
EE1D1: Digital Systems A
BSc. EE, year 1, 2021-2022, lecture 5

Introduction to Verilog: Part 2

Computer Engineering Lab
Faculty of Electrical Engineering, Mathematics & Computer Science

2024-2025

CESE4005: Hardware Fundamentals
2024-2025, lecture 5

Some figures and text
© 2021 Sarah Harris and David Harris

Anteneh Gebregiorgis

Overview

• Recap

• Usage of the always statement

• More on blocking and nonblocking assignments

• Demo circuits

• D Flip-flop

• Finite State Machines

• Counters

• Adders

• Decoders

2

Recap

3

module func1(input a, b, c,

output y);

wire n;

assign y = n | c;

assign n = a & b;

endmodule

a

b

n

c
y

Recap

3

module func1(input a, b, c,

output y);

wire n;

assign y = n | c;

assign n = a & b;

endmodule

a

b

n

c
yOrder is not

important

Recap

3

module func1(input a, b, c,

output y);

wire n;

assign y = n | c;

assign n = a & b;

endmodule

a

b

n

c
y

module testfunc1();

reg a, b, c;

wire y;

func1 dut(a, b, c, y);

initial begin

a = 0; b = 1; c = 0;

#10; a = 1;

end

endmodule

Order is not
important

Recap

3

module func1(input a, b, c,

output y);

wire n;

assign y = n | c;

assign n = a & b;

endmodule

a

b

n

c
y

module testfunc1();

reg a, b, c;

wire y;

func1 dut(a, b, c, y);

initial begin

a = 0; b = 1; c = 0;

#10; a = 1;

end

endmodule

Order is not
important

Here, order is important.
Starting from begin,
statements are executed one
after another (with delays)

Recap

3

module func1(input a, b, c,

output y);

wire n;

assign y = n | c;

assign n = a & b;

endmodule

a

b

n

c
y

module testfunc1();

reg a, b, c;

wire y;

func1 dut(a, b, c, y);

initial begin

a = 0; b = 1; c = 0;

#10; a = 1;

end

endmodule

Order is not
important

Here, order is important.
Starting from begin,
statements are executed one
after another (with delays)

Simulation with testbench

Recap

3

module func1(input a, b, c,

output y);

wire n;

assign y = n | c;

assign n = a & b;

endmodule

a

b

n

c
y

module testfunc1();

reg a, b, c;

wire y;

func1 dut(a, b, c, y);

initial begin

a = 0; b = 1; c = 0;

#10; a = 1;

end

endmodule

0

1

0
Order is not
important

Here, order is important.
Starting from begin,
statements are executed one
after another (with delays)

Simulation with testbench

Recap

3

module func1(input a, b, c,

output y);

wire n;

assign y = n | c;

assign n = a & b;

endmodule

a

b

n

c
y

module testfunc1();

reg a, b, c;

wire y;

func1 dut(a, b, c, y);

initial begin

a = 0; b = 1; c = 0;

#10; a = 1;

end

endmodule

0

1

0

0

Order is not
important

Here, order is important.
Starting from begin,
statements are executed one
after another (with delays)

Simulation with testbench

Recap

3

module func1(input a, b, c,

output y);

wire n;

assign y = n | c;

assign n = a & b;

endmodule

a

b

n

c
y

module testfunc1();

reg a, b, c;

wire y;

func1 dut(a, b, c, y);

initial begin

a = 0; b = 1; c = 0;

#10; a = 1;

end

endmodule

0

1

0

0

0
Order is not
important

Here, order is important.
Starting from begin,
statements are executed one
after another (with delays)

Simulation with testbench

Recap

3

module func1(input a, b, c,

output y);

wire n;

assign y = n | c;

assign n = a & b;

endmodule

a

b

n

c
y

module testfunc1();

reg a, b, c;

wire y;

func1 dut(a, b, c, y);

initial begin

a = 0; b = 1; c = 0;

#10; a = 1;

end

endmodule

0

1

0

0

0

->1(10)

Order is not
important

Here, order is important.
Starting from begin,
statements are executed one
after another (with delays)

Simulation with testbench

Recap

3

module func1(input a, b, c,

output y);

wire n;

assign y = n | c;

assign n = a & b;

endmodule

a

b

n

c
y

module testfunc1();

reg a, b, c;

wire y;

func1 dut(a, b, c, y);

initial begin

a = 0; b = 1; c = 0;

#10; a = 1;

end

endmodule

0

1

0

0

0

->1(10) ->1(10)

Order is not
important

Here, order is important.
Starting from begin,
statements are executed one
after another (with delays)

Simulation with testbench

Recap

3

module func1(input a, b, c,

output y);

wire n;

assign y = n | c;

assign n = a & b;

endmodule

a

b

n

c
y

module testfunc1();

reg a, b, c;

wire y;

func1 dut(a, b, c, y);

initial begin

a = 0; b = 1; c = 0;

#10; a = 1;

end

endmodule

0

1

0

0

0

->1(10) ->1(10)

->1(10)

Order is not
important

Here, order is important.
Starting from begin,
statements are executed one
after another (with delays)

Simulation with testbench

Recap

3

module func1(input a, b, c,

output y);

wire n;

assign y = n | c;

assign n = a & b;

endmodule

a

b

n

c
y

module testfunc1();

reg a, b, c;

wire y;

func1 dut(a, b, c, y);

initial begin

a = 0; b = 1; c = 0;

#10; a = 1;

end

endmodule

0

1

0

0

0

->1(10) ->1(10)

->1(10)

Order is not
important

Here, order is important.
Starting from begin,
statements are executed one
after another (with delays)

Simulation with testbench

Using the always block

4

In general always block can also be used with/without sensitivity list

When it has no sensitivity list, the block is evaluated whenever one of the module
inputs change.

Using the always block

4

In general always block can also be used with/without sensitivity list

When it has no sensitivity list, the block is evaluated whenever one of the module
inputs change.

