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Overview

• Recap

• Usage of the always statement

• More on blocking and nonblocking assignments

• Demo circuits

• D Flip-flop
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• Decoders
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In general always block can also be used with/without sensitivity list

When it has no sensitivity list, the block is evaluated whenever one of the module 
inputs change.

When it has a sensitivity list, the block is evaluated whenever one of the signal in 
the sensitivity list changes value.

always @(a, b, cin)

Where signal names in the sensitivity list may be preceded by posedge or negedge
to indicate that evaluation is triggered by only a rising edge or falling edge event.

For flip-flops (registers), latches and combinational circuits the usage of respectively 
always_ff, always_latch and always_comb is preferred. 
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always_comb begin

if (s = 1)begin

y = x1;

else y = x0; 
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always_comb begin

if (s = 1)begin

y = x1;
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endok wrong
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module FA(input a, b, cin,

output s, cout);

wire p,q;

always_comb

begin

p = a ^ b;

g = a & b;

s = p ^ cin;

cout = g | (p & cin);

end

endmodule

Best practice:

➔ Only use non-blocking assignment for sequential logic (e.g., FF)
➔Mainly use blocking assignment for combinational logic
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• Synchronous sequential logic: use always_ff @(posedge clk) 

and nonblocking assignments (<=)

always_ff @(posedge clk)

q <= d; // nonblocking

• Simple combinational logic: use continuous assignments (assign…)

assign y = a & b; 

• More complicated combinational logic: use always_comb and blocking 
assignments (=)

• In an always_comb block, assign a value to each output for all input 
combinations. 

• Assign a signal in only one always statement or continuous assignment 
statement. ➔ avoids conflicting signal assignment
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module sevenseg(input [3:0] data, 

output [6:0] segments); 

always_comb

begin

case(data) 

0: segments = 7'b111_1110; 

1: segments = 7'b011_0000; 

2: segments = 7'b110_1101; 

3: segments = 7'b111_1001; 

4: segments = 7'b011_0011; 

5: segments = 7'b101_1011; 

6: segments = 7'b101_1111; 

7: segments = 7'b111_0000; 

8: segments = 7'b111_1111; 

9: segments = 7'b111_0011; 

default: segments = 7'b000_0000; 

endcase

end

endmodule

A combinational circuit for a seven-segment display decoder that uses a case statement
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module sevenseg(input [3:0] data, 

output [6:0] segments); 

always_comb

begin

case(data) 

0: segments = 7'b111_1110; 

1: segments = 7'b011_0000; 

2: segments = 7'b110_1101; 

3: segments = 7'b111_1001; 

4: segments = 7'b011_0011; 

5: segments = 7'b101_1011; 

6: segments = 7'b101_1111; 

7: segments = 7'b111_0000; 

8: segments = 7'b111_1111; 

9: segments = 7'b111_0011; 

default: segments = 7'b000_0000; 

endcase

end

endmodule

A combinational circuit for a seven-segment display decoder that uses a case statement

Synthesis:
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module priorityckt(input [3:0] a,

output [3:0] y); 

always_comb

begin

if      (a[3]) y = 4'b1000; 

else if (a[2]) y = 4'b0100; 

else if (a[1]) y = 4'b0010; 

else if (a[0]) y = 4'b0001; 

else           y = 4'b0000;

end

endmodule

A priority circuit that uses a nested if-else statement
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module priorityckt(input [3:0] a,

output [3:0] y); 

always_comb

begin

if      (a[3]) y = 4'b1000; 

else if (a[2]) y = 4'b0100; 

else if (a[1]) y = 4'b0010; 

else if (a[0]) y = 4'b0001; 

else           y = 4'b0000;

end

endmodule

A priority circuit that uses a nested if-else statement

Synthesis:
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module priority_case(input [3:0] a, 

output [3:0] y);

always_comb

begin

case(a)

4'b1???: y = 4'b1000; // ? = don’t care

4'b01??: y = 4'b0100;

4'b001?: y = 4'b0010;

