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Overview

• Recap

• Usage of the always statement

• More on blocking and nonblocking assignments

• Demo circuits

• D Flip-flop
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• Decoders
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In general always block can also be used with/without sensitivity list

When it has no sensitivity list, the block is evaluated whenever one of the module 
inputs change.

When it has a sensitivity list, the block is evaluated whenever one of the signal in 
the sensitivity list changes value.

always @(a, b, cin)

Where signal names in the sensitivity list may be preceded by posedge or negedge
to indicate that evaluation is triggered by only a rising edge or falling edge event.

For flip-flops (registers), latches and combinational circuits the usage of respectively 
always_ff, always_latch and always_comb is preferred. 
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always_comb begin

if (s = 1)begin

y = x1;

else y = x0; 
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always_comb begin

if (s = 1)begin

y = x1;
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endok wrong
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module FA(input a, b, cin,

output s, cout);

wire p,q;

always_comb

begin

p = a ^ b;

g = a & b;

s = p ^ cin;

cout = g | (p & cin);

end

endmodule

Best practice:

➔ Only use non-blocking assignment for sequential logic (e.g., FF)
➔Mainly use blocking assignment for combinational logic
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• Synchronous sequential logic: use always_ff @(posedge clk) 

and nonblocking assignments (<=)

always_ff @(posedge clk)

q <= d; // nonblocking

• Simple combinational logic: use continuous assignments (assign…)

assign y = a & b; 

• More complicated combinational logic: use always_comb and blocking 
assignments (=)

• In an always_comb block, assign a value to each output for all input 
combinations. 

• Assign a signal in only one always statement or continuous assignment 
statement. ➔ avoids conflicting signal assignment
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module sevenseg(input [3:0] data, 

output [6:0] segments); 

always_comb

begin

case(data) 

0: segments = 7'b111_1110; 

1: segments = 7'b011_0000; 

2: segments = 7'b110_1101; 

3: segments = 7'b111_1001; 

4: segments = 7'b011_0011; 

5: segments = 7'b101_1011; 

6: segments = 7'b101_1111; 

7: segments = 7'b111_0000; 

8: segments = 7'b111_1111; 

9: segments = 7'b111_0011; 

default: segments = 7'b000_0000; 

endcase

end

endmodule

A combinational circuit for a seven-segment display decoder that uses a case statement
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module sevenseg(input [3:0] data, 

output [6:0] segments); 

always_comb

begin

case(data) 

0: segments = 7'b111_1110; 

1: segments = 7'b011_0000; 

2: segments = 7'b110_1101; 

3: segments = 7'b111_1001; 

4: segments = 7'b011_0011; 

5: segments = 7'b101_1011; 

6: segments = 7'b101_1111; 

7: segments = 7'b111_0000; 

8: segments = 7'b111_1111; 

9: segments = 7'b111_0011; 

default: segments = 7'b000_0000; 

endcase

end

endmodule

A combinational circuit for a seven-segment display decoder that uses a case statement

Synthesis:
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module priorityckt(input [3:0] a,

output [3:0] y); 

always_comb

begin

if      (a[3]) y = 4'b1000; 

else if (a[2]) y = 4'b0100; 

else if (a[1]) y = 4'b0010; 

else if (a[0]) y = 4'b0001; 

else           y = 4'b0000;

end

endmodule

A priority circuit that uses a nested if-else statement
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module priorityckt(input [3:0] a,

output [3:0] y); 

always_comb

begin

if      (a[3]) y = 4'b1000; 

else if (a[2]) y = 4'b0100; 

else if (a[1]) y = 4'b0010; 

else if (a[0]) y = 4'b0001; 

else           y = 4'b0000;

end

endmodule

A priority circuit that uses a nested if-else statement

Synthesis:
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module priority_case(input [3:0] a, 

output [3:0] y);

always_comb

begin

case(a)

4'b1???: y = 4'b1000; // ? = don’t care

4'b01??: y = 4'b0100;

4'b001?: y = 4'b0010;