When it has a sensitivity list, the block is evaluated whenever one of the signal in
the sensitivity list changes value.

always @(a, b, cin)

Using the always block

4

In general always block can also be used with/without sensitivity list

When it has no sensitivity list, the block is evaluated whenever one of the module
inputs change.

When it has a sensitivity list, the block is evaluated whenever one of the signal in
the sensitivity list changes value.

always @(a, b, cin)

Where signal names in the sensitivity list may be preceded by posedge or negedge
to indicate that evaluation is triggered by only a rising edge or falling edge event.

Using the always block

4

In general always block can also be used with/without sensitivity list

When it has no sensitivity list, the block is evaluated whenever one of the module
inputs change.

When it has a sensitivity list, the block is evaluated whenever one of the signal in
the sensitivity list changes value.

always @(a, b, cin)

Where signal names in the sensitivity list may be preceded by posedge or negedge
to indicate that evaluation is triggered by only a rising edge or falling edge event.

For flip-flops (registers), latches and combinational circuits the usage of respectively
always_ff, always_latch and always_comb is preferred.

Using always block to describe a combinational circuit

5

An always_comb block can be used to describe a combinational circuit.

Using always block to describe a combinational circuit

5

module FA(input a, b, cin,

output s, cout);

wire p,q;

always_comb

begin

p = a ^ b;

g = a & b;

s = p ^ cin;

cout = g | (p & cin);

end

endmodule

An always_comb block can be used to describe a combinational circuit.

Using always block to describe a combinational circuit

5

module FA(input a, b, cin,

output s, cout);

wire p,q;

always_comb

begin

p = a ^ b;

g = a & b;

s = p ^ cin;

cout = g | (p & cin);

end

endmodule

An always_comb block can be used to describe a combinational circuit.

pa
b

cin

cout

s

q

Using always block to describe a combinational circuit

5

module FA(input a, b, cin,

output s, cout);

wire p,q;

always_comb

begin

p = a ^ b;

g = a & b;

s = p ^ cin;

cout = g | (p & cin);

end

endmodule

An always_comb block can be used to describe a combinational circuit.

The block is evaluated whenever one of the inputs (a, b or cin) change.

pa
b

cin

cout

s

q

Using always block to describe a combinational circuit

5

module FA(input a, b, cin,

output s, cout);

wire p,q;

always_comb

begin

p = a ^ b;

g = a & b;

s = p ^ cin;

cout = g | (p & cin);

end

endmodule

An always_comb block can be used to describe a combinational circuit.

The block is evaluated whenever one of the inputs (a, b or cin) change.

pa
b

cin

cout

s

q

It is important that you specify the value of all outputs in all cases.
Otherwise, unwanted latches may be created during synthesis.

Using always block to describe a combinational circuit

5

module FA(input a, b, cin,

output s, cout);

wire p,q;

always_comb

begin

p = a ^ b;

g = a & b;

s = p ^ cin;

cout = g | (p & cin);

end

endmodule

An always_comb block can be used to describe a combinational circuit.

The block is evaluated whenever one of the inputs (a, b or cin) change.

pa
b

cin

cout

s

q

It is important that you specify the value of all outputs in all cases.
Otherwise, unwanted latches may be created during synthesis.

always_comb begin

if (s = 1)begin

y = x1;

else y = x0;

end

end ok

Using always block to describe a combinational circuit

5

module FA(input a, b, cin,

output s, cout);

wire p,q;

always_comb

begin

p = a ^ b;

g = a & b;

s = p ^ cin;

cout = g | (p & cin);

end

endmodule

An always_comb block can be used to describe a combinational circuit.

The block is evaluated whenever one of the inputs (a, b or cin) change.

pa
b

cin

cout

s

q

It is important that you specify the value of all outputs in all cases.
Otherwise, unwanted latches may be created during synthesis.

always_comb begin

if (s = 1)begin

y = x1;

else y = x0;

end

end

always_comb begin

if (s = 1)begin

y = x1;

end

endok wrong

Blocking vs. Nonblocking Assignment

6

In an always block, there is an important difference between using a <= or a = in an assignment.

Blocking vs. Nonblocking Assignment

6

In an always block, there is an important difference between using a <= or a = in an assignment.

• <= is a nonblocking assignment: do not block the execution of the next statements. The order of the
assignments is not important.

• = is a blocking assignment. blocks the execution of the next statements. The order of the assignments
is important.

Blocking vs. Nonblocking Assignment

6

In an always block, there is an important difference between using a <= or a = in an assignment.

• <= is a nonblocking assignment: do not block the execution of the next statements. The order of the
assignments is not important.

• = is a blocking assignment. blocks the execution of the next statements. The order of the assignments
is important.

// nonblocking assignments

module nonblockeg(input clk,d,

output q);

wire n1;

always_ff @(posedge clk)

begin

n1 <= d; // nonblocking

q <= n1; // nonblocking

end

endmodule

// blocking assignments

module blockeg(input clk, d,

output q);

wire n1;

always_ff @(posedge clk)

begin

n1 = d; // blocking

q = n1; // blocking

end

endmodule

Blocking vs. Nonblocking Assignment

6

In an always block, there is an important difference between using a <= or a = in an assignment.

• <= is a nonblocking assignment: do not block the execution of the next statements. The order of the
assignments is not important.

• = is a blocking assignment. blocks the execution of the next statements. The order of the assignments
is important.

// nonblocking assignments

module nonblockeg(input clk,d,

output q);

wire n1;

always_ff @(posedge clk)

begin

n1 <= d; // nonblocking

q <= n1; // nonblocking

end

endmodule

// blocking assignments

module blockeg(input clk, d,

output q);

wire n1;

always_ff @(posedge clk)

begin

n1 = d; // blocking

q = n1; // blocking

end

endmodule

Blocking vs. Nonblocking Assignment

6

In an always block, there is an important difference between using a <= or a = in an assignment.

• <= is a nonblocking assignment: do not block the execution of the next statements. The order of the
assignments is not important.

• = is a blocking assignment. blocks the execution of the next statements. The order of the assignments
is important.