4'b0001: y = 4'b0001;

default: y = 4'b0000;

endcase

end

endmodule

• Truth tables may include don’t cares to allow more logic simplification. 
• The following shows how to describe the previous priority circuit with a case statement, which allows don’t 

cares to be used.
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module priority_case(input [3:0] a, 

output [3:0] y);

always_comb
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4'b001?: y = 4'b0010;
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endcase

end
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Synthesis:

• Truth tables may include don’t cares to allow more logic simplification. 
• The following shows how to describe the previous priority circuit with a case statement, which allows don’t 

cares to be used.
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module dff(input clk, 

input d, 

output q);
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It is good practice to use resettable registers so that on powerup you can put your 
system in a known state. 
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always_ff @(posedge clk)

if (reset = 1) q <= 0; 

else q <= d; 

with synchronous reset, the reset 
is done only on rising clock edge

It is good practice to use resettable registers so that on powerup you can put your 
system in a known state. 
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always_ff @(posedge clk)

if (reset = 1) q <= 0; 

else q <= d; 

always_ff @(posedge clk, posedge reset) 

if (reset = 1) q <= 0; 

else q <= d; 

with synchronous reset, the reset 
is done only on rising clock edge

with asynchronous reset, the reset is 
done any moment reset becomes 1

It is good practice to use resettable registers so that on powerup you can put your 
system in a known state. 
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The block always_latch is used to describe a latch
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Describing a latch
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always_latch

if (clk) q <= d;   // when clk = 1, q gets value of d

// when clk = 0, q remembers its value

d q

clk

D

latch

The block always_latch is evaluated whenever one of the inputs (clk or d) 
changes value

Normally, it is not a good idea to use latches in your circuit: they are transparent as 
long as clk = 1, so problematic combinational feedback loops may occur.

The block always_latch is used to describe a latch



Registers

15

The following example shows a 4-bit register with asynchronous reset and enable. 

It retains its old value if both reset and en are FALSE.
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module register4bit(input clk, reset, en, [3:0] d, 

output [3:0] q);

// asynchronous reset

always_ff @(posedge clk, posedge reset)

if      (reset) q <= 4'b0;

else if (en)    q <= d;

endmodule

The following example shows a 4-bit register with asynchronous reset and enable. 

It retains its old value if both reset and en are FALSE.
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module register4bit(input clk, reset, en, [3:0] d, 

output [3:0] q);

// asynchronous reset

always_ff @(posedge clk, posedge reset)

if      (reset) q <= 4'b0;

else if (en)    q <= d;

endmodule

Synthesis:

The following example shows a 4-bit register with asynchronous reset and enable. 

It retains its old value if both reset and en are FALSE.
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module EvenOddFSM(input clk, reset, in 

output reg isEven);

reg state, nextstate;  

parameter EVEN == 0;

Parameter ODD = 1; 

initial begin

state = EVEN;

end

always_ff @(posedge clk, posedge reset) begin   

if (reset) state <= EVEN; // non-blocking <=

else       state <= nextstate;

end

// next state logic

always_comb

begin

case (state)

EVEN: begin

isEven = 0;

if(in) nextstate = ODD;

else nextstate = EVEN;

end

ODD: begin

isEven = 1;

if(in) nextstate = EVEN;

else nextstate = ODD;

end

default: begin

isEven = 0’bx;

nextstate = 0’bx;

end

endcase

end

endmodule

EVEN ODD

isEven = 0 IsEven = 1

1

1

0 0

RESET
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if (reset) state <= EVEN; 

else       state <= nextstate;
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end

What is the difference?
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module EvenOddFSM(input clk, reset, in 

output reg isEven);

reg state, nextstate;  

parameter EVEN == 0;

Parameter ODD = 1; 

initial begin

state = EVEN;

end

always_ff @(posedge clk, posedge reset) begin   

if (reset) state <= EVEN; // non-blocking <=

else       state <= nextstate;

end

// next state logic

always_comb

begin

case (state)