4'b0001: y = 4'b0001;

default: y = 4'b0000;

endcase

end

endmodule

• Truth tables may include don’t cares to allow more logic simplification. 
• The following shows how to describe the previous priority circuit with a case statement, which allows don’t 

cares to be used.
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module priority_case(input [3:0] a, 

output [3:0] y);

always_comb
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4'b001?: y = 4'b0010;
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endcase

end
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Synthesis:

• Truth tables may include don’t cares to allow more logic simplification. 
• The following shows how to describe the previous priority circuit with a case statement, which allows don’t 

cares to be used.
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module dff(input clk, 

input d, 

output q);
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It is good practice to use resettable registers so that on powerup you can put your 
system in a known state. 
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always_ff @(posedge clk)

if (reset = 1) q <= 0; 

else q <= d; 

with synchronous reset, the reset 
is done only on rising clock edge

It is good practice to use resettable registers so that on powerup you can put your 
system in a known state. 
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always_ff @(posedge clk)

if (reset = 1) q <= 0; 

else q <= d; 

always_ff @(posedge clk, posedge reset) 

if (reset = 1) q <= 0; 

else q <= d; 

with synchronous reset, the reset 
is done only on rising clock edge

with asynchronous reset, the reset is 
done any moment reset becomes 1

It is good practice to use resettable registers so that on powerup you can put your 
system in a known state. 
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The block always_latch is used to describe a latch
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Describing a latch
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always_latch

if (clk) q <= d;   // when clk = 1, q gets value of d

// when clk = 0, q remembers its value

d q

clk

D

latch

The block always_latch is evaluated whenever one of the inputs (clk or d) 
changes value

Normally, it is not a good idea to use latches in your circuit: they are transparent as 
long as clk = 1, so problematic combinational feedback loops may occur.

The block always_latch is used to describe a latch
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The following example shows a 4-bit register with asynchronous reset and enable. 

It retains its old value if both reset and en are FALSE.
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module register4bit(input clk, reset, en, [3:0] d, 

output [3:0] q);

// asynchronous reset

always_ff @(posedge clk, posedge reset)

if      (reset) q <= 4'b0;

else if (en)    q <= d;

endmodule

The following example shows a 4-bit register with asynchronous reset and enable. 

It retains its old value if both reset and en are FALSE.
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module register4bit(input clk, reset, en, [3:0] d, 

output [3:0] q);

// asynchronous reset

always_ff @(posedge clk, posedge reset)

if      (reset) q <= 4'b0;

else if (en)    q <= d;

endmodule

Synthesis:

The following example shows a 4-bit register with asynchronous reset and enable. 

It retains its old value if both reset and en are FALSE.
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module EvenOddFSM(input clk, reset, in 

output reg isEven);

reg state, nextstate;  

parameter EVEN == 0;

Parameter ODD = 1; 

initial begin

state = EVEN;

end

always_ff @(posedge clk, posedge reset) begin   

if (reset) state <= EVEN; // non-blocking <=

else       state <= nextstate;

end

// next state logic

always_comb

begin

case (state)

EVEN: begin

isEven = 0;

if(in) nextstate = ODD;

else nextstate = EVEN;

end

ODD: begin

isEven = 1;

if(in) nextstate = EVEN;

else nextstate = ODD;

end

default: begin

isEven = 0’bx;

nextstate = 0’bx;

end

endcase

end

endmodule

EVEN ODD

isEven = 0 IsEven = 1

1

1

0 0

RESET
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if (reset) state <= EVEN; 

else       state <= nextstate;

end
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end

What is the difference?
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module EvenOddFSM(input clk, reset, in 

output reg isEven);

reg state, nextstate;  

parameter EVEN == 0;

Parameter ODD = 1; 

initial begin

state = EVEN;

end

always_ff @(posedge clk, posedge reset) begin   

if (reset) state <= EVEN; // non-blocking <=

else       state <= nextstate;

end

// next state logic

always_comb

begin

case (state)

