Hardware Fundamentals [CESE4005]

Lecture 1.2: MOS FET transistors fabrication, basic properties and operation

September 2024

The MOS FET transistor

- MOS FET (Metal-Oxide Semiconductor Field-Effect Transistor): a sandwich structure of p-type Si, n-type Si and insulator (SiO₂) materials
- It comes in two flavors: **nMOS** and **pMOS**:

Aeta

The MOS transistor (cont)

- The Gate is a control input:
 - V_G < V_{th} Volt: nMOS transistor is OFF
 - $V_G \ge V_{th}$ Volt: nMOS transistor is ON

CMOS Fabrication

- CMOS transistors are fabricated on silicon wafer
- Lithography process similar to printing press
- On each step, different materials are deposited or etched
- Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process

Inverter Cross-section

- Typically use p-type substrate for nMOS transistor
 - Requires n-well for body of pMOS transistors

- Several alternatives: SOI, twin-tub, etc.

Q: what is shown on this figure

Well and Substrate Taps

- Substrate must be tied to GND and n-well to V_{DD}
- Metal to lightly-doped semiconductor forms poor connection called Shottky Diode
- Use heavily doped well and substrate contacts /

Inverter Mask Set

- Transistors and wires are defined by masks
- Cross-section taken along dashed line

Detailed Mask Views

- Six masks
 - n-well
 - Polysilicon
 - n+ diffusion
 - p+ diffusion
 - Contact
 - Metal

Fabrication Steps

- Start with blank wafer
- Build inverter from the bottom up
- First step will be to form the n-well
 - Cover wafer with protective layer of SiO₂ (oxide)
 - Remove layer where n-well should be built
 - Implant or diffuse n dopants into exposed wafer
 - Strip off SiO₂

p substrate

Oxidation

• Grow SiO₂ on top of Si wafer

- 900 - 1,200 °C with H_2O or O_2 in oxidation furnace

p substrate

Photoresist

- Spin on photoresist
 - Photoresist is a light-sensitive organic polymer
 - Softens where exposed to light

Lithography

- Expose photoresist through n-well mask
- Strip off exposed photoresist

Etch

- Etch oxide with hydrofluoric acid (HF)
 - Seeps through skin and eats bone; nasty stuff!!!
- Only attacks oxide where resist has been exposed

	Photoresist
	SiO ₂
p substrate	

Strip Photoresist

- Strip off remaining photoresist
 - Use mixture of acids called piranah etch
- Necessary so resist doesn't melt in next step

n-well

- n-well is formed with diffusion or ion implantation
- Diffusion
 - Place wafer in furnace with arsenic gas
 - Heat until As atoms diffuse into exposed Si
- Ion Implanatation
 - Blast wafer with beam of As ions
 - Ions blocked by SiO₂, only enter exposed Si

Strip Oxide

- Strip off the remaining oxide using HF
- Back to bare wafer with n-well
- Subsequent steps involve similar series of steps

	n well
p substrate	

Polysilicon

- Deposit very thin layer of gate oxide
 - < 20 Å (6-7 atomic layers)</p>
- Chemical Vapor Deposition (CVD) of silicon layer
 - Place wafer in furnace with Silane gas (SiH₄)
 - Forms many small crystals called polysilicon
 - Heavily doped to be good conductor

Polysilicon Patterning

 Use same lithography process to pattern polysilicon

Self-Aligned Process

- Use oxide and masking to expose where n+ dopants should be diffused or implanted
- N-diffusion forms nMOS source, drain, and n-well contact

N-diffusion

- Pattern oxide and form n+ regions
- Self-aligned process where gate blocks diffusion
- Polysilicon is better than metal for self-aligned gates because it doesn't melt during later processing

N-diffusion

- Historically dopants were diffused
- Usually ion implantation today
- But regions are still called diffusion

