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Objectives

2

• To become familiar with Hardware Description Language (HDL) to 
specify designs

• Be able to understand Verilog  HDL description

• Be able to write a simple Verilog HDL description using a limited set of 
syntax and semantics

• Understanding the need for a “hardware view” when reading and 
writing an HDL
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• HDL introduction

• Verilog basics and syntax

• Modules

• Assignments

• Initial and always blocks

• Structural modeling

• Dangers of Verilog

• Delays

• Testbenches



Introduction
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• Hardware description language (HDL) is a language to: 
– Specify logic function at different abstraction levels.
– Simulate the intended hardware behavior
– Generate the final hardware (netlist with all components)

• Most commercial designs built using HDLs
• Leading HDLs:

– Verilog/SystemVerilog
• Developed in 1984 by Gateway Design Automation

– VHDL
• Developed in 1981 by the US Department of Defense

• We use Verilog, not VHDL, 
– VHDL is more verbose and cumbersome
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counter clk

y2 y1 y0

ld

a2
a1 a0 in

module counterdesign (
input clk, ld, a2, a1, a0, in,
output y2, y1, y0);

wire n1, n0, ninv;

counter inst1 (clk, ld, y2, y1, y0, a2, n1, n0);
assign n1 = a2 & a1;
assign n0 = ninv | in;
assign ninv = ~a0;

endmodule;

Verilog Example
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HDL role in hardware design

5

The two major purpose of HDLs are logic simulation and synthesis
• Simulation of hardware behavior

– Inputs applied to circuit
– Simulator simulates the output signals
– Outputs checked for correctness
– Millions of euros saved by debugging in simulation instead of hardware

• Synthesis
– Logic synthesizer  transforms HDL code into a netlist describing the hardware (i.e., a 

list of gates and the wires connecting them)
– Optimization is performed to reduce the amount of hardware.
– The output netlist maybe a Verilog file, or a schematic to visualize the circuit.
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HDLs vs. Software programming languages 
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• Have syntactically similar constructs: 
– Data types, variables, assignments, if statements, loops, …
Similarity ends here 

• Very different mentality and semantic model: everything runs in parallel, 
unless specified otherwise 

– Statement models hardware 
– Hardware is inherently parallel 

• Hardware descriptions are composed of modules (mostly) 
– A hierarchy of modules connected to each other 
– Modules are active at the same time

IMPORTANT: 
When using an HDL, think of the hardware the HDL should produce, then write the 
appropriate idiom that implies that hardware.
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Verilog vs VHDL vs SystemVerilog

7

• VHDL  è description language
- Strongly typed  è more compiler errors
- verbose and deterministic language

• Verilog  è modeling language
- weakly typed  è less compiler error
- C-like, easy to learn
- Less code than VHDL for the same task

• SystemVerilog è based on Verilog with more features
- it is like C++ of Verilog
- More datatypes & feature
- Easy to learn/switch to from Verilog
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Verilog basics and syntax

8

SystemVerilog Syntax

• Case sensitive
– Example: reset and Reset are not the same signal.
– Be consistent in your use of capitalization and underscores in signal and module names.

• No identifier that start with numbers 
– Example: 2mux is an invalid identifier

– Keywords è special identifier to define Verilog construct
• E.g., always, and, assign, generate, endgenerate, event, for, forever, fork, function, etc…

• Whitespace (spaces, tabs, newlines) are ignored
– Nevertheless, proper indenting and use of blank lines is helpful to make nontrivial designs readable. 

• Statements are ended with a ;
• List elements are separated with a ,
• Comments: // single line comment

– /* multiline
comment */
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Verilog operators
There are three types of operators

• Unary operators
- Operators that take only one operand
- Shall appear to the left of the operand 
- e.g., x = ~y; // ~ is a unary negation operator

• Binary operators
- Operators that take two operands
- Shall appear between the operands
- e.g., x = y & z;

• Ternary or conditional operators
- have two operators that separate three operands
- e.g., x = (y>5) ? w :  z;

9
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Bitwise ~, &, |, ^, ^~ 

Arithmetic +, -, *, /, %, >>, <<

Relational/equality >, <, >=, <=/ ==, !=

logical &&, ||, !