EVEN: begin

isEven = 0;

if(in) nextstate = ODD;

else nextstate = EVEN;

end

ODD: begin

isEven = 1;

if(in) nextstate = EVEN;

else nextstate = ODD;

end

default: begin

isEven = 0’bx;

nextstate = 0’bx;

end

endcase

end

endmodule

Note that a default case is used in the combinational block, to 
be sure that output nextstate receives a value in all cases.
- The initial blocks sets the FSM to start at EVEN state

EVEN ODD

isEven = 0 IsEven = 1
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RESET

always_ff @(posedge clk) begin   

if (reset) state <= EVEN; 

else       state <= nextstate;

end

What is the difference?
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Which sequence will be detected?
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20

module seqDetectMoore(input clk, reset, a,

output smile);

parameter S0 = 00;

parameter S1 = 01;

parameter S2 = 10; 

reg state, nextstate;  

// state register

always_ff @(posedge clk, posedge reset)

if (reset) state <= S0;

else       state <= nextstate;

// next state logic

always_comb

case (state)

S0:      if (a) nextstate = S0; 

else   nextstate = S1;

S1:      if (a) nextstate = S2;

else   nextstate = S1;

S2:      if (a) nextstate = S0;

else   nextstate = S1;

default:        nextstate = S0;

endcase

// output logic

assign smile = (state == S2);

endmodule
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state

logic

output

logic
inputs outputs

state
next

state

clkclk

reset
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Reset
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Reset
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1/1

0/0

1/0 0/0

Mealy FSMmodule seqDetectMealy(input clk, reset, a,

output smile);

parameter S0 = 0;

parameter S1 = 1;

reg state, nextstate;  

// state register

always_ff @(posedge clk, posedge reset)

if (reset) state <= S0;

else       state <= nextstate;

// next state and output logic

always_comb begin

// make sure smile receives value in all cases.

smile = 1’b0; 

case (state)

S0:    if (a)   nextstate = S0;

else     nextstate = S1;

S1:    if (a) begin

nextstate = S0;

smile = 1'b1;

end

else     nextstate = S1;

default:        nextstate = S0;

endcase

end

endmodule

clkclk

reset
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Mealy FSMmodule seqDetectMealy(input clk, reset, a,

output smile);

parameter S0 = 0;

parameter S1 = 1;

reg state, nextstate;  

// state register

always_ff @(posedge clk, posedge reset)

if (reset) state <= S0;

else       state <= nextstate;

// next state and output logic

always_comb begin

// make sure smile receives value in all cases.

smile = 1’b0; 

case (state)

S0:    if (a)   nextstate = S0;

else     nextstate = S1;

S1:    if (a) begin

nextstate = S0;

smile = 1'b1;

end

else     nextstate = S1;

default:        nextstate = S0;

endcase

end

endmodule

Synthesis:

clkclk

reset



FSM Testbench

`timescale 1ns/1ps

module seqDetectMoore_tb();

reg clk, reset, a;

wire smile;

seqDetectMoore dut (clk, reset, a, smile);

initial
clk = 0;  

always

#10 clk = ~clk;

initial begin

reset = 1; a = 0; 
#20; reset = 0; 

#20;            a = 1;

end

endmodule
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FSM Testbench

`timescale 1ns/1ps

module seqDetectMoore_tb();

reg clk, reset, a;

wire smile;

seqDetectMoore dut (clk, reset, a, smile);

initial
clk = 0;  

always

#10 clk = ~clk;

initial begin

reset = 1; a = 0; 
#20; reset = 0; 

#20;            a = 1;

end

endmodule
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1
0
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Important: to avoid setup/hold time violations, do not change input signals on 
the rising clock edge.  Instead, do it on the negative clock edge. 
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A counter can be considered as a FSM that adds 1 to its state in its next state logic.  
Usually there is no output logic. 
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Counter
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module counter(input clk, reset, enable,

output [7:0] count);

reg [7:0] next_count;

// register

always_ff@(posedge clk)

begin

if (reset) count <= 0;

else count <= next_count;

end

// next state logic 

always_comb

begin

if (enable) next_count <= count + 1;

else next_count <= count;

end 

endmodule

A counter can be considered as a FSM that adds 1 to its state in its next state logic.  
Usually there is no output logic. 
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Counter simulation