EVEN: begin

isEven = 0;

if(in) nextstate = ODD;

else nextstate = EVEN;

end

ODD: begin

isEven = 1;

if(in) nextstate = EVEN;

else nextstate = ODD;

end

default: begin

isEven = 0’bx;

nextstate = 0’bx;

end

endcase

end

endmodule

Note that a default case is used in the combinational block, to 
be sure that output nextstate receives a value in all cases.
- The initial blocks sets the FSM to start at EVEN state
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always_ff @(posedge clk) begin   

if (reset) state <= EVEN; 

else       state <= nextstate;

end
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Which sequence will be detected?
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module seqDetectMoore(input clk, reset, a,

output smile);

parameter S0 = 00;

parameter S1 = 01;

parameter S2 = 10; 

reg state, nextstate;  

// state register

always_ff @(posedge clk, posedge reset)

if (reset) state <= S0;

else       state <= nextstate;

// next state logic

always_comb

case (state)

S0:      if (a) nextstate = S0; 

else   nextstate = S1;

S1:      if (a) nextstate = S2;

else   nextstate = S1;

S2:      if (a) nextstate = S0;

else   nextstate = S1;

default:        nextstate = S0;

endcase

// output logic

assign smile = (state == S2);

endmodule
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state

logic

output

logic
inputs outputs

state
next

state

clkclk

reset
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Reset
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Reset

S0 S1

1/1

0/0

1/0 0/0

Mealy FSMmodule seqDetectMealy(input clk, reset, a,

output smile);

parameter S0 = 0;

parameter S1 = 1;

reg state, nextstate;  

// state register

always_ff @(posedge clk, posedge reset)

if (reset) state <= S0;

else       state <= nextstate;

// next state and output logic

always_comb begin

// make sure smile receives value in all cases.

smile = 1’b0; 

case (state)

S0:    if (a)   nextstate = S0;

else     nextstate = S1;

S1:    if (a) begin

nextstate = S0;

smile = 1'b1;

end

else     nextstate = S1;

default:        nextstate = S0;

endcase

end

endmodule

clkclk

reset
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Mealy FSMmodule seqDetectMealy(input clk, reset, a,

output smile);

parameter S0 = 0;

parameter S1 = 1;

reg state, nextstate;  

// state register

always_ff @(posedge clk, posedge reset)

if (reset) state <= S0;

else       state <= nextstate;

// next state and output logic

always_comb begin

// make sure smile receives value in all cases.

smile = 1’b0; 

case (state)

S0:    if (a)   nextstate = S0;

else     nextstate = S1;

S1:    if (a) begin

nextstate = S0;

smile = 1'b1;

end

else     nextstate = S1;

default:        nextstate = S0;

endcase

end

endmodule

Synthesis:

clkclk

reset



FSM Testbench

`timescale 1ns/1ps

module seqDetectMoore_tb();

reg clk, reset, a;

wire smile;

seqDetectMoore dut (clk, reset, a, smile);

initial
clk = 0;  

always

#10 clk = ~clk;

initial begin

reset = 1; a = 0; 
#20; reset = 0; 

#20;            a = 1;

end

endmodule
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FSM Testbench

`timescale 1ns/1ps

module seqDetectMoore_tb();

reg clk, reset, a;

wire smile;

seqDetectMoore dut (clk, reset, a, smile);

initial
clk = 0;  

always

#10 clk = ~clk;

initial begin

reset = 1; a = 0; 
#20; reset = 0; 

#20;            a = 1;

end

endmodule
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1
0

0 1
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Important: to avoid setup/hold time violations, do not change input signals on 
the rising clock edge.  Instead, do it on the negative clock edge. 
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A counter can be considered as a FSM that adds 1 to its state in its next state logic.  
Usually there is no output logic. 
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Counter
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module counter(input clk, reset, enable,

output [7:0] count);

reg [7:0] next_count;