Operator types examples
Another way of grouping operators

9



Operator precedence

10

~ NOT
*, /, % mult, div, mod
+, - add, sub
<<, >> shift
<, <=, >, >= comparison
==, != equal, not equal
&, ~& AND, NAND
^, ~^ XOR, XNOR
|, ~| OR, NOR
?: ternary operator

Operators Meaning
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E.g.,   ~a & b + c is evaluated as  (~a) & (b + c)



Verilog lexical conventions

Concatenation & Replication Operators
{id_1, id_2, …} è Concatenates  id_2 at the end of id_1
{n{id}} è replicates id n times
§Examples: assign conc_reg = {REG_IN[6:0],Serial_in},
{8 {1’b0}} è 00000000

Binary, number and string specification
• Binary values è 0, 1, X and Z (X is unknown value and Z is high impedance state)
• Number specification è 3 ways to specify

• Simple decimal (unbased) specification è sequence of digits 0-9 e.g., 729,-365 etc
• Based sized specification è <sign> <size> ‘ <base format> <number> 

• 4’b1111 è 4-bit binary number
• -12’habc & -12s’habc è 12-bit negative hexadecimal number for unsigned & signed operation

• Based unisized specification è <sign> ‘ <base format> <number> 
• ‘o7460 è is an octal number

• String values è any value within " "
11
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• 4’b1111 è 4-bit binary number
• -12’habc & -12s’habc è 12-bit negative hexadecimal number for unsigned & signed operation

• Based unisized specification è <sign> ‘ <base format> <number> 
• ‘o7460 è is an octal number

• String values è any value within " "
11
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12

Number # Bits Base Decimal 
Equivalent

Stored

3'b101 3 binary 5 101

'b11 unsized binary 3 00…0011

8'b11 8 binary 3 00000011

8'b10101011 8 binary 171 10101011

3'd6 3 decimal 6 110

6'o42 6 octal 34 100010

8'hAB 8 hexadecimal 171 10101011

42 unsized decimal (default) 42 00…0101010

Format: N'Bvalue
N = number of bits, B = base
N'B is optional but recommended (default is decimal)
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Data types: Nets

13

• Used to connect between hardware entities e.g., gates
• They don’t store any values
• Their values is driven by the output of entities they are connected to
• A net data type must be used when a signal is:

• Driven by the output of some devices
• It is declared as an input or in-out port 
• On a left hand of a continuous assignment 

• Some net data types are wire, tri, wor, trior, wand, triand, tri0, tri1, supply0, 
supply1, and trireg

• Default value of net is ‘Z’ (except the “trireg” net, which defaults to x)
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Z’s and X’s

14

• HDLs use z to indicate a floating value (not connected to a source). 
• Similarly, HDLs use x to indicate an invalid logic level (or unknown/uninitialized value).
• z is particularly useful to describe a tristate buffer, whose output floats when the enable is 0. 
• If a bus is simultaneously driven to 0 and 1 by two enabled tristate buffers (or other gates), the 

result is x, indicating contention. 
• If all of the tristate buffers driving a bus are simultaneously OFF, the bus will float, indicated by 

z.

z 0 1
z z 0 1

0 0 0 X
1 1 X 1

bus

tristate buffer 1

tristate buffer 2

buffer 1

buffer 2

Resulting value of bus as a function of the buffer outputs

enable

enable



Data types: Registers

15

• Registers represent data storage element
• They retain the value until another value is placed to them
• Reg is a Verilog variable type and does not necessarily imply a physical 

register
• Some register data types are reg, integer, time, and real

• Reg is used to describe logic è its default value is ‘x’ 
• An integer is general-purpose variable to store signed numbers e.g., 

parameters, constants, loop-indices
• Real in system modules.
• Time and realtime for storing simulation times in test benches.

• Verilog register do not need clock as hardware registers do
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Data types: Vectors and Strings

16

• Vectors
• Nets or reg data types can be declared as vectors (multiple bit widths)
• Vectors can be declared at [high#:low#] or [low#:high#], but the left number in the 

squared brackets is always the most significant bit of the vector 

• Strings
• Each character in a string represents an ASCII value and requires 1 byte
• Strings are stored in reg
• The width of the reg variable has to be large enough to hold the string

• If the variable's size is smaller than the string, then Verilog truncates the leftmost 
bits of the string

• If the variable's size is larger than the string, then Verilog adds zeros to the left of 
the string
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17