// nonblocking assignments

module nonblockeg(input clk,d,

output q);

wire n1;

always_ff @(posedge clk)

begin

n1 <= d; // nonblocking

q <= n1; // nonblocking

end

endmodule

// blocking assignments

module blockeg(input clk, d,

output q);

wire n1;

always_ff @(posedge clk)

begin

n1 = d; // blocking

q = n1; // blocking

end

endmodule

Blocking vs. Nonblocking Assignment

For always_com blocks it is ok to use blocking assignments:

7

Blocking vs. Nonblocking Assignment

For always_com blocks it is ok to use blocking assignments:

7

module FA(input a, b, cin,

output s, cout);

wire p,q;

always_comb

begin

p = a ^ b;

g = a & b;

s = p ^ cin;

cout = g | (p & cin);

end

endmodule

Blocking vs. Nonblocking Assignment

For always_com blocks it is ok to use blocking assignments:

7

pa
b

cin

cout

s

q

module FA(input a, b, cin,

output s, cout);

wire p,q;

always_comb

begin

p = a ^ b;

g = a & b;

s = p ^ cin;

cout = g | (p & cin);

end

endmodule

Blocking vs. Nonblocking Assignment

For always_com blocks it is ok to use blocking assignments:

7

pa
b

cin

cout

s

q

module FA(input a, b, cin,

output s, cout);

wire p,q;

always_comb

begin

p = a ^ b;

g = a & b;

s = p ^ cin;

cout = g | (p & cin);

end

endmodule

Best practice:

➔ Only use non-blocking assignment for sequential logic (e.g., FF)
➔Mainly use blocking assignment for combinational logic

Rules for Signal Assignment

8

• Synchronous sequential logic: use always_ff @(posedge clk)

and nonblocking assignments (<=)

Rules for Signal Assignment

8

• Synchronous sequential logic: use always_ff @(posedge clk)

and nonblocking assignments (<=)

always_ff @(posedge clk)

q <= d; // nonblocking

Rules for Signal Assignment

8

• Synchronous sequential logic: use always_ff @(posedge clk)

and nonblocking assignments (<=)

always_ff @(posedge clk)

q <= d; // nonblocking

• Simple combinational logic: use continuous assignments (assign…)

assign y = a & b;

Rules for Signal Assignment

8

• Synchronous sequential logic: use always_ff @(posedge clk)

and nonblocking assignments (<=)

always_ff @(posedge clk)

q <= d; // nonblocking

• Simple combinational logic: use continuous assignments (assign…)

assign y = a & b;

• More complicated combinational logic: use always_comb and blocking
assignments (=)

• In an always_comb block, assign a value to each output for all input
combinations.

Rules for Signal Assignment

8

• Synchronous sequential logic: use always_ff @(posedge clk)

and nonblocking assignments (<=)

always_ff @(posedge clk)

q <= d; // nonblocking

• Simple combinational logic: use continuous assignments (assign…)

assign y = a & b;

• More complicated combinational logic: use always_comb and blocking
assignments (=)

• In an always_comb block, assign a value to each output for all input
combinations.

• Assign a signal in only one always statement or continuous assignment
statement. ➔ avoids conflicting signal assignment

Demo circuits: seven segment display

9

A combinational circuit for a seven-segment display decoder that uses a case statement

Demo circuits: seven segment display

9

module sevenseg(input [3:0] data,

output [6:0] segments);

always_comb

begin

case(data)

0: segments = 7'b111_1110;

1: segments = 7'b011_0000;

2: segments = 7'b110_1101;

3: segments = 7'b111_1001;

4: segments = 7'b011_0011;

5: segments = 7'b101_1011;

6: segments = 7'b101_1111;

7: segments = 7'b111_0000;

8: segments = 7'b111_1111;

9: segments = 7'b111_0011;

default: segments = 7'b000_0000;

endcase

end

endmodule

A combinational circuit for a seven-segment display decoder that uses a case statement

Demo circuits: seven segment display

9

module sevenseg(input [3:0] data,

output [6:0] segments);

always_comb

begin

case(data)

0: segments = 7'b111_1110;

1: segments = 7'b011_0000;

2: segments = 7'b110_1101;

3: segments = 7'b111_1001;

4: segments = 7'b011_0011;

5: segments = 7'b101_1011;

6: segments = 7'b101_1111;

7: segments = 7'b111_0000;

8: segments = 7'b111_1111;

9: segments = 7'b111_0011;

default: segments = 7'b000_0000;

endcase

end

endmodule

A combinational circuit for a seven-segment display decoder that uses a case statement

Synthesis:

Demo circuits: priority circuit

10

A priority circuit that uses a nested if-else statement

Demo circuits: priority circuit

10

module priorityckt(input [3:0] a,

output [3:0] y);

always_comb

begin

if (a[3]) y = 4'b1000;

else if (a[2]) y = 4'b0100;

else if (a[1]) y = 4'b0010;

else if (a[0]) y = 4'b0001;

else y = 4'b0000;

end

endmodule

A priority circuit that uses a nested if-else statement

Demo circuits: priority circuit

10

module priorityckt(input [3:0] a,

output [3:0] y);

always_comb

begin

if (a[3]) y = 4'b1000;

else if (a[2]) y = 4'b0100;

else if (a[1]) y = 4'b0010;

else if (a[0]) y = 4'b0001;

else y = 4'b0000;

end

endmodule

A priority circuit that uses a nested if-else statement

Synthesis:

Demo circuits: priority circuit with don’t cares

11

• Truth tables may include don’t cares to allow more logic simplification.
• The following shows how to describe the previous priority circuit with a case statement, which allows don’t

cares to be used.

Demo circuits: priority circuit with don’t cares

11

module priority_case(input [3:0] a,

output [3:0] y);

always_comb

begin

case(a)

4'b1???: y = 4'b1000; // ? = don’t care

4'b01??: y = 4'b0100;

4'b001?: y = 4'b0010;

4'b0001: y = 4'b0001;

default: y = 4'b0000;

endcase

end

endmodule

• Truth tables may include don’t cares to allow more logic simplification.
• The following shows how to describe the previous priority circuit with a case statement, which allows don’t

cares to be used.