// register

always_ff@(posedge clk)

begin

if (reset) count <= 0;

else count <= next_count;

end

// next state logic 

always_comb

begin

if (enable) next_count <= count + 1;

else next_count <= count;

end 

endmodule

A counter can be considered as a FSM that adds 1 to its state in its next state logic.  
Usually there is no output logic. 
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logic

output

logic
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next
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reset
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module counter_tb();

reg clk;

reg reset;

reg enable;

wire [7:0] count;

counter dut (clk, reset, enable, count);

always

#10 clk = ~clk;

initial

clk = 0;

initial begin

reset = 1; enable = 0; 

#20; reset = 0; 

#40;            enable = 1;

end

endmodule
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module counter_tb();

reg clk;

reg reset;

reg enable;

wire [7:0] count;

counter dut (clk, reset, enable, count);

always

#10 clk = ~clk;

initial

clk = 0;

initial begin

reset = 1; enable = 0; 

#20; reset = 0; 

#40;            enable = 1;

end

endmodule
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28

• Simplest design: cascade full adders

• Critical path goes from Cin to Cout

• Design full adder to have fast carry delay
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Simple multi-bit adder

28

• Simplest design: cascade full adders

• Critical path goes from Cin to Cout

• Design full adder to have fast carry delay

• Commonly known as ripple-carry adder

• Named from its carry-chain structure
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module HA( input A, B,
output S,Cout );

assign S = a ^ b;
assign Cout = a & b;

endmodule
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module HA( input A, B,
output S,Cout );

assign S = a ^ b;
assign Cout = a & b;

endmodule

module FA( input A, B, C 
output S, Cout );
Wire p,q;

assign p = B ^ A;
Assign q= A & B;
assign S = p ^ C;
assign Cout = q | (p & C);
endmodule



Full adder impementation in verilog

30

Behavioural verilog implemntation Structural verilog implementation
module FA( input A, B, C 
output S, Cout );
Wire p,q;

assign p = B ^ A;
Assign q= A & B;
assign S = p ^ C;
assign Cout = q | (p & C);
endmodule
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Behavioural verilog implemntation Structural verilog implementation

module FA_Behavioral_( input A, B, C, output S, Cout ); 

reg[1:0] temp; 

always @(*) 
begin
temp = {1’b0,A} + {1’b0,B}+{1’b0,C}; 
end
assign S = temp[0]; 
assign Cout = temp[1]; 
endmodule

module FA( input A, B, C 
output S, Cout );
Wire p,q;

assign p = B ^ A;
Assign q= A & B;
assign S = p ^ C;
assign Cout = q | (p & C);
endmodule

Equivalent



Full adder impementation in verilog

30

Behavioural verilog implemntation Structural verilog implementation

module FA_Behavioral_( input A, B, C, output S, Cout ); 

reg[1:0] temp; 

always @(*) 
begin
temp = {1’b0,A} + {1’b0,B}+{1’b0,C}; 
end
assign S = temp[0]; 
assign Cout = temp[1]; 
endmodule

HA1
HA2A

B

C

S

Cout

module FA( input A, B, C 
output S, Cout );
Wire p,q;

assign p = B ^ A;
Assign q= A & B;
assign S = p ^ C;
assign Cout = q | (p & C);
endmodule

Equivalent



Full adder impementation in verilog

30

Behavioural verilog implemntation Structural verilog implementation

module FA_Behavioral_( input A, B, C, output S, Cout ); 

reg[1:0] temp; 

always @(*) 
begin
temp = {1’b0,A} + {1’b0,B}+{1’b0,C}; 
end
assign S = temp[0]; 
assign Cout = temp[1]; 
endmodule

HA1
HA2A

B

C

S

Cout

module HA( input A, B,
output S,Cout );

assign S = a ^ b;
assign Cout = a & b;

endmodule

module FA( input A, B, C 
output S, Cout );
Wire p,q;

assign p = B ^ A;
Assign q= A & B;
assign S = p ^ C;
assign Cout = q | (p & C);
endmodule