• A module is the basic building block in Verilog
• Interfaces with outside using ports 
• Module can be an element or collection of lower-level design blocks
• Module cannot be nested
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// description of contents

endmodule
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Verilog modules

18

Module name, port list, pot declarations (if ports present)
Prameters (optional) 

Endmodule statement

Declarations of 
wires, registers and 

other variables 

Data flow 
statements 

(assignment)

Instantiation of 
lower level modules

Always and initial 
blocks behavioral 

statements

Tasks and 
functions

Module definition 
/specification

Module 
implementation

End module

Components of Verilog module



Signals and assignments
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• Signals (ports and internal nodes) can be scalar (single-bit) or vector (multi-bit busses):
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• Signals (ports and internal nodes) can be scalar (single-bit) or vector (multi-bit busses):

module func1(input [3:0] a,    // creates a[3], a[2], a[1] and a[0] 
input b,
output y);

wire [3:0] k;  // creates k[3], k[2], k[1] and k[0] 
wire n;

assign k = ~a;  // implies k[3] = ~a[3], k[2] = ~a[2] etc.
assign n = k[3] & k[2] & k[1] & k[0]; 
assign y = b | n; 

endmodule
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• Signals (ports and internal nodes) can be scalar (single-bit) or vector (multi-bit busses):

module func1(input [3:0] a,    // creates a[3], a[2], a[1] and a[0] 
input b,
output y);

wire [3:0] k;  // creates k[3], k[2], k[1] and k[0] 
wire n;

assign k = ~a;  // implies k[3] = ~a[3], k[2] = ~a[2] etc.
assign n = k[3] & k[2] & k[1] & k[0]; 
assign y = b | n; 

endmodule

a[3]

a[2]

a[1]

a[0]

k[3]

k[2]

k[1]

k[0]

n

b

y

Equivalent circuit
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module does using programming 
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module nand3(input a, b, c,
output y);

wire n1;

assign n1 = a & b & c;   
assign y = ~n1;

endmodule

n1 is an intermediate signal
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Verilog modules

20

Two types of content descriptions within Modules:

module nand3(input a, b, c
output y);

wire n1, n2;                   

and3 i1 (a, b, c, n1);  
inv  i2 (n1, n2);  
assign y = n2;     

endmodule

– Behavioral: describe what the 
module does using programming 
language like constructs

– Structural: describe how it is 
built from other modules

module nand3(input a, b, c,
output y);

wire n1;

assign n1 = a & b & c;   
assign y = ~n1;

endmodule

and3 and inv are other modules 
that are described elsewhere

n1 is an intermediate signal

80
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In general, the order of statements is not important  (they just describe contents):

module nand3(input a, b, c
output y);

wire n1, n2;                   

and3 i1 (a, b, c, n1);  
inv  i2 (n1, n2);  
assign y = n2;     

endmodule

module nand3(input a, b, c,
output y);

wire n1;

assign n1 = a & b & c;   
assign y = ~n1;

endmodule

is equivalent tois equivalent to
module nand3(input a, b, c

output y);
wire n1,  n2;                   

inv  i2 (n1, n2);       
and3 i1 (a, b, c, n1);
assign y = n2;  

endmodule

module nand3(input a, b, c,
output y);

wire n1;

assign y = ~n1;
assign n1 = a & b & c;   
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85



Bitwise operator module example

22

• Bitwise operators act on single-bit signals or on multi-bit busses:



Bitwise operator module example
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module gates(input [3:0]  a, b,
output [3:0] y1, y2, y3, y4, y5);

/* Five different two-input logic 
gates acting on 4 bit busses */

assign y1 = a & b;    // AND
assign y2 = a | b;    // OR
assign y3 = a ^ b;    // XOR
assign y4 = ~(a & b); // NAND
assign y5 = ~(a | b); // NOR

endmodule

• Bitwise operators act on single-bit signals or on multi-bit busses:



Bitwise operator module example
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module gates(input [3:0]  a, b,
output [3:0] y1, y2, y3, y4, y5);

/* Five different two-input logic 
gates acting on 4 bit busses */

assign y1 = a & b;    // AND
assign y2 = a | b;    // OR
assign y3 = a ^ b;    // XOR
assign y4 = ~(a & b); // NAND
assign y5 = ~(a | b); // NOR

endmodule

Synthesis:

• Bitwise operators act on single-bit signals or on multi-bit busses:



Reduction operator module example

23

• Reduction operators imply a multiple-input gate acting on a single bus.
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module and8(input [7:0] a, 
output y);

assign y = &a;   // &a is much easier to write than
// assign y = a[7] & a[6] & a[5] & a[4] &
//            a[3] & a[2] & a[1] & a[0];

endmodule

• Reduction operators imply a multiple-input gate acting on a single bus.
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Synthesis:

• Reduction operators imply a multiple-input gate acting on a single bus.



