string of ’0’ and ’1’ as a pattern which will be output by the
source. Additionally, set:

• Zero value: 0 V

• One value: VDD V

• Period of waveform: 1n s

• Pattern Parameter data: 01010

Ensure the vsource has its negative terminal connected to the VSS net, and its positive terminal
to the IN Pin of the Inverter.

1.3.3 OUT

As we want currents to flow, we cannot leave the output Pin of the inverter open. Instead, we will
connect a capacitor (cap in analogLib) to the output as a test load. Ensure its negative terminal
is connected to the VSS net, and its positive to the OUT pin of the inverter. Additionally, set the
capacitive value to 5f (5 femtoFahrad). This is equivalent to driving approximately 5 other logic
gates. Note: keep this as the output load for this whole lab to ensure we can consistently check
your results.

1.3.4 Final Test Setup

The test setup should look something like Figure 5. Make sure that for the following Sections the
test setup looks the same.

8



Figure 5: Inverter Test Setup

Note: Conveniently, if you want to connect components together you do not need to connect
them via physical wires. Instead, if you add a bit of wire to the Pins of both components, and give
them the exact same label, they will be connected as well. This can keep schematics looking more
organized.

Question 1.1 - Take a screenshot of your test setup and paste it in the answer sheet. Ensure
that the setup is valid by pressing “Check and Save”.

1.4 Running the Simulation

To simulate, press Launch >ADE L. This will open the Analog Design Environment window. You
may get some licensing prompts; simply keep clicking the Always button until they stop popping
up. In the ADE L we will need to perform a few steps before running the simulation:

• Analysis Type: click Analysis >Choose and pick “tran” (transient) analysis, set a Stop Time
of 5n for 5 nanoseconds, and set the Accuracy Defaults to conservative (simulate with highest
accuracy). Press OK.

• Design Variables: Click Variables >Copy From Cellview. All device parameters left as vari-
ables will now appear in the “Design Variables” list. In our case, we set the voltage of the
vsource and vdc to be VDD, which will be recognized by Virtuoso as a variable, so it should
appear in the list. Set it to the nominal voltage for the technology we are using: 700m (700
mV).

• Outputs: Click Outputs >To Be Plotted >Select On Design. This will allow you to select
wires to be saved and plotted from the simulation by clicking on them. We want to plot the
input and output of the inverter. When done selecting wires, press escape.

• Model Files: The transistors from analogLib are empty models without behavior. To add be-
havioral information, click Setup >Model Libraries. Add the model file located at “/data/home/cese4005-
files/7nm TT 160803.pm”; The Model Library Setup should look as in Figure 6. Press OK.

9



This file contains model descriptions for the NMOS and PMOS in the 7nm FinFET technol-
ogy node, which we will use as an example today.

Figure 6: Model Library Setup

Press the Run Button (Green arrow) to run the simulation. A simulation log should open, as
well as a Visualization and Analysis window. In the latter the waveforms for the selected signals
should be visible. Take your time to explore the waveform viewer. You can select/hide signals,
zoom in/out, etc.

Verify that the inverter behaved as expected; is the OUT signal an inverted version of IN?

Question 1.2 - Take a screenshot of the output waveforms and include them in the answer
sheet.

Question 1.3 - Zoom into the transition point at 1ns. There should be a delay between IN
changing and OUT stabilizing to a new value. This is the fall time. Measure how long it takes
between the IN signal changing and the OUT signal stabilizing to within 1 mV of the desired
voltage. Additionally, measure the rise time around the 2ns mark.

Question 1.4 - As observed in the previous question, there are delays betwen IN and OUT
changing. What causes this delay?

Question 1.5 - What could you change in the test setup (not the inverter) to decrease this
delay?

Question 1.6 - You should see a difference between the rise and fall times reported in Question
1.3. What causes this difference? (Hint: the PMOS and NMOS transistor in our inverter have the
same width and length.)

– Ask a T.A to check your work so far –

10



2 Hierarchical Digital Design and Making a NAND and
AND gate

In this Section you will expand upon the previous by building two more complex logic gates. First,
you will build a NAND gate in a similar fashion to the Inverter. Then, you will combine the NAND
and Inverter to create an AND gate. Finally, we will go into the typical structure of CMOS logic
gates, and why this is the way it is.

Question 2.1 - Give the truth tables for the NAND and the AND gate.

Inputs Outputs
A B NAND AND
0 0
0 1
l 0
1 1

2.1 NAND Gate

Create a new Cell called NAND. Similar to the Inverter, use NMOS and PMOS transistors to make
a schematic of a NAND. You can try to come up with the structure yourself, but it is also readily
available on the internet. Note: To comply with typical port namings, the two input Pins of the
NAND should be called A and B, and the output Pin should be called Y. Note: Always connect
the Bulk Pin of the PMOS to VDD, and of the NMOS to VSS.

Question 2.2 - Take a screenshot of the NAND circuit and put it in the answer sheet.