Equivalent



Full adder impementation in verilog

30

Behavioural verilog implemntation Structural verilog implementation

module FA_Behavioral_( input A, B, C, output S, Cout ); 

reg[1:0] temp; 

always @(*) 
begin
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end
assign S = temp[0]; 
assign Cout = temp[1]; 
endmodule
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module FA( input A, B, C,
output S, Cout );
wire c0,c1,so;
HA ha0(A, b, So, c0);
HA ha1(C, so, S,c1);
assign carry = c0 | c1 ;
endmodule

module HA( input A, B,
output S,Cout );

assign S = a ^ b;
assign Cout = a & b;

endmodule

module FA( input A, B, C 
output S, Cout );
Wire p,q;

assign p = B ^ A;
Assign q= A & B;
assign S = p ^ C;
assign Cout = q | (p & C);
endmodule

Equivalent



Verilog for Ripple Carry Adder (RCA)
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module nbit_RCA( input [7:0] a, [7:0] b, cin,

output [7:0] sum, cout);

wire [7:1] carry; /* transfers the carry between bits */

FA a0(a[0],b[0],cin,sum[0],carry[1]);

FA a1(a[1],b[1],carry[1],sum[1],carry[2]);

FA a2(a[2],b[2], carry[2],sum[2],carry[3]);

FA a3(a[3],b[3],carry[3],sum[3],carry[4]);

FA a4(a[4],b[4], carry[4],sum[4],carry[5]);

FA a5(a[5],b[5],carry[5],sum[5],carry[6]);

FA a6(a[6],b[6], carry[6],sum[6],carry[7]);

FA a7(a[7],b[7],carry[7],sum[7], cout);

endmodule
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module nbit_RCA( input [7:0] a, [7:0] b, cin,

output [7:0] sum, cout);

wire [7:1] carry; /* transfers the carry between bits */

FA a0(a[0],b[0],cin,sum[0],carry[1]);

FA a1(a[1],b[1],carry[1],sum[1],carry[2]);

FA a2(a[2],b[2], carry[2],sum[2],carry[3]);

FA a3(a[3],b[3],carry[3],sum[3],carry[4]);

FA a4(a[4],b[4], carry[4],sum[4],carry[5]);

FA a5(a[5],b[5],carry[5],sum[5],carry[6]);

FA a6(a[6],b[6], carry[6],sum[6],carry[7]);

FA a7(a[7],b[7],carry[7],sum[7], cout);

endmodule

Carry propagation time is a problem!!

Reduce the carry propagation time.
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module nbit_RCA( input [7:0] a, [7:0] b, cin,

output [7:0] sum, cout);

wire [7:1] carry; /* transfers the carry between bits */

FA a0(a[0],b[0],cin,sum[0],carry[1]);

FA a1(a[1],b[1],carry[1],sum[1],carry[2]);

FA a2(a[2],b[2], carry[2],sum[2],carry[3]);

FA a3(a[3],b[3],carry[3],sum[3],carry[4]);

FA a4(a[4],b[4], carry[4],sum[4],carry[5]);

FA a5(a[5],b[5],carry[5],sum[5],carry[6]);

FA a6(a[6],b[6], carry[6],sum[6],carry[7]);

FA a7(a[7],b[7],carry[7],sum[7], cout);

endmodule

Carry propagation time is a problem!!

Reduce the carry propagation time.

How to do it?

Complex adders with circuitry to detect carry 

generation/completion

Not part of this lecture
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Example: Three-to-eight decoder
• Decoder is a combinational circuit that 

change the binary information into 
2N output lines

• Performs the reverse operation of 
encoder



Decoders

32

x y z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0
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• Performs the reverse operation of 
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x y z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

O0 O1 O2 O3 O4 O5 O6 O7

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Example: Three-to-eight decoder

Truth table of a three-to-Eight (3:8) decoder

Converts binary information from n input lines to 2n unique output

Or the circuit takes a binary number and converts it to an octal number

• Decoder is a combinational circuit that 
change the binary information into 
2N output lines