N-diffusion

Strip off oxide to complete patterning step

P-Diffusion

 Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact

Contacts

- Now we need to wire together the devices
- Cover chip with thick field oxide
- Etch oxide where contact cuts are needed

Metallization

- Sputter on aluminum over whole wafer
- Pattern to remove excess metal, leaving wires

Layout

- Chips are specified with set of masks
- Minimum dimensions of masks determine transistor size (and hence speed, cost, and power)
- Feature size *f* = distance between source and drain

Set by minimum width of polysilicon

- Feature size improves 30% every 3 years or so
- Normalize for feature size when describing design rules
- Express rules in terms of $\lambda = f/2$
 - E.g., λ = 0.3 μm in 0.6 μm process

Simplified Design Rules

Conservative rules to get you started

Inverter Layout

- Transistor dimensions specified as Width / Length
 - Minimum size is 4λ / 2λ , sometimes called 1 unit
 - For 0.6 μ m process, W=1.2 μ m, L=0.6 μ m

This is a bit outdated

nMOS transistor operation

• There is no current path between S and D: Transistor is OFF.

- When the positive voltage is applied to the gate, an electric field attracts holes on the gate and electrons in the p-type substrate: "inversion".
- The current flow through the channel: **Transistor is ON.**

pMOS transistor operation

- The two diodes between S and D are reverse biased as S/D voltages =0 or <VDD
- There is no current path between S and D: Transistor is OFF.

- When the gate is grounded, an electric field attracts electrons on the gate and holes in the n-type substrate: "**inversion**".
- The current flow through the channel: **Transistor is ON.**

What happens in reality (or closer to)

- So far, we have treated transistors as ideal switches
- An ON transistor passes a finite amount of current
 - Depends on terminal voltages
 - Derive current-voltage (I-V) relationships
- Transistor gate, source, drain all have capacitance
 - I = C ($\Delta V / \Delta t$) -> Δt = (C/I) ΔV
 - Capacitance and current determine speed
- Also explore what a "degraded level" really means

31

MOS Capacitor

- Gate and body form MOS capacitor
- Operating modes
 - Accumulation
 - Depletion
 - Inversion

Terminal Voltages

Mode of operation depends on V_g, V_d, V_s

$$- V_{gs} = V_g - V_s$$

$$- V_{gd} = V_g - V_d$$

$$- V_{ds} = V_d - V_s = V_{gs} - V_{gd}$$

- Source and drain are symmetric diffusion terminals
 - By convention, source is terminal at lower voltage
 - Hence $V_{ds} \geq 0$
- nMOS body is grounded. First assume source is 0 too.
- Three regions of operation
 - Cutoff
 - Linear
 - Saturation

nMOS Cutoff

- No channel
- I_{ds} = 0

nMOS Linear

- Channel forms
- Current flows from d to s
 e⁻ from s to d
- I_{ds} increases with V_{ds}
- Similar to linear resistor

nMOS Saturation

- Channel pinches off
- I_{ds} independent of V_{ds}
- We say current saturates
- Similar to current source

I-V Characteristics

- In Linear region, I_{ds} depends on
 - How much charge is in the channel?
 - How fast is the charge moving?

- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate oxide channel

• Q_{channel} =

- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate oxide channel
- Q_{channel} = CV
- C =

- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate oxide channel
- Q_{channel} = CV

$$C_{ox} = \varepsilon_{ox} / t_{ox}$$

• $C = C_g = \varepsilon_{ox}WL/t_{ox} = C_{ox}WL$

CESE4005 (2024-2025)

Delft

- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate oxide channel

- Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- *v* =

- Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- $v = \mu E$ μ called mobility
- E =

- Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- $v = \mu E$ μ called mobility
- $E = V_{ds}/L$
- Time for carrier to cross channel:

– t =

- Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- $v = \mu E$ μ called mobility
- $E = V_{ds}/L$
- Time for carrier to cross channel:

-t = L / v

nMOS Linear I-V

- Now we know
 - How much charge $Q_{channel}$ is in the channel
 - How much time t each carrier takes to cross

 $I_{ds} =$

nMOS Linear I-V

- Now we know
 - How much charge $Q_{channel}$ is in the channel
 - How much time t each carrier takes to cross

$$I_{ds} = \frac{Q_{\text{channel}}}{t}$$

=

nMOS Linear I-V

- Now we know
 - How much charge $Q_{channel}$ is in the channel
 - How much time t each carrier takes to cross $I_{ds} = \frac{Q_{\text{channel}}}{t}$ $= \mu C_{\text{ox}} \frac{W}{L} \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$ $= \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} \qquad \beta = \mu C_{\text{ox}} \frac{W}{L}$

nMOS Saturation I-V

- If $V_{gd} < V_t$, channel pinches off near drain – When $V_{ds} > V_{dsat} = V_{gs} - V_t$
- Now drain voltage no longer increases current

$$I_{ds} =$$

nMOS Saturation I-V

- If $V_{gd} < V_t$, channel pinches off near drain - When $V_{ds} > V_{dsat} = V_{gs} - V_t$
- Now drain voltage no longer increases current

$$I_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$$

nMOS Saturation I-V

- If $V_{gd} < V_t$, channel pinches off near drain – When $V_{ds} > V_{dsat} = V_{gs} - V_t$
- Now drain voltage no longer increases current

$$I_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$$
$$= \frac{\beta}{2} \left(V_{gs} - V_t \right)^2$$

nMOS I-V Summary

• *Shockley* 1st order transistor models

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{cutoff} \\ \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_t \right)^2 & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

Example

Example: a 0.6 µm process from AMI semiconductor

pMOS I-V

- All dopings and voltages are inverted for pMOS
- Mobility μ_p is determined by holes
 - Typically 2-3x lower than that of electrons μ_n
 - 120 cm²/V*s in AMI 0.6 μ m process
- Thus pMOS must be wider to provide same current

– In this class, assume μ_n / μ_p = 2

Operating Regions of Inverter

Revisit transistor operating regions

Capacitance

- Any two conductors separated by an insulator have capacitance
- Gate to channel capacitor is very important
 Creates channel charge necessary for operation
- Source and drain have capacitance to body
 - Across reverse-biased diodes
 - Called diffusion capacitance because it is associated with source/drain diffusion

Gate Capacitance

- Approximate channel as connected to source
- $C_{gs} = \varepsilon_{ox}WL/t_{ox} = C_{ox}WL = C_{permicron}W$
- $C_{permicron}$ is typically about 2 fF/µm

Diffusion Capacitance

- C_{sb}, C_{db}
- Undesirable, called parasitic capacitance
- Capacitance depends on area and perimeter
 - Use small diffusion nodes
 - Comparable to C_g
 for contacted diff
 - $-\frac{1}{2}C_{g}$ for uncontacted
 - Varies with process

nMOS transistor (summary)

$$I_{DS} = \mu_{eff} C_{ox} \frac{W}{L} [(V_{GS} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2]$$

 $R_{\rm ON} = \frac{1}{\mu_{\rm n}} C_{\rm ox} \frac{W}{L} \left[(V_{\rm GS} - V_{\rm T}) V_{\rm DS} - \frac{1}{2} V_{\rm DS}^2 \right]$

 μ_{eff} is the effective mobility of the charge carrier.

 C_{OX} is the capacitance of gate oxide for each unit area.

Complementary CMOS logic

- Full rail-to-rail swing; high noise margins
- Logic levels not dependent upon the relative device sizes; ratioless
- Always a path to V_{dd} or GND in steady state; low output impedance
- Extremely high input resistance; nearly zero steadystate input current
- No direct path steady state between power and ground; no static power dissipation*
- Propagation delay function of load capacitance and resistance of transistors

* well, this is gone for a long time now

We continue with CMOS transistors