Demo circuits: priority circuit with don’t cares

11

module priority_case(input [3:0] a,

output [3:0] y);

always_comb

begin

case(a)

4'b1???: y = 4'b1000; // ? = don’t care

4'b01??: y = 4'b0100;

4'b001?: y = 4'b0010;

4'b0001: y = 4'b0001;

default: y = 4'b0000;

endcase

end

endmodule

Synthesis:

• Truth tables may include don’t cares to allow more logic simplification.
• The following shows how to describe the previous priority circuit with a case statement, which allows don’t

cares to be used.

Describing a D flip-flop

12

module dff(input clk,

input d,

output q);

always_ff @(posedge clk) // on a rising clock edge

q <= d; // q gets the value of d

endmodule

Describing a D flip-flop

12

module dff(input clk,

input d,

output q);

always_ff @(posedge clk) // on a rising clock edge

q <= d; // q gets the value of d

endmodule

d q

clk

D

FF

Describing a D flip-flop with reset

13

It is good practice to use resettable registers so that on powerup you can put your
system in a known state.

Describing a D flip-flop with reset

13

always_ff @(posedge clk)

if (reset = 1) q <= 0;

else q <= d;

with synchronous reset, the reset
is done only on rising clock edge

It is good practice to use resettable registers so that on powerup you can put your
system in a known state.

Describing a D flip-flop with reset

13

always_ff @(posedge clk)

if (reset = 1) q <= 0;

else q <= d;

always_ff @(posedge clk, posedge reset)

if (reset = 1) q <= 0;

else q <= d;

with synchronous reset, the reset
is done only on rising clock edge

with asynchronous reset, the reset is
done any moment reset becomes 1

It is good practice to use resettable registers so that on powerup you can put your
system in a known state.

Describing a latch

14

d q

clk

D

latch

The block always_latch is used to describe a latch

Describing a latch

14

always_latch

if (clk) q <= d; // when clk = 1, q gets value of d

// when clk = 0, q remembers its value

d q

clk

D

latch

The block always_latch is used to describe a latch

Describing a latch

14

always_latch

if (clk) q <= d; // when clk = 1, q gets value of d

// when clk = 0, q remembers its value

d q

clk

D

latch

The block always_latch is evaluated whenever one of the inputs (clk or d)
changes value

The block always_latch is used to describe a latch

Describing a latch

14

always_latch

if (clk) q <= d; // when clk = 1, q gets value of d

// when clk = 0, q remembers its value

d q

clk

D

latch

The block always_latch is evaluated whenever one of the inputs (clk or d)
changes value

Normally, it is not a good idea to use latches in your circuit: they are transparent as
long as clk = 1, so problematic combinational feedback loops may occur.

The block always_latch is used to describe a latch

Registers

15

The following example shows a 4-bit register with asynchronous reset and enable.

It retains its old value if both reset and en are FALSE.

Registers

15

module register4bit(input clk, reset, en, [3:0] d,

output [3:0] q);

// asynchronous reset

always_ff @(posedge clk, posedge reset)

if (reset) q <= 4'b0;

else if (en) q <= d;

endmodule

The following example shows a 4-bit register with asynchronous reset and enable.

It retains its old value if both reset and en are FALSE.

Registers

15

module register4bit(input clk, reset, en, [3:0] d,

output [3:0] q);

// asynchronous reset

always_ff @(posedge clk, posedge reset)

if (reset) q <= 4'b0;

else if (en) q <= d;

endmodule

Synthesis:

The following example shows a 4-bit register with asynchronous reset and enable.

It retains its old value if both reset and en are FALSE.