Conditional assignment

24

• Conditional assignments select the output from alternatives based on an input called the 
condition.
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module mux2(input [3:0] d0, d1, 
input s,
output [3:0] y);

assign y = s ? d1 : d0; 

endmodule

If s is 1,then y = d1 else y = d0.

? : is also called a ternary operator because it   
operates on 3 inputs: s, d1, and d0.

• Conditional assignments select the output from alternatives based on an input called the 
condition.
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• Conditional assignments select the output from alternatives based on an input called the 
condition.



Blocking and non blocking assignment statements

25

Non blocking assignment
• It is represented with the sign “<=“
• Its execution is concurrent with the 

previous or next assignment statements

• It is illegal to use non blocking assignments 
in a continuous assignment statement or in 
a net declaration.

Blocking assignment
• It is represented with the sign “=“
• Its execution is sequentially i.e., one statement is 

executed at a time

• It is illegal to use blocking assignments in a 
continuous assignment statement or in a net 
declaration.
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• It is illegal to use non blocking assignments 
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Internal variables

26

• Often it’s convenient to break a complex function into intermediate steps and introduce 
internal nodes.
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module fulladder(input a, b, cin, 
output s, cout);

wire p, g;   // internal nodes

assign p = a ^ b;
assign g = a & b;

assign s = p ^ cin;
assign cout = g | (p & cin);

endmodule

• Often it’s convenient to break a complex function into intermediate steps and introduce 
internal nodes.



Internal variables

26

module fulladder(input a, b, cin, 
output s, cout);

wire p, g;   // internal nodes

assign p = a ^ b;
assign g = a & b;

assign s = p ^ cin;
assign cout = g | (p & cin);

endmodule

Synthesis:

p

g s

un1_cout cout

cout

s

cin

b
a

• Often it’s convenient to break a complex function into intermediate steps and introduce 
internal nodes.

During synthesis, additional internal 
nodes (e.g. un1_cout) may be created



Z’s and X’s

27

module tristate(input [3:0] a, 
input en, 
output tri   [3:0] y);

assign y = en ? a : 4'bz;
endmodule



Z’s and X’s
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module tristate(input [3:0] a, 
input en, 
output tri   [3:0] y);

assign y = en ? a : 4'bz;
endmodule

y_1[3:0]

y[3:0][3:0]
en

a[3:0] [3:0] [3:0][3:0]

Synthesis:



The initial and always blocks

28

• The always block executes freely/whenever one of the signals in 
the list has a transition according to the way it is written

• Could also write it with ANDs such that all the signals used must 
have a transition

• The initial block executes only once

• Both blocks starts execution at the beginning of the simulation 
(time zero)
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module and3(input a, b, c,
output y);

assign y = a & b & c;
endmodule

module inv(input x,
output y);

assign y = ~x;
endmodule

module nand3(input a, b, c,
output y);

wire n1, n2;                   // internal signal

and3 i1(a, b, c, n1);  // instance of and3
inv  i2(n1, n2);        // instance of inv
assign y2 = n2

endmodule

Structural Verilog

29

• The previous sections 
discussed behavioral 
modeling: describing a 
module in terms of the 
relationships between inputs 
and outputs. 

• This section examines 
structural modeling: 
describing a module in terms 
of how it is composed of 
simpler modules.

• At the lowest level (leaf 
modules) you always need to 
use behavioral modelling.
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Structural Verilog
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Example• The previous sections 
discussed behavioral 
modeling: describing a 
module in terms of the 
relationships between inputs 
and outputs. 

• This section examines 
structural modeling: 
describing a module in terms 
of how it is composed of 
simpler modules.