• Performs the reverse operation of 
encoder



Decoder hardware implementation

33

Three-to-eight decoder

x

y

z

O0

O3

O2

O4

O5
O6

O7

O1

Block diagram
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Three-to-eight decoder

O0 = x’.y’.z’
O1 = x’.y’.z
O2 = x’.y.z’
O3 = x’.y.z
O4 = x.y’.z’
O5 = x.y’.z
O6 = x.y.z’
O7 = x.y.z

Logical expression

x y z

O0

O3

O4

O5

O6

O7

O1

O2

Circuit implementation

x

y

z

O0

O3

O2

O4

O5
O6

O7

O1

Block diagram

x
y

z

O0

O3

O2

O4

O5

O6

O7

O1

w
O8

O11

O10

O12

O13

O14

O15

O9

4 to 16 decoder

Can be built using 3 to 8 decoder
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34

• Different portions of memory are used for different purposes: RAM, ROM, I/O devices
• Address decoding is the process of generating chip select (CS*) signals from the address bus for 

each device in the system
• The address bus lines are split into two sections 

• The N most significant bits are used to generate the CS* signals for the different devices 
• The M least significant signals are passed to the devices as addresses to the different 

memory cells or internal registers
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Decoder application: Full adder implementation

36

row x y z C S

0 0 0 0 0 0

1 0 0 1 0 1

2 0 1 0 0 1

3 0 1 1 1 0

4 1 0 0 0 1

5 1 0 1 1 0

6 1 1 0 1 0

7 1 1 1 1 1

3-to-8 decoder as a Full adder
• Truth table

S(x, y, z)  =   (1,2,4,7)∑

C(x, y, z)  =   (3,5,6,7)∑

x

y

z

S

C
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A
B

E
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O2

O1

O0

E A B

0 x x

1 0 0

1 0 1

1 1 0

1 1 1

O0 O1 O2 O3

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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A
B

E

O3

O2

O1

O0

module decoder2to4(input A, B, E,

output O0, O1, O2, O3);

assign O0 = ((~A) & (~B) & (E));

assign O1 = ((~A) & (B) & (E));

assign O2 = ((A) & (~B) & (E));

assign O3 = ((A) & (B) & (E));

endmodule

E A B

0 x x

1 0 0

1 0 1

1 1 0

1 1 1

O0 O1 O2 O3

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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module decoder2to4_tb();

reg A, B, E;

wire O0, O1, O2, O3;

decoder2to4(.A(A), .B(B), .E(E, .O0(O0), .O1(O1), .O2(O2), .O3(O3));

initial begin

Time =0, A=x, B= x, E=x ➔ O0=x, O1 =x, O2 =x, O3 =x
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module decoder2to4_tb();

reg A, B, E;

wire O0, O1, O2, O3;

decoder2to4(.A(A), .B(B), .E(E, .O0(O0), .O1(O1), .O2(O2), .O3(O3));

initial begin

A = 0; B = 0; E = 0; #10; //apply inputs, wait 10ns 

Time =0, A=x, B= x, E=x ➔ O0=x, O1 =x, O2 =x, O3 =x

Time =0, A=0, B= 0, E=0 ➔ O0=0, O1 =0, O2 =0, O3 =0Initialization➔
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module decoder2to4_tb();

reg A, B, E;

wire O0, O1, O2, O3;

decoder2to4(.A(A), .B(B), .E(E, .O0(O0), .O1(O1), .O2(O2), .O3(O3));

initial begin

A = 0; B = 0; E = 0; #10; //apply inputs, wait 10ns 

E = 1; #10; //change the value of c, wait 10ns

Time =0, A=x, B= x, E=x ➔ O0=x, O1 =x, O2 =x, O3 =x

Time =0, A=0, B= 0, E=0 ➔ O0=0, O1 =0, O2 =0, O3 =0

Time =10, A=0, B= 0, E=1 ➔ O0=1, O1 =0, O2 =0, O3 =0
Initialization➔
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module decoder2to4_tb();

reg A, B, E;

wire O0, O1, O2, O3;

decoder2to4(.A(A), .B(B), .E(E, .O0(O0), .O1(O1), .O2(O2), .O3(O3));

initial begin

A = 0; B = 0; E = 0; #10; //apply inputs, wait 10ns 

E = 1; #10; //change the value of c, wait 10ns
B = 1; #10; //change the values of b, wait 10ns