25

module counter_tb();

reg clk;

reg reset;

reg enable;

wire [7:0] count;

counter dut (clk, reset, enable, count);

always

#10 clk = ~clk;

initial

clk = 0;

initial begin

reset = 1; enable = 0; 

#20; reset = 0; 

#40;            enable = 1;

end

endmodule
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module counter_tb();

reg clk;

reg reset;

reg enable;

wire [7:0] count;

counter dut (clk, reset, enable, count);

always

#10 clk = ~clk;

initial

clk = 0;

initial begin

reset = 1; enable = 0; 

#20; reset = 0; 

#40;            enable = 1;

end

endmodule
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• Simplest design: cascade full adders

• Critical path goes from Cin to Cout

• Design full adder to have fast carry delay
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Simple multi-bit adder

28

• Simplest design: cascade full adders

• Critical path goes from Cin to Cout

• Design full adder to have fast carry delay

• Commonly known as ripple-carry adder

• Named from its carry-chain structure
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module HA( input A, B,
output S,Cout );

assign S = a ^ b;
assign Cout = a & b;

endmodule
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module HA( input A, B,
output S,Cout );

assign S = a ^ b;
assign Cout = a & b;

endmodule

module FA( input A, B, C 
output S, Cout );
Wire p,q;

assign p = B ^ A;
Assign q= A & B;
assign S = p ^ C;
assign Cout = q | (p & C);
endmodule



Full adder impementation in verilog
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Behavioural verilog implemntation Structural verilog implementation
module FA( input A, B, C 
output S, Cout );
Wire p,q;

assign p = B ^ A;
Assign q= A & B;
assign S = p ^ C;
assign Cout = q | (p & C);
endmodule
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Behavioural verilog implemntation Structural verilog implementation

module FA_Behavioral_( input A, B, C, output S, Cout ); 

reg[1:0] temp; 

always @(*) 
begin
temp = {1’b0,A} + {1’b0,B}+{1’b0,C}; 
end
assign S = temp[0]; 
assign Cout = temp[1]; 
endmodule

module FA( input A, B, C 
output S, Cout );
Wire p,q;

assign p = B ^ A;
Assign q= A & B;
assign S = p ^ C;
assign Cout = q | (p & C);
endmodule

Equivalent
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module FA_Behavioral_( input A, B, C, output S, Cout ); 

reg[1:0] temp; 

always @(*) 
begin
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end
assign S = temp[0]; 
assign Cout = temp[1]; 
endmodule
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module FA( input A, B, C,
output S, Cout );
wire c0,c1,so;
HA ha0(A, b, So, c0);
HA ha1(C, so, S,c1);
assign carry = c0 | c1 ;
endmodule

module HA( input A, B,
output S,Cout );

assign S = a ^ b;
assign Cout = a & b;

endmodule

module FA( input A, B, C 
output S, Cout );
Wire p,q;

assign p = B ^ A;
Assign q= A & B;
assign S = p ^ C;
assign Cout = q | (p & C);
endmodule

Equivalent



Verilog for Ripple Carry Adder (RCA)
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module nbit_RCA( input [7:0] a, [7:0] b, cin,

output [7:0] sum, cout);

wire [7:1] carry; /* transfers the carry between bits */

FA a0(a[0],b[0],cin,sum[0],carry[1]);

FA a1(a[1],b[1],carry[1],sum[1],carry[2]);

FA a2(a[2],b[2], carry[2],sum[2],carry[3]);

FA a3(a[3],b[3],carry[3],sum[3],carry[4]);

FA a4(a[4],b[4], carry[4],sum[4],carry[5]);

FA a5(a[5],b[5],carry[5],sum[5],carry[6]);

FA a6(a[6],b[6], carry[6],sum[6],carry[7]);

FA a7(a[7],b[7],carry[7],sum[7], cout);

endmodule



Verilog for Ripple Carry Adder (RCA)
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module nbit_RCA( input [7:0] a, [7:0] b, cin,

output [7:0] sum, cout);

wire [7:1] carry; /* transfers the carry between bits */

FA a0(a[0],b[0],cin,sum[0],carry[1]);
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Carry propagation time is a problem!!
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FA a3(a[3],b[3],carry[3],sum[3],carry[4]);

FA a4(a[4],b[4], carry[4],sum[4],carry[5]);

FA a5(a[5],b[5],carry[5],sum[5],carry[6]);

FA a6(a[6],b[6], carry[6],sum[6],carry[7]);

FA a7(a[7],b[7],carry[7],sum[7], cout);

endmodule

Carry propagation time is a problem!!