Finite State Machines

16

• Three blocks:
– next state logic

– state register

– output logic

CLK
M Nk knext

state

logic

output

logic

Moore FSM

CLK
M Nk knext

state

logic

output

logic

inputs

inputs

outputs

outputs
state

state
next

state

next

state

Mealy FSM

Finite State Machines

16

• Three blocks:
– next state logic

– state register

– output logic

CLK
M Nk knext

state

logic

output

logic

Moore FSM

CLK
M Nk knext

state

logic

output

logic

inputs

inputs

outputs

outputs
state

state
next

state

next

state

Mealy FSM

Sequential logic

Finite State Machines

16

• Three blocks:
– next state logic

– state register

– output logic

CLK
M Nk knext

state

logic

output

logic

Moore FSM

CLK
M Nk knext

state

logic

output

logic

inputs

inputs

outputs

outputs
state

state
next

state

next

state

Mealy FSM
Combinational logic

Sequential logic

Finite State Machines

16

• Three blocks:
– next state logic

– state register

– output logic

CLK
M Nk knext

state

logic

output

logic

Moore FSM

CLK
M Nk knext

state

logic

output

logic

inputs

inputs

outputs

outputs
state

state
next

state

next

state

Mealy FSM
Combinational logic

Sequential logic Output depends on
current state only

Finite State Machines

16

• Three blocks:
– next state logic

– state register

– output logic

CLK
M Nk knext

state

logic

output

logic

Moore FSM

CLK
M Nk knext

state

logic

output

logic

inputs

inputs

outputs

outputs
state

state
next

state

next

state

Mealy FSM
Combinational logic

Sequential logic Output depends on
current state only

Output depends
on current state
and current input

FSM Example 1: Even/Odd FSM

17

EVEN ODD

isEven = 0 isEven = 1RESET

Time t0 t1 t2 t3 t4 t5 t6 t7

Input 0 0 1 1 1 0 1 1

State EVEN EVEN EVEN ODD EVEN ODD ODD EVEN

Output 0 0 0 1 0 1 1 0

FSM Example 1: Even/Odd FSM

17

EVEN ODD

isEven = 0 isEven = 1

0

RESET

Time t0 t1 t2 t3 t4 t5 t6 t7

Input 0 0 1 1 1 0 1 1

State EVEN EVEN EVEN ODD EVEN ODD ODD EVEN

Output 0 0 0 1 0 1 1 0

FSM Example 1: Even/Odd FSM

17

EVEN ODD

isEven = 0 isEven = 1

1

0

RESET

Time t0 t1 t2 t3 t4 t5 t6 t7

Input 0 0 1 1 1 0 1 1

State EVEN EVEN EVEN ODD EVEN ODD ODD EVEN

Output 0 0 0 1 0 1 1 0

FSM Example 1: Even/Odd FSM

17

EVEN ODD

isEven = 0 isEven = 1

1

1

0

RESET

Time t0 t1 t2 t3 t4 t5 t6 t7

Input 0 0 1 1 1 0 1 1

State EVEN EVEN EVEN ODD EVEN ODD ODD EVEN

Output 0 0 0 1 0 1 1 0

FSM Example 1: Even/Odd FSM

17

EVEN ODD

isEven = 0 isEven = 1

1

1

0 0

RESET

Time t0 t1 t2 t3 t4 t5 t6 t7

Input 0 0 1 1 1 0 1 1

State EVEN EVEN EVEN ODD EVEN ODD ODD EVEN

Output 0 0 0 1 0 1 1 0

FSM Example 1: Even/Odd FSM

18

EVEN ODD

isEven = 0 IsEven = 1

1

1

0 0

RESET

FSM Example 1: Even/Odd FSM

18

module EvenOddFSM(input clk, reset, in

output reg isEven);

reg state, nextstate;

parameter EVEN == 0;

Parameter ODD = 1;

initial begin

state = EVEN;

end

always_ff @(posedge clk, posedge reset) begin

if (reset) state <= EVEN; // non-blocking <=

else state <= nextstate;

end

// next state logic

always_comb

begin

case (state)

EVEN: begin

isEven = 0;

if(in) nextstate = ODD;

else nextstate = EVEN;

end

ODD: begin

isEven = 1;

if(in) nextstate = EVEN;

else nextstate = ODD;

end

default: begin

isEven = 0’bx;

nextstate = 0’bx;

end

endcase

end

endmodule

EVEN ODD

isEven = 0 IsEven = 1

1

1

0 0

RESET

FSM Example 1: Even/Odd FSM

18

module EvenOddFSM(input clk, reset, in

output reg isEven);

reg state, nextstate;

parameter EVEN == 0;

Parameter ODD = 1;

initial begin

state = EVEN;

end

always_ff @(posedge clk, posedge reset) begin

if (reset) state <= EVEN; // non-blocking <=

else state <= nextstate;

end

// next state logic

always_comb

begin

case (state)

EVEN: begin

isEven = 0;

if(in) nextstate = ODD;

else nextstate = EVEN;

end

ODD: begin

isEven = 1;

if(in) nextstate = EVEN;

else nextstate = ODD;

end

default: begin

isEven = 0’bx;

nextstate = 0’bx;

end

endcase

end

endmodule

EVEN ODD

isEven = 0 IsEven = 1

1

1

0 0

RESET

always_ff @(posedge clk) begin

if (reset) state <= EVEN;

else state <= nextstate;

end

FSM Example 1: Even/Odd FSM

18

module EvenOddFSM(input clk, reset, in

output reg isEven);

reg state, nextstate;

parameter EVEN == 0;

Parameter ODD = 1;

initial begin

state = EVEN;

end

always_ff @(posedge clk, posedge reset) begin

if (reset) state <= EVEN; // non-blocking <=

else state <= nextstate;

end

// next state logic

always_comb

begin

case (state)

EVEN: begin

isEven = 0;

if(in) nextstate = ODD;

else nextstate = EVEN;

end

ODD: begin

isEven = 1;

if(in) nextstate = EVEN;

else nextstate = ODD;

end

default: begin

isEven = 0’bx;

nextstate = 0’bx;

end

endcase

end

endmodule

EVEN ODD

isEven = 0 IsEven = 1

1

1

0 0

RESET

always_ff @(posedge clk) begin

if (reset) state <= EVEN;

else state <= nextstate;

end

What is the difference?

FSM Example 1: Even/Odd FSM

18

module EvenOddFSM(input clk, reset, in

output reg isEven);

reg state, nextstate;

parameter EVEN == 0;

Parameter ODD = 1;

initial begin

state = EVEN;

end

always_ff @(posedge clk, posedge reset) begin

if (reset) state <= EVEN; // non-blocking <=

else state <= nextstate;

end

// next state logic

always_comb

begin

case (state)

EVEN: begin

isEven = 0;

if(in) nextstate = ODD;

else nextstate = EVEN;

end

ODD: begin

isEven = 1;

if(in) nextstate = EVEN;

else nextstate = ODD;

end

default: begin

isEven = 0’bx;

nextstate = 0’bx;

end

endcase

end

endmodule

Note that a default case is used in the combinational block, to
be sure that output nextstate receives a value in all cases.
- The initial blocks sets the FSM to start at EVEN state

EVEN ODD

isEven = 0 IsEven = 1

1

1

0 0

RESET

always_ff @(posedge clk) begin

if (reset) state <= EVEN;

else state <= nextstate;

end

What is the difference?

FSM Example 2: Sequence Detector

19

Which sequence will be detected?