Time =0, A=x, B= x, E=x ➔ O0=x, O1 =x, O2 =x, O3 =x

Time =0, A=0, B= 0, E=0 ➔ O0=0, O1 =0, O2 =0, O3 =0

Time =10, A=0, B= 0, E=1 ➔ O0=1, O1 =0, O2 =0, O3 =0

Time =20, A=0, B= 1, E=1 ➔ O0=0, O1 =1, O2 =0, O3 =0

Initialization➔



Decoder modeling in Verilog: 2-to-4 decoder

38

module decoder2to4_tb();

reg A, B, E;

wire O0, O1, O2, O3;

decoder2to4(.A(A), .B(B), .E(E, .O0(O0), .O1(O1), .O2(O2), .O3(O3));

initial begin

A = 0; B = 0; E = 0; #10; //apply inputs, wait 10ns 

E = 1; #10; //change the value of c, wait 10ns
B = 1; #10; //change the values of b, wait 10ns

A = 1; B = 0;        #10;

Time =0, A=x, B= x, E=x ➔ O0=x, O1 =x, O2 =x, O3 =x

Time =0, A=0, B= 0, E=0 ➔ O0=0, O1 =0, O2 =0, O3 =0

Time =10, A=0, B= 0, E=1 ➔ O0=1, O1 =0, O2 =0, O3 =0

Time =20, A=0, B= 1, E=1 ➔ O0=0, O1 =1, O2 =0, O3 =0

Time =30, A=1, B= 0, E=1 ➔ O0=0, O1 =0, O2 =1, O3 =0

Initialization➔
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module decoder2to4_tb();

reg A, B, E;

wire O0, O1, O2, O3;

decoder2to4(.A(A), .B(B), .E(E, .O0(O0), .O1(O1), .O2(O2), .O3(O3));

initial begin

A = 0; B = 0; E = 0; #10; //apply inputs, wait 10ns 

E = 1; #10; //change the value of c, wait 10ns
B = 1; #10; //change the values of b, wait 10ns

A = 1; B = 0;        #10;

B = 1;        #10;

end

endmodule

Time =0, A=x, B= x, E=x ➔ O0=x, O1 =x, O2 =x, O3 =x

Time =0, A=0, B= 0, E=0 ➔ O0=0, O1 =0, O2 =0, O3 =0

Time =10, A=0, B= 0, E=1 ➔ O0=1, O1 =0, O2 =0, O3 =0

Time =20, A=0, B= 1, E=1 ➔ O0=0, O1 =1, O2 =0, O3 =0

Time =30, A=1, B= 0, E=1 ➔ O0=0, O1 =0, O2 =1, O3 =0

Time =40, A=1, B= 1, E=1 ➔ O0=0, O1 =0, O2 =0, O3 =1

Initialization➔
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• Always blocks: always blocks may be used in testbenches, or to build registers. 

• always blocks for registers must be of the form always @ (posedge Clock) and must use 
nonblocking assignment <= 

• You may not put any combination logic in a register
• In always @ (posedge Clock) block may not contain even a simple counter 

• Variable index:

• Variable-indexed shifts (<< or >>) and bit-selects (x[y] or x[y:z]) are not allowed

• Looping:

• The keywords forever, repeat, while, for, fork and join may appear only in testbenches 

• Macros:

• The keyword ‘timescale must appear in every testbench, and nowhere else 
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• If you program sequentially, the synthesizer may add a lot of 
hardware to try to do what you say

• If you program in parallel (multiple “always” blocks), you can get non-
deterministic execution
• Which “always” happens first?