Reduce the carry propagation time.
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module nbit_RCA( input [7:0] a, [7:0] b, cin,

output [7:0] sum, cout);

wire [7:1] carry; /* transfers the carry between bits */

FA a0(a[0],b[0],cin,sum[0],carry[1]);

FA a1(a[1],b[1],carry[1],sum[1],carry[2]);

FA a2(a[2],b[2], carry[2],sum[2],carry[3]);

FA a3(a[3],b[3],carry[3],sum[3],carry[4]);

FA a4(a[4],b[4], carry[4],sum[4],carry[5]);

FA a5(a[5],b[5],carry[5],sum[5],carry[6]);

FA a6(a[6],b[6], carry[6],sum[6],carry[7]);

FA a7(a[7],b[7],carry[7],sum[7], cout);

endmodule

Carry propagation time is a problem!!

Reduce the carry propagation time.

How to do it?

Complex adders with circuitry to detect carry 

generation/completion

Not part of this lecture
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Example: Three-to-eight decoder
• Decoder is a combinational circuit that 

change the binary information into 
2N output lines

• Performs the reverse operation of 
encoder
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x y z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

O0 O1 O2 O3 O4 O5 O6 O7

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Example: Three-to-eight decoder

Truth table of a three-to-Eight (3:8) decoder

Converts binary information from n input lines to 2n unique output

Or the circuit takes a binary number and converts it to an octal number

• Decoder is a combinational circuit that 
change the binary information into 
2N output lines

• Performs the reverse operation of 
encoder
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Block diagram
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O3 = x’.y.z
O4 = x.y’.z’
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Three-to-eight decoder

O0 = x’.y’.z’
O1 = x’.y’.z
O2 = x’.y.z’
O3 = x’.y.z
O4 = x.y’.z’
O5 = x.y’.z
O6 = x.y.z’
O7 = x.y.z

Logical expression

x y z

O0

O3

O4

O5

O6

O7

O1

O2

Circuit implementation

x

y

z

O0

O3

O2

O4

O5
O6

O7

O1

Block diagram

x
y

z

O0

O3

O2

O4

O5

O6

O7

O1

w
O8

O11

O10

O12

O13

O14

O15

O9

4 to 16 decoder

Can be built using 3 to 8 decoder
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34

• Different portions of memory are used for different purposes: RAM, ROM, I/O devices
• Address decoding is the process of generating chip select (CS*) signals from the address bus for 

each device in the system
• The address bus lines are split into two sections 

• The N most significant bits are used to generate the CS* signals for the different devices 
• The M least significant signals are passed to the devices as addresses to the different 

memory cells or internal registers
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• Truth table
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• Truth table
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Decoder application: Full adder implementation

36

row x y z C S

0 0 0 0 0 0

1 0 0 1 0 1

2 0 1 0 0 1

3 0 1 1 1 0

4 1 0 0 0 1

5 1 0 1 1 0

6 1 1 0 1 0

7 1 1 1 1 1

3-to-8 decoder as a Full adder
• Truth table

S(x, y, z)  =   (1,2,4,7)∑

C(x, y, z)  =   (3,5,6,7)∑

x

y

z

S

C
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A
B

E
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O2

O1

O0

E A B

0 x x

1 0 0

1 0 1
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1 1 1

O0 O1 O2 O3

0 0 0 0
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0 1 0 0

0 0 1 0

0 0 0 1
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A
B

E

O3

O2

O1

O0

module decoder2to4(input A, B, E,

output O0, O1, O2, O3);