Moore FSM

Reset

S0

0

S1

0

S2

1
0

0 1

1 0

1

Sequence Detector FSM: Moore

20

module seqDetectMoore(input clk, reset, a,

output smile);

parameter S0 = 00;

parameter S1 = 01;

parameter S2 = 10;

reg state, nextstate;

// state register

always_ff @(posedge clk, posedge reset)

if (reset) state <= S0;

else state <= nextstate;

// next state logic

always_comb

case (state)

S0: if (a) nextstate = S0;

else nextstate = S1;

S1: if (a) nextstate = S2;

else nextstate = S1;

S2: if (a) nextstate = S0;

else nextstate = S1;

default: nextstate = S0;

endcase

// output logic

assign smile = (state == S2);

endmodule

CLK
M Nk knext

state

logic

output

logic
inputs outputs

state
next

state

clkclk

reset

Moore FSM

Reset

S0

0

S1

0

S2

1
0

0 1

1 0

1

FSM Example 3: Sequence Detector

21

Reset

S0 S1

1/1

0/0

1/0 0/0

Mealy FSM

Sequence Detector FSM: Mealy

22

CLK
M Nk knext

state

logic

output

logic

Moore FSM

CLK
M Nk knext

state

logic

output

logic

inputs

inputs

outputs

outputs
state

state
next

state

next

state

Mealy FSM

Reset

S0 S1

1/1

0/0

1/0 0/0

Mealy FSM

clkclk

reset

Sequence Detector FSM: Mealy

22

CLK
M Nk knext

state

logic

output

logic

Moore FSM

CLK
M Nk knext

state

logic

output

logic

inputs

inputs

outputs

outputs
state

state
next

state

next

state

Mealy FSM

Reset

S0 S1

1/1

0/0

1/0 0/0

Mealy FSMmodule seqDetectMealy(input clk, reset, a,

output smile);

parameter S0 = 0;

parameter S1 = 1;

reg state, nextstate;

// state register

always_ff @(posedge clk, posedge reset)

if (reset) state <= S0;

else state <= nextstate;

// next state and output logic

always_comb begin

// make sure smile receives value in all cases.

smile = 1’b0;

case (state)

S0: if (a) nextstate = S0;

else nextstate = S1;

S1: if (a) begin

nextstate = S0;

smile = 1'b1;

end

else nextstate = S1;

default: nextstate = S0;

endcase

end

endmodule

clkclk

reset

Sequence Detector FSM: Mealy

22

CLK
M Nk knext

state

logic

output

logic

Moore FSM

CLK
M Nk knext

state

logic

output

logic

inputs

inputs

outputs

outputs
state

state
next

state

next

state

Mealy FSM

Reset

S0 S1

1/1

0/0

1/0 0/0

Mealy FSMmodule seqDetectMealy(input clk, reset, a,

output smile);

parameter S0 = 0;

parameter S1 = 1;

reg state, nextstate;

// state register

always_ff @(posedge clk, posedge reset)

if (reset) state <= S0;

else state <= nextstate;

// next state and output logic

always_comb begin

// make sure smile receives value in all cases.

smile = 1’b0;

case (state)

S0: if (a) nextstate = S0;

else nextstate = S1;

S1: if (a) begin

nextstate = S0;

smile = 1'b1;

end

else nextstate = S1;

default: nextstate = S0;

endcase

end

endmodule

Synthesis:

clkclk

reset

FSM Testbench

`timescale 1ns/1ps

module seqDetectMoore_tb();

reg clk, reset, a;

wire smile;

seqDetectMoore dut (clk, reset, a, smile);

initial
clk = 0;

always

#10 clk = ~clk;

initial begin

reset = 1; a = 0;
#20; reset = 0;

#20; a = 1;

end

endmodule

23

Moore FSM

Reset

S0

0

S1

0

S2

1
0

0 1

1 0

1

FSM Testbench

`timescale 1ns/1ps

module seqDetectMoore_tb();

reg clk, reset, a;

wire smile;

seqDetectMoore dut (clk, reset, a, smile);

initial
clk = 0;

always

#10 clk = ~clk;

initial begin

reset = 1; a = 0;
#20; reset = 0;

#20; a = 1;

end

endmodule

23

Moore FSM

Reset

S0

0

S1

0

S2

1
0

0 1

1 0

1

FSM Testbench

`timescale 1ns/1ps

module seqDetectMoore_tb();

reg clk, reset, a;

wire smile;

seqDetectMoore dut (clk, reset, a, smile);

initial
clk = 0;

always

#10 clk = ~clk;

initial begin

reset = 1; a = 0;
#20; reset = 0;

#20; a = 1;

end

endmodule

23

Moore FSM

Reset

S0

0

S1

0

S2

1
0

0 1

1 0

1

Important: to avoid setup/hold time violations, do not change input signals on
the rising clock edge. Instead, do it on the negative clock edge.

Counter

24

A counter can be considered as a FSM that adds 1 to its state in its next state logic.
Usually there is no output logic.

Counter

24

A counter can be considered as a FSM that adds 1 to its state in its next state logic.
Usually there is no output logic.

CLK
M Nk knext

state

logic

output

logic
inputs outputs

state
next

stateenable

state ≡ count

clkclk

reset

Counter

24

module counter(input clk, reset, enable,

output [7:0] count);

reg [7:0] next_count;

// register

always_ff@(posedge clk)

begin

if (reset) count <= 0;

else count <= next_count;

end

// next state logic

always_comb

begin

if (enable) next_count <= count + 1;

else next_count <= count;

end

endmodule

A counter can be considered as a FSM that adds 1 to its state in its next state logic.
Usually there is no output logic.

CLK
M Nk knext

state

logic

output

logic
inputs outputs

state
next

stateenable

state ≡ count

clkclk

reset

Counter simulation

25

module counter_tb();

reg clk;

reg reset;

reg enable;

wire [7:0] count;

counter dut (clk, reset, enable, count);

always

#10 clk = ~clk;

initial

clk = 0;

initial begin

reset = 1; enable = 0;

#20; reset = 0;

#40; enable = 1;

end

endmodule

Counter simulation

25

module counter_tb();

reg clk;

reg reset;

reg enable;

wire [7:0] count;

counter dut (clk, reset, enable, count);

always

#10 clk = ~clk;

initial

clk = 0;

initial begin

reset = 1; enable = 0;

#20; reset = 0;