• You create lots of state that you didn’t intend
if (x == 1) out = 0;

if (y == 1) out = 1;    // else out retains previous state? R-S latch!

• You don’t realize how much hardware you’re specifying
• x = x + 1 can be a LOT of hardware

• Slight changes may suddenly make your code “blow up”
• A chip that previously fit suddenly is too large or slow
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• Several common pitfalls which trap the novice Verilog programs 

• Unlike Java or even C, Verilog does not check the types or widths of signals very seriously. 

• In the below cases, the compiler may not warn you of your mistake 

➢ Case1: Undeclared wires:
➢ Any undeclared signal is automatically treated as a 1-bit wire
➢ Assigning to undeclared signals from an always or initial block ➔ results in compiler errors
➢ Forgetting to declare a bus or bit-vector will result in only the the 0th being connected properly
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➢ Case2: width mismatch (small wires):
➢ Connecting a small wire (e.g. 1-bit) to a large port (e.g., 4-bit) ➔ cause port width mismatch
➢ Some of the signals intended for the bus will be lost
➢ Only the lowest few bits will appear at the port
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➢ Case2: width mismatch (small wires):
➢ Connecting a small wire (e.g. 1-bit) to a large port (e.g., 4-bit) ➔ cause port width mismatch
➢ Some of the signals intended for the bus will be lost
➢ Only the lowest few bits will appear at the port

➢ Case3: width mismatch (large wires):
➢ Connecting a large wire (e.g., 4-bit) to a small port (e.g., 1-bit) ➔ cause port width mismatch
➢ Many waveforms will appear in blue ➔ denoting undriven signal



Verilog vs system Verilog

43

Major areas of System Verilog improvement over Verilog



Verilog vs system Verilog

43

Major areas of System Verilog improvement over Verilog

1. SVD – System Verilog for Design ➔Enhancements to design constructs

• E.g., more data types unum, struct, class etc



Verilog vs system Verilog

43

Major areas of System Verilog improvement over Verilog

1. SVD – System Verilog for Design ➔Enhancements to design constructs

• E.g., more data types unum, struct, class etc

2. SVTB - System Verilog for Testbench ➔ biggest enhancement

• Support all testbench modeling

• Object oriented support

• Creating constrained random stimulus, semaphore, concurrent process etc



Verilog vs system Verilog

43

Major areas of System Verilog improvement over Verilog

1. SVD – System Verilog for Design ➔Enhancements to design constructs

• E.g., more data types unum, struct, class etc

2. SVTB - System Verilog for Testbench ➔ biggest enhancement

• Support all testbench modeling

• Object oriented support

• Creating constrained random stimulus, semaphore, concurrent process etc

3. SVA - System Verilog Assertions ➔ features for temporal and concurrent 
assertions



Verilog vs system Verilog

43

Major areas of System Verilog improvement over Verilog

1. SVD – System Verilog for Design ➔Enhancements to design constructs

• E.g., more data types unum, struct, class etc

2. SVTB - System Verilog for Testbench ➔ biggest enhancement

• Support all testbench modeling

• Object oriented support

• Creating constrained random stimulus, semaphore, concurrent process etc

3. SVA - System Verilog Assertions ➔ features for temporal and concurrent 
assertions

4. SVDPI - System Verilog Direct Program Interface ➔ features for better C/C++ 
integration



Verilog vs system Verilog

43

Major areas of System Verilog improvement over Verilog

1. SVD – System Verilog for Design ➔Enhancements to design constructs

• E.g., more data types unum, struct, class etc

2. SVTB - System Verilog for Testbench ➔ biggest enhancement

• Support all testbench modeling

• Object oriented support

• Creating constrained random stimulus, semaphore, concurrent process etc

3. SVA - System Verilog Assertions ➔ features for temporal and concurrent 
assertions

4. SVDPI - System Verilog Direct Program Interface ➔ features for better C/C++ 
integration

5. SVAPI - System Verilog Application Program Interface ➔ features for better 
integration of APIs
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Thank you
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