• At the lowest level (leaf 
modules) you always need to 
use behavioral modelling.
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module and3(input a, b, c,
output y);

assign y = a & b & c;
endmodule

module inv(input x,
output y);

assign y = ~x;
endmodule

module nand3(input a, b, c,
output y);

wire n1;                   

and3 i1(.a(a), .b(b), .c(c), .y(n1));
inv  i2(.x(n1), .y(y));

endmodule

• Alternative specification of port connections



Structural Verilog

30

module and3(input a, b, c,
output y);

assign y = a & b & c;
endmodule

module inv(input x,
output y);

assign y = ~x;
endmodule

module nand3(input a, b, c,
output y);

wire n1;                   

and3 i1(.a(a), .b(b), .c(c), .y(n1));
inv  i2(.x(n1), .y(y));

endmodule

• Alternative specification of port connections



Structural Verilog

30

module and3(input a, b, c,
output y);

assign y = a & b & c;
endmodule

module inv(input x,
output y);

assign y = ~x;
endmodule

module nand3(input a, b, c,
output y);

wire n1;                   

and3 i1(.a(a), .b(b), .c(c), .y(n1));
inv  i2(.x(n1), .y(y));

endmodule

• Alternative specification of port connections



Structural modelling: 4:1 multiplexer

31

module mux4(input [3:0] d0, d1, d2, d3, 
input [1:0] s, 
output [3:0] y); 

wire [3:0] low, high; 

mux2 lowmux(d0, d1, s[0], low); 
mux2 highmux(d2, d3, s[0], high); 
mux2 finalmux(low, high, s[1], y);

endmodule
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module mux4(input [3:0] d0, d1, d2, d3, 
input [1:0] s, 
output [3:0] y); 

wire [3:0] low, high; 
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module mux3(input a, b, c, 
input [1:0] sel, 
output out);

reg out_; 
assign out = out_;
always@(a or b or c or sel)
begin 

case (sel) 
2'b00: out_ = a; 
2'b01: out_ = b; 
2'b10: out_ = c; 

endcase
end 

endmodule

Written Verilog Code:Intended design
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module mux3(input a, b, c, 
input [1:0] sel, 
output out);

reg out_; 
assign out = out_;
always@(a or b or c or sel)
begin 

case (sel) 
2'b00: out_ = a; 
2'b01: out_ = b; 
2'b10: out_ = c; 

endcase
end 

endmodule

Written Verilog Code:Intended design

Is this a 3-1 
multiplexer? 
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Written Verilog Code:Intended design Synthesized result

if out is not assigned during any 
pass through the always block, then 
the previous value must be retained!
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module mux3(input a, b, c, 
input [1:0] sel, 
output out);

reg out_ 
assign out = out_
always@(a or b or c or sel)
begin 

case (sel) 
2'b00: out_ = a;
2'b01: out_ = b;
2'b10: out_ = c;

endcase
end 
endmodule

Written Verilog Code:Intended design Synthesized result

Latch memory “latches” old 
data when G=0 

if out is not assigned during any 
pass through the always block, then 
the previous value must be retained!
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• Precede all conditionals with a default 
assignment for all signals assigned within 
them... 

• ...or, fully specify all branches of 
conditionals and assign all signals from all 
branches 

For each if, include else For each case, 
include default 

always@(a or b or c or sel)
begin 

out_ = 1’bx;
case (sel) 

2'b00: out_ = a; 
2'b01: out_ = b; 
2'b10: out_ = c; 

endcase
end 
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assignment for all signals assigned within 
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• ...or, fully specify all branches of 
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module encoder(input [3:0]i, 
output [1:0] e); 

reg [1:0]e_;
assign e<=e_;

always @(i) 
begin 

if (i[0]) e = 2’b00; 
else if (i[1]) e_ = 2’b01; 
else if (i[2]) e_ = 2’b10; 
else if (i[3]) e_ = 2’b11; 
else e_ = 2’bxx; 

end 
endmodule

Written Verilog Code:Intended design
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module encoder(input [3:0]i, 
output [1:0] e); 

reg [1:0]e_;
assign e<=e_;

always @(i) 
begin 

if (i[0]) e = 2’b00; 
else if (i[1]) e_ = 2’b01; 
else if (i[2]) e_ = 2’b10; 
else if (i[3]) e_ = 2’b11; 
else e_ = 2’bxx; 

end 
endmodule

Written Verilog Code:Intended design

What is the resulting circuit? 
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Dangers of Verilog: Priority logic

36

Intent: if more than one input is 1, 
the result is a don’t-care. 