Now create a testbench for the NAND. You can expand upon the testbench made in the In-
verter section. The only changes needed are to the inputs: Copy the vsource component so you
can control both inputs of the NAND gate (A and B). Then, ensure the Pattern Parameter Data
fields of the two sources are filled in as ’0011’ and ’0101’ respectively. This will ensure all possible
input combinations are addressed. Now simulate the NAND gate like you simulated the Inverter.

Question 2.3 - Take a screenshot of the output waveform and put it in the answer sheet. To
show all waveforms separately, press the Split all strips button in the top right (see Figure 7).

Figure 7: Split all strips button

Question 2.4 - What is the fall time of the output signal? You should observe a difference
with the fall time of the Inverter. What is this difference and why do you think this is the case?

11



2.2 AND Gate

In this section you will create an AND gate by combining the NAND and Inverter you have made
previously.

Create a new Cell, called AND, and place an instance of your NAND and an instance of your
Inverter. Connect the two together to form an AND gate, and finish the new Cell with Pins.

Replace the NAND gate in your testbench from the previous subsection with this new AND
gate and simulate it.

Question 2.5 - Take a screenshot of the AND circuit and put it in the answer sheet.

Question 2.6 - Take a screenshot of the output waveform and put it in the answer sheet.

2.3 The Complementary Structure of CMOS

With CMOS logic, we almost always connect the NMOS transistors to VSS as they are much
better at propagating a low/zero voltage, while we connect the PMOS transistors to VDD as they
are better suited for propagating high voltages. This is of course a simplified explanation, but it
will suffice to understand this Section.

This means any gate we create has an inherently inverting nature. This means in conventional
CMOS design we create Inverters, NAND, NOR, XNOR gates, etc., instead of Buffers, AND, OR,
and XOR gates. To create the latter gates we typically invert the output of the former using an
Inverter, like we did for the AND gate in the previous subsection.

However, this seems like quite the hassle. In this subsection we will answer the question you
might have: why do we not directly make an AND gate? To do so, create a new Cell, ANDdirect,
and build the circuit as shown in Figure 8. If the NMOS and PMOS behaved as perfect switches,
this would be the smallest AND circuit you could make.

12



Figure 8: Diagram of (wrong) AND circuit.

Replace the AND gate in your testbench from the previous subsections with this ANDdirect
Cell and simulate it the same.

Question 2.7 - Take a screenshot of the output waveform and put it in the answer sheet.

Question 2.8 - The simulation output should look much less clean than in the previous sec-
tions; explain in what way this is the case. Why would this be a problem when designing digital
circuits?

– Ask a T.A to check your work so far –

13



3 More Complex Circuits: the Full Adder

Binary addition is a very common operation that is performed in digital circuits. The full adder
is a standard digital block that sums up two operand bits and a carry-in bit, and produces a sum
bit and a carry-out bit. This is illustrated in Figure 9.

A B

CinCout

S

Figure 9: Full Adder symbol

In this section, the full adder is simulated on its own. In section 4, many full adders are con-
nected to each other to perform the addition of two 8-bit numbers.

Question 3.1 - Complete the truth table of the Full-Adder

Inputs Outputs
A B C in Sum C out
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Figure 10 shows the gate-level schematic of the Full Adder. This schematic includes 3 different
gates: AND-gates, OR-gates and XOR-gates (exclusive OR).

Start by loading a library we have prepared for you. As shown in figure 10, on the li-
brary manager, go to Edit >Library Path... There, add a library called “lab library” with path
“/data/home/cese4005-files/lab library” like shown in figure 12. Press File >Save and close the
Libary Path Editor window.

Create a new schematic cell-view with the name “Full Adder”. On this cell-view, you are tasked
with implementing the circuit shown in figure 10. Under the library “lab library” you are provided
with pre-designed AND-, OR-, and XOR-gates. Start by instantiating the gates you need. After

14



XOR
XOR

AND

AND

OR

A

B

Cin

Cout

S

Figure 10: Full Adder gate-level schematic

Figure 11: Opening the library path editor

that, connect them to form the circuit shown in figure 10. Then, add pins for the 3 inputs, the 2
outputs and also pins for VDD and VSS.

After finishing creating the circuit, you can then create a symbol for the Full-Adder as done in
previous sections.

Due to the fact that the switching activity of transistors takes time, gates have a “propagation
delay” between each input and output pair. As shown in figure 13, the propagation delay is
measured between the moment of the 50% of input transition to the corresponding 50% of output
transition.

15



Figure 12: Adding the path to the pre-made library to the library path editor

Propagation

Delay

Input signal
at 50%

Output signal
at 50%

Figure 13: Propagation delay

16



You are now tasked with measuring the propagation delay between the Carry-in and output
ports of the Full-Adder you just designed. Start by creating a new Cell-view schematic that you
can call “Full Adder Testbench” for example. After it gets opened, you can instantiate the symbol
of the Full-Adder you just created. You can connect the inputs, VDD and VSS to “vsource” from
“analogLib” and load the outputs with a capacitance of 290 aF (1aF = 10−3nF ). This capaci-
tance value is picked to replicate the loading introduced in the simulation scenario in section 4.
Use ADE L then to conduct a transient simulation.