assign O0 = ((~A) & (~B) & (E));

assign O1 = ((~A) & (B) & (E));

assign O2 = ((A) & (~B) & (E));

assign O3 = ((A) & (B) & (E));

endmodule

E A B

0 x x

1 0 0

1 0 1

1 1 0

1 1 1

O0 O1 O2 O3

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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module decoder2to4_tb();

reg A, B, E;

wire O0, O1, O2, O3;

decoder2to4(.A(A), .B(B), .E(E, .O0(O0), .O1(O1), .O2(O2), .O3(O3));

initial begin

Time =0, A=x, B= x, E=x ➔ O0=x, O1 =x, O2 =x, O3 =x
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module decoder2to4_tb();

reg A, B, E;

wire O0, O1, O2, O3;

decoder2to4(.A(A), .B(B), .E(E, .O0(O0), .O1(O1), .O2(O2), .O3(O3));

initial begin

A = 0; B = 0; E = 0; #10; //apply inputs, wait 10ns 

Time =0, A=x, B= x, E=x ➔ O0=x, O1 =x, O2 =x, O3 =x

Time =0, A=0, B= 0, E=0 ➔ O0=0, O1 =0, O2 =0, O3 =0Initialization➔
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module decoder2to4_tb();

reg A, B, E;

wire O0, O1, O2, O3;

decoder2to4(.A(A), .B(B), .E(E, .O0(O0), .O1(O1), .O2(O2), .O3(O3));

initial begin

A = 0; B = 0; E = 0; #10; //apply inputs, wait 10ns 

E = 1; #10; //change the value of c, wait 10ns

Time =0, A=x, B= x, E=x ➔ O0=x, O1 =x, O2 =x, O3 =x

Time =0, A=0, B= 0, E=0 ➔ O0=0, O1 =0, O2 =0, O3 =0

Time =10, A=0, B= 0, E=1 ➔ O0=1, O1 =0, O2 =0, O3 =0
Initialization➔
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module decoder2to4_tb();

reg A, B, E;

wire O0, O1, O2, O3;

decoder2to4(.A(A), .B(B), .E(E, .O0(O0), .O1(O1), .O2(O2), .O3(O3));

initial begin

A = 0; B = 0; E = 0; #10; //apply inputs, wait 10ns 

E = 1; #10; //change the value of c, wait 10ns
B = 1; #10; //change the values of b, wait 10ns

Time =0, A=x, B= x, E=x ➔ O0=x, O1 =x, O2 =x, O3 =x

Time =0, A=0, B= 0, E=0 ➔ O0=0, O1 =0, O2 =0, O3 =0

Time =10, A=0, B= 0, E=1 ➔ O0=1, O1 =0, O2 =0, O3 =0

Time =20, A=0, B= 1, E=1 ➔ O0=0, O1 =1, O2 =0, O3 =0

Initialization➔
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module decoder2to4_tb();

reg A, B, E;

wire O0, O1, O2, O3;

decoder2to4(.A(A), .B(B), .E(E, .O0(O0), .O1(O1), .O2(O2), .O3(O3));

initial begin

A = 0; B = 0; E = 0; #10; //apply inputs, wait 10ns 

E = 1; #10; //change the value of c, wait 10ns
B = 1; #10; //change the values of b, wait 10ns

A = 1; B = 0;        #10;

Time =0, A=x, B= x, E=x ➔ O0=x, O1 =x, O2 =x, O3 =x

Time =0, A=0, B= 0, E=0 ➔ O0=0, O1 =0, O2 =0, O3 =0

Time =10, A=0, B= 0, E=1 ➔ O0=1, O1 =0, O2 =0, O3 =0

Time =20, A=0, B= 1, E=1 ➔ O0=0, O1 =1, O2 =0, O3 =0

Time =30, A=1, B= 0, E=1 ➔ O0=0, O1 =0, O2 =1, O3 =0

Initialization➔
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module decoder2to4_tb();

reg A, B, E;

wire O0, O1, O2, O3;

decoder2to4(.A(A), .B(B), .E(E, .O0(O0), .O1(O1), .O2(O2), .O3(O3));

initial begin

A = 0; B = 0; E = 0; #10; //apply inputs, wait 10ns 

E = 1; #10; //change the value of c, wait 10ns
B = 1; #10; //change the values of b, wait 10ns