Code: if i[0] is 1, the result is 00 regardless of the 
other inputs. i[0] takes the highest priority. 

if-else and case statements are interpreted literally! Beware of unintended 
priority logic. 
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Make sure that if-else and case statements are parallel 
If mutually exclusive conditions are chosen for each branch... 
...then synthesis tool can generate a simpler circuit that evaluates the branches in parallel 

Parallel Code:
module encoder(input [3:0]i, 

output [1:0] e); 
reg [1:0]e_;
assign e<=e_;

always @(i) 
begin 

if (i = 4’b0001) e = 2’b00; 
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end 
endmodule
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Make sure that if-else and case statements are parallel 
If mutually exclusive conditions are chosen for each branch... 
...then synthesis tool can generate a simpler circuit that evaluates the branches in parallel 

Parallel Code:
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Minimized synthesis result

Why I2 is missing?

Optimization

E0 =1 when only I1 or I3 is 1

E1 =1 when both I0 and I1 are 0



Avoiding unintended priority logic 
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Make sure that if-else and case statements are parallel 
If mutually exclusive conditions are chosen for each branch... 
...then synthesis tool can generate a simpler circuit that evaluates the branches in parallel 

Parallel Code:
module encoder(input [3:0]i, 

output [1:0] e); 
reg [1:0]e_;
assign e<=e_;

always @(i) 
begin 

if (i = 4’b0001) e = 2’b00; 
else if (i = 4’b0010) e_ = 2’b01; 
else if (i = 4’b0100) e_ = 2’b10; 
else if (i = 4’b1000) e_ = 2’b11; 
else e_ = 2’bxx; 

end 
endmodule

Minimized synthesis result

Why I2 is missing?

Optimization

E0 =1 when only I1 or I3 is 1

E1 =1 when both I0 and I1 are 0

Therefore, I2 can be safely optimized



Delays

38

module example(input a, b, c,
output y);

wire ab, bb, cb, n1, n2, n3;
assign #1 {ab, bb, cb} = ~{a, b, c};
assign #2 n1 = ab & bb & cb;
assign #2 n2 = a & bb & cb;
assign #2 n3 = a & bb & c;
assign #4 y = n1 | n2 | n3;

endmodule
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module example(input a, b, c,
output y);

wire ab, bb, cb, n1, n2, n3;
assign #1 {ab, bb, cb} = ~{a, b, c};
assign #2 n1 = ab & bb & cb;
assign #2 n2 = a & bb & cb;
assign #2 n3 = a & bb & c;
assign #4 y = n1 | n2 | n3;

endmodule

• The delay for each assignment is 
specified: time between change 
of input and update of output.

• Delays are for simulation only! 
They do not determine the delay 
of the circuit after synthesis.
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module example(input a, b, c,
output y);

wire ab, bb, cb, n1, n2, n3;
assign #1 {ab, bb, cb} = ~{a, b, c};
assign #2 n1 = ab & bb & cb;
assign #2 n2 = a & bb & cb;
assign #2 n3 = a & bb & c;
assign #4 y = n1 | n2 | n3;

endmodule Simulation

• The delay for each assignment is 
specified: time between change 
of input and update of output.

• Delays are for simulation only! 
They do not determine the delay 
of the circuit after synthesis.
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Updates triggered by events on a, b, c

module example(input a, b, c,
output y);

wire ab, bb, cb, n1, n2, n3;
assign #1 {ab, bb, cb} = ~{a, b, c};
assign #3 n1 = ab & bb & cb;
assign #2 n2 = a & bb & cb;
assign #2 n3 = a & bb & c;
assign #4 y = n1 | n2 | n3;

endmodule

Simulation
1
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module example(input a, b, c,
output y);

wire ab, bb, cb, n1, n2, n3;
assign #1 {ab, bb, cb} = ~{a, b, c};
assign #3 n1 = ab & bb & cb;
assign #2 n2 = a & bb & cb;
assign #2 n3 = a & bb & c;
assign #4 y = n1 | n2 | n3;

endmodule

Simulation
2Updates triggered by event on a
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module example(input a, b, c,
output y);