#40; enable = 1;

end

endmodule

Adder design in verilog

26

Half Adder
• Two 1-bit inputs
• Two 1-bit outputs

Full Adder
• Three 1-bit inputs
• Two 1-bit outputs

Adder design in verilog

26

A B

S

C
out

Half Adder
• Two 1-bit inputs
• Two 1-bit outputs

Full Adder
• Three 1-bit inputs
• Two 1-bit outputs

A B

C

S

C
out

Adder design in verilog

26

A B Co S

0 0

0 1

1 0

1 1

A B

S

C
out

out

S

C

=

=

Half Adder
• Two 1-bit inputs
• Two 1-bit outputs

Full Adder
• Three 1-bit inputs
• Two 1-bit outputs

A B C Co S

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

A B

C

S

C
out

out

S

C

=

=

Adder design in verilog

27

A B Co S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

A B

S

C
out

Half Adder
• Two 1-bit inputs
• Two 1-bit outputs

Full Adder
• Three 1-bit inputs
• Two 1-bit outputs

A B C Co S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

A B

C

S

C
out

out

S A B

C A B

= 

= g

out (, ,)

S A B C

C MAJ A B C

=  

=

Simple multi-bit adder

28

• Simplest design: cascade full adders

• Critical path goes from Cin to Cout

• Design full adder to have fast carry delay

Simple multi-bit adder

28

• Simplest design: cascade full adders

• Critical path goes from Cin to Cout

• Design full adder to have fast carry delay

C
in

C
out

B
1

A
1

B
2

A
2

B
3

A
3

B
4

A
4

S
1

S
2

S
3

S
4

C
1

C
2

C
3

Simple multi-bit adder

28

• Simplest design: cascade full adders

• Critical path goes from Cin to Cout

• Design full adder to have fast carry delay

• Commonly known as ripple-carry adder

• Named from its carry-chain structure

C
in

C
out

B
1

A
1

B
2

A
2

B
3

A
3

B
4

A
4

S
1

S
2

S
3

S
4

C
1

C
2

C
3

Adder circuit implementation

29

A B

S

C
out

Half Adder
• Two 1-bit inputs
• Two 1-bit outputs

Full Adder
• Three 1-bit inputs
• Two 1-bit outputs

A B

C

S

C
out

Adder circuit implementation

29

A B

S

C
out

Half Adder
• Two 1-bit inputs
• Two 1-bit outputs

Full Adder
• Three 1-bit inputs
• Two 1-bit outputs

A B

C

S

C
out

out

S A B

C A B

= 

= g

Cout

Adder circuit implementation

29

A B

S

C
out

Half Adder
• Two 1-bit inputs
• Two 1-bit outputs

Full Adder
• Three 1-bit inputs
• Two 1-bit outputs

A B

C

S

C
out

out

S A B

C A B

= 

= g

out (, ,)

S A B C

C MAJ A B C

=  

=

pA
B

C

Cout

S

q
Cout = A.B + B(A⊕B)

Cout

Adder circuit implementation

29

A B

S

C
out

Half Adder
• Two 1-bit inputs
• Two 1-bit outputs

Full Adder
• Three 1-bit inputs
• Two 1-bit outputs

A B

C

S

C
out

out

S A B

C A B

= 

= g

out (, ,)

S A B C

C MAJ A B C

=  

=

pA
B

C

Cout

S

q
Cout = A.B + B(A⊕B)

Cout

module HA(input A, B,
output S,Cout);

assign S = a ^ b;
assign Cout = a & b;

endmodule

Adder circuit implementation

29

A B

S

C
out

Half Adder
• Two 1-bit inputs
• Two 1-bit outputs

Full Adder
• Three 1-bit inputs
• Two 1-bit outputs

A B

C

S

C
out

out

S A B

C A B

= 

= g

out (, ,)

S A B C

C MAJ A B C

=  

=

pA
B

C

Cout

S

q
Cout = A.B + B(A⊕B)

Cout

module HA(input A, B,
output S,Cout);

assign S = a ^ b;
assign Cout = a & b;

endmodule

module FA(input A, B, C
output S, Cout);
Wire p,q;

assign p = B ^ A;
Assign q= A & B;
assign S = p ^ C;
assign Cout = q | (p & C);
endmodule

Full adder impementation in verilog

30

Behavioural verilog implemntation Structural verilog implementation
module FA(input A, B, C
output S, Cout);
Wire p,q;

assign p = B ^ A;
Assign q= A & B;
assign S = p ^ C;
assign Cout = q | (p & C);
endmodule

Full adder impementation in verilog

30

Behavioural verilog implemntation Structural verilog implementation

module FA_Behavioral_(input A, B, C, output S, Cout);

reg[1:0] temp;

always @(*)
begin
temp = {1’b0,A} + {1’b0,B}+{1’b0,C};
end
assign S = temp[0];
assign Cout = temp[1];
endmodule

module FA(input A, B, C
output S, Cout);
Wire p,q;

assign p = B ^ A;
Assign q= A & B;
assign S = p ^ C;
assign Cout = q | (p & C);
endmodule

Equivalent

Full adder impementation in verilog

30

Behavioural verilog implemntation Structural verilog implementation

module FA_Behavioral_(input A, B, C, output S, Cout);

reg[1:0] temp;

always @(*)
begin
temp = {1’b0,A} + {1’b0,B}+{1’b0,C};
end
assign S = temp[0];
assign Cout = temp[1];
endmodule

HA1
HA2A

B

C

S

Cout

module FA(input A, B, C
output S, Cout);
Wire p,q;

assign p = B ^ A;
Assign q= A & B;
assign S = p ^ C;
assign Cout = q | (p & C);
endmodule

Equivalent

Full adder impementation in verilog

30

Behavioural verilog implemntation Structural verilog implementation

module FA_Behavioral_(input A, B, C, output S, Cout);

reg[1:0] temp;

always @(*)
begin
temp = {1’b0,A} + {1’b0,B}+{1’b0,C};
end
assign S = temp[0];
assign Cout = temp[1];
endmodule

HA1
HA2A

B

C

S

Cout

module HA(input A, B,
output S,Cout);

assign S = a ^ b;
assign Cout = a & b;

endmodule

module FA(input A, B, C
output S, Cout);
Wire p,q;

assign p = B ^ A;
Assign q= A & B;
assign S = p ^ C;
assign Cout = q | (p & C);
endmodule