A = 1; B = 0;        #10;

B = 1;        #10;

end

endmodule

Time =0, A=x, B= x, E=x ➔ O0=x, O1 =x, O2 =x, O3 =x

Time =0, A=0, B= 0, E=0 ➔ O0=0, O1 =0, O2 =0, O3 =0

Time =10, A=0, B= 0, E=1 ➔ O0=1, O1 =0, O2 =0, O3 =0

Time =20, A=0, B= 1, E=1 ➔ O0=0, O1 =1, O2 =0, O3 =0

Time =30, A=1, B= 0, E=1 ➔ O0=0, O1 =0, O2 =1, O3 =0

Time =40, A=1, B= 1, E=1 ➔ O0=0, O1 =0, O2 =0, O3 =1

Initialization➔
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• Always blocks: always blocks may be used in testbenches, or to build registers. 

• always blocks for registers must be of the form always @ (posedge Clock) and must use 
nonblocking assignment <= 

• You may not put any combination logic in a register
• In always @ (posedge Clock) block may not contain even a simple counter 

• Variable index:

• Variable-indexed shifts (<< or >>) and bit-selects (x[y] or x[y:z]) are not allowed

• Looping:

• The keywords forever, repeat, while, for, fork and join may appear only in testbenches 

• Macros:

• The keyword ‘timescale must appear in every testbench, and nowhere else 



Verilog common pitfalls

40

• If you program sequentially, the synthesizer may add a lot of 
hardware to try to do what you say

• If you program in parallel (multiple “always” blocks), you can get non-
deterministic execution
• Which “always” happens first?

• You create lots of state that you didn’t intend
if (x == 1) out = 0;

if (y == 1) out = 1;    // else out retains previous state? R-S latch!

• You don’t realize how much hardware you’re specifying
• x = x + 1 can be a LOT of hardware

• Slight changes may suddenly make your code “blow up”
• A chip that previously fit suddenly is too large or slow
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• Several common pitfalls which trap the novice Verilog programs 

• Unlike Java or even C, Verilog does not check the types or widths of signals very seriously. 

• In the below cases, the compiler may not warn you of your mistake 

➢ Case1: Undeclared wires:
➢ Any undeclared signal is automatically treated as a 1-bit wire
➢ Assigning to undeclared signals from an always or initial block ➔ results in compiler errors
➢ Forgetting to declare a bus or bit-vector will result in only the the 0th being connected properly
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➢ Case2: width mismatch (small wires):
➢ Connecting a small wire (e.g. 1-bit) to a large port (e.g., 4-bit) ➔ cause port width mismatch
➢ Some of the signals intended for the bus will be lost
➢ Only the lowest few bits will appear at the port
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➢ Case2: width mismatch (small wires):
➢ Connecting a small wire (e.g. 1-bit) to a large port (e.g., 4-bit) ➔ cause port width mismatch
➢ Some of the signals intended for the bus will be lost
➢ Only the lowest few bits will appear at the port

➢ Case3: width mismatch (large wires):
➢ Connecting a large wire (e.g., 4-bit) to a small port (e.g., 1-bit) ➔ cause port width mismatch
➢ Many waveforms will appear in blue ➔ denoting undriven signal
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Major areas of System Verilog improvement over Verilog

1. SVD – System Verilog for Design ➔Enhancements to design constructs

• E.g., more data types unum, struct, class etc

2. SVTB - System Verilog for Testbench ➔ biggest enhancement

• Support all testbench modeling

• Object oriented support

• Creating constrained random stimulus, semaphore, concurrent process etc

3. SVA - System Verilog Assertions ➔ features for temporal and concurrent 
assertions

4. SVDPI - System Verilog Direct Program Interface ➔ features for better C/C++ 
integration

5. SVAPI - System Verilog Application Program Interface ➔ features for better 
integration of APIs
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Thank you
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