wire ab, bb, cb, n1, n2, n3;
assign #1 {ab, bb, cb} = ~{a, b, c};
assign #3 n1 = ab & bb & cb;
assign #2 n2 = a & bb & cb;
assign #2 n3 = a & bb & c;
assign #4 y = n1 | n2 | n3;

endmodule

Simulation

3

Update triggered by events on ab, bb, cb
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module example(input a, b, c,
output y);

wire ab, bb, cb, n1, n2, n3;
assign #1 {ab, bb, cb} = ~{a, b, c};
assign #3 n1 = ab & bb & cb;
assign #2 n2 = a & bb & cb;
assign #2 n3 = a & bb & c;
assign #4 y = n1 | n2 | n3;

endmodule

Simulation

4

Update triggered by event on n1



Verilog simulation & synthesis

43

module example(input a, b, c,
output y);

assign y = ~a & ~b & ~c | a & ~b & ~c | a & ~b &  c;
endmodule
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module example(input a, b, c,
output y);

assign y = ~a & ~b & ~c | a & ~b & ~c | a & ~b &  c;
endmodule

Simulation Results 
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module example(input a, b, c,
output y);

assign y = ~a & ~b & ~c | a & ~b & ~c | a & ~b &  c;
endmodule

Simulation Results 

un5_y

un8_y

y

yc
b

a

Synthesis Results

note the 
optimization
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• Types:

– Simple
– Self-checking
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• HDL module that tests another module: device under test (dut)
• Not synthesizable
• Types:
– Simple
– Self-checking

dut module

testbench module

checking of 
output signals

generation of 
input signals
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Write Verilog code to implement the following function in 
hardware. Name the module myfunction.

y = bc + ab

module myfunction(input a, b, c, 
output y);

assign y = ~b & ~c | a & ~b;
endmodule



Testbench 1: Simple testbench

46

module tb1();
reg a, b, c;
wire y;
// instantiate device under test
myfunction dut(a, b, c, y);
// apply new set of inputs every 10 time-units
initial begin
a = 0; b = 0; c = 0; #10; //apply inputs, wait 10ns 

c = 1; #10; //change the value of c, wait 10ns
b = 1; c = 0; #10; //change the values of b & c, wait 10ns

c = 1; #10; //etc
a = 1; b = 0; c = 0; #10;

c = 1; #10;
b = 1; c = 0; #10;

c = 1; #10;
end

endmodule
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module tb1();
reg a, b, c;
wire y;
// instantiate device under test
myfunction dut(a, b, c, y);
// apply new set of inputs every 10 time-units
initial begin
a = 0; b = 0; c = 0; #10; //apply inputs, wait 10ns 

c = 1; #10; //change the value of c, wait 10ns
b = 1; c = 0; #10; //change the values of b & c, wait 10ns

c = 1; #10; //etc
a = 1; b = 0; c = 0; #10;

c = 1; #10;
b = 1; c = 0; #10;

c = 1; #10;
end

endmodule



Simulation result
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module tb1();
reg a, b, c;
wire y;
// instantiate device under test
myfunction dut(.a(a), .b(b), .c(c), .y(y));
// apply new set of inputs every 10 time-units
initial begin

a = 0; b = 0; c = 0; #10; //apply inputs, wait 10ns 
c = 1; #10; //change the value of c, wait 10ns

b = 1; c = 0; #10; //change the values of b & c, wait 10ns
c = 1; #10; //etc

a = 1; b = 0; c = 0; #10;
c = 1; #10;

b = 1; c = 0; #10;
c = 1; #10;

end
endmodule



Testbench 2: Self-checking testbench
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module tb2();
reg  a, b, c;
wire y;
// instantiate dut
myfunction dut(.a(a), .b(b), .c(c), .y(y));  
// apply inputs, check results one at a time
initial begin
a = 0; b = 0; c = 0; #10;  if (y !== 1) $display("000 failed.");

c = 1; #10;  if (y !== 0) $display("001 failed.");
b = 1; c = 0; #10;  if (y !== 0) $display("010 failed.");

c = 1; #10;  if (y !== 0) $display("011 failed.");
a = 1; b = 0; c = 0; #10;  if (y !== 1) $display("100 failed.");

c = 1; #10;  if (y !== 1) $display("101 failed.");
b = 1; c = 0; #10;  if (y !== 0) $display("110 failed.");

c = 1; #10;  if (y !== 0) $display("111 failed.");
end

endmodule



Thank you
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