Question 3.2 - Verify the functionality of the Full-Adder by simulating a scenario that tests
the 8 possible combinations of values for A, B and Carry-in and checking the values of the outputs.
Provide a clear screenshot of the wave-forms.

Question 3.3 - Measure the propagation delay between the Carry-in and each of the two out-
puts. Load the outputs with a capacitance of 290 aF . Provide clear screenshots of the wave-forms
that allowed you to measure the propagation delay, zoomed-in on the transition moments. You
can press M while scrolling through the waveform to put a marker.

– Ask a T.A to check your work so far –

17



4 Microarchitectures and the Effect of using Analog Devices
to make Digital Circuits

So far we have introduced the Full-Adder, that can add two bits with a 1-bit carry in, and provide
a 1-bit sum and a 1-bit carry out. These Full-Adders can be connected in different ways to perform
N-bit addition. For instance, they can be used to make a ripple carry adder, shown in figure 14.

B[0]A[0]

S[0]

B[1]A[1]B[2]A[2]B[3]A[3]

Vss

S[2] S[1]S[3]S[4]

Figure 14: 4-bit ripple carry adder

An N-bit ripple carry adder is designed by chaining N Full Adders. For example, you need 4
Full Adders to build a 4-bit ripple carry adder.

In digital systems, the worst case delay is the maximum time that a change in the input of a
system takes to propagate to the output. The critical path is the path that causes the worst case
delay. Figure 15 shows an example of a critical path of a digital circuit. In this case, the critical
path is from A (or B) to Y, since that path goes through the most gates, which leads the most
propagation delay.

Figure 15: Critical Path of a digital circuit

Question 4.1 - What is the critical path in the circuit shown in figure 14. You should provide
a reasoning using your propagation delay measurements of the full adder from the section before.

Question 4.2 - Calculate analytically the propagation delay of an 8-bit Ripple Carry Adder
based on your measurements from the previous section. You may assume the propagation delay
from the Carry-in to the Carry-out is the same as from A or B to the Carry-out.

– Ask a T.A to check your work so far if you don’t want to do the bonus part–

18



A<0:3>

A<0:3>

A<3> A<2> A<1> A<0>

Figure 16: Multi-bit wire naming convention example

Bonus Part

You are now tasked with building and simulating an 8-bit ripple carry adder on virtuoso, to measure
its propagation delay.

Question 4.3 (Bonus) - What values can you give to the inputs of the 8-bit ripple carry
adder to measure its worst case propagation delay. You need to give two sets of inputs A and B
in two different moments of time.

Create a new netlist that you can name “RCA 8” for example (RCA for Ripple Carry Adder).
You can then instantiate 8 of the Full-Adders that you created in the section before. Connect
them to form an 8 bit Ripple Carry Adder. Create pins for A<0:3>, B<0:3>, S<0:4>using the
multi-bit wire naming convection shown in figure 16. Make sure to name the pin, and label the
bus that is connected to the pin and the branches of the bus as shown in figure. You can create
a label by pressing “l” on your keyboard, and typing the label name. If you don’t name or label
any one of them, the designed circuit will NOT work properly. After you finish adding the pins
and labeling, press “check and save” to see if there are any error or warning messages. More
information on the Multi-bit naming convention can be found here: https://www.eecs.umich.

edu/courses/eecs427/f10/Common/busnames.pdf.
Then, create pins for VDD and VSS, and finish by creating a symbol for your designed Ripple

Carry Adder.
After that, create a new cell-view where you are going to perform the simulation. Instantiate

the Ripple-Carry Adder and stimulate its inputs using the answers given to question 4.3

Question 4.4 (Bonus) - Simulate and measure the propagation delay of the 8-bit Ripple
Carry Adder. Provide clear screenshots that show the wave-forms you used in your calculation.
Does the measured value correspond to the calculated one?

– Ask a T.A to check your work for the Bonus –

19

https://www.eecs.umich.edu/courses/eecs427/f10/Common/busnames.pdf
https://www.eecs.umich.edu/courses/eecs427/f10/Common/busnames.pdf

	Introduction to Virtuoso by Making an Inverter
	Virtuoso
	Building the Inverter
	Creating the Simulation Setup
	VDD and VSS
	IN
	OUT
	Final Test Setup

	Running the Simulation

	Hierarchical Digital Design and Making a NAND and AND gate
	NAND Gate
	AND Gate
	The Complementary Structure of CMOS

	More Complex Circuits: the Full Adder
	Microarchitectures and the Effect of using Analog Devices to make Digital Circuits