Equivalent

Full adder impementation in verilog

30

Behavioural verilog implemntation Structural verilog implementation

module FA_Behavioral_(input A, B, C, output S, Cout);

reg[1:0] temp;

always @(*)
begin
temp = {1’b0,A} + {1’b0,B}+{1’b0,C};
end
assign S = temp[0];
assign Cout = temp[1];
endmodule

HA1
HA2A

B

C

S

Cout

module FA(input A, B, C,
output S, Cout);
wire c0,c1,so;
HA ha0(A, b, So, c0);
HA ha1(C, so, S,c1);
assign carry = c0 | c1 ;
endmodule

module HA(input A, B,
output S,Cout);

assign S = a ^ b;
assign Cout = a & b;

endmodule

module FA(input A, B, C
output S, Cout);
Wire p,q;

assign p = B ^ A;
Assign q= A & B;
assign S = p ^ C;
assign Cout = q | (p & C);
endmodule

Equivalent

Verilog for Ripple Carry Adder (RCA)

31

module nbit_RCA(input [7:0] a, [7:0] b, cin,

output [7:0] sum, cout);

wire [7:1] carry; /* transfers the carry between bits */

FA a0(a[0],b[0],cin,sum[0],carry[1]);

FA a1(a[1],b[1],carry[1],sum[1],carry[2]);

FA a2(a[2],b[2], carry[2],sum[2],carry[3]);

FA a3(a[3],b[3],carry[3],sum[3],carry[4]);

FA a4(a[4],b[4], carry[4],sum[4],carry[5]);

FA a5(a[5],b[5],carry[5],sum[5],carry[6]);

FA a6(a[6],b[6], carry[6],sum[6],carry[7]);

FA a7(a[7],b[7],carry[7],sum[7], cout);

endmodule

Verilog for Ripple Carry Adder (RCA)

31

module nbit_RCA(input [7:0] a, [7:0] b, cin,

output [7:0] sum, cout);

wire [7:1] carry; /* transfers the carry between bits */

FA a0(a[0],b[0],cin,sum[0],carry[1]);

FA a1(a[1],b[1],carry[1],sum[1],carry[2]);

FA a2(a[2],b[2], carry[2],sum[2],carry[3]);

FA a3(a[3],b[3],carry[3],sum[3],carry[4]);

FA a4(a[4],b[4], carry[4],sum[4],carry[5]);

FA a5(a[5],b[5],carry[5],sum[5],carry[6]);

FA a6(a[6],b[6], carry[6],sum[6],carry[7]);

FA a7(a[7],b[7],carry[7],sum[7], cout);

endmodule

Carry propagation time is a problem!!

Verilog for Ripple Carry Adder (RCA)

31

module nbit_RCA(input [7:0] a, [7:0] b, cin,

output [7:0] sum, cout);

wire [7:1] carry; /* transfers the carry between bits */

FA a0(a[0],b[0],cin,sum[0],carry[1]);

FA a1(a[1],b[1],carry[1],sum[1],carry[2]);

FA a2(a[2],b[2], carry[2],sum[2],carry[3]);

FA a3(a[3],b[3],carry[3],sum[3],carry[4]);

FA a4(a[4],b[4], carry[4],sum[4],carry[5]);

FA a5(a[5],b[5],carry[5],sum[5],carry[6]);

FA a6(a[6],b[6], carry[6],sum[6],carry[7]);

FA a7(a[7],b[7],carry[7],sum[7], cout);

endmodule

Carry propagation time is a problem!!

Reduce the carry propagation time.

Verilog for Ripple Carry Adder (RCA)

31

module nbit_RCA(input [7:0] a, [7:0] b, cin,

output [7:0] sum, cout);

wire [7:1] carry; /* transfers the carry between bits */

FA a0(a[0],b[0],cin,sum[0],carry[1]);

FA a1(a[1],b[1],carry[1],sum[1],carry[2]);

FA a2(a[2],b[2], carry[2],sum[2],carry[3]);

FA a3(a[3],b[3],carry[3],sum[3],carry[4]);

FA a4(a[4],b[4], carry[4],sum[4],carry[5]);

FA a5(a[5],b[5],carry[5],sum[5],carry[6]);

FA a6(a[6],b[6], carry[6],sum[6],carry[7]);

FA a7(a[7],b[7],carry[7],sum[7], cout);

endmodule

Carry propagation time is a problem!!

Reduce the carry propagation time.

How to do it?

Complex adders with circuitry to detect carry

generation/completion

Not part of this lecture

Decoders

32

• Decoder is a combinational circuit that
change the binary information into
2N output lines

• Performs the reverse operation of
encoder

Decoders

32

• Decoder is a combinational circuit that
change the binary information into
2N output lines

• Performs the reverse operation of
encoder

Decoders

32

Example: Three-to-eight decoder
• Decoder is a combinational circuit that

change the binary information into
2N output lines

• Performs the reverse operation of
encoder

Decoders

32

x y z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Example: Three-to-eight decoder

Truth table of a three-to-Eight (3:8) decoder• Decoder is a combinational circuit that
change the binary information into
2N output lines

• Performs the reverse operation of
encoder

Decoders

32

x y z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

O0 O1 O2 O3 O4 O5 O6 O7

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Example: Three-to-eight decoder

Truth table of a three-to-Eight (3:8) decoder• Decoder is a combinational circuit that
change the binary information into
2N output lines

• Performs the reverse operation of
encoder

Decoders

32

x y z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

O0 O1 O2 O3 O4 O5 O6 O7

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Example: Three-to-eight decoder

Truth table of a three-to-Eight (3:8) decoder

Converts binary information from n input lines to 2n unique output

Or the circuit takes a binary number and converts it to an octal number

• Decoder is a combinational circuit that
change the binary information into
2N output lines

• Performs the reverse operation of
encoder

Decoder hardware implementation

33

Three-to-eight decoder

x

y

z

O0

O3

O2

O4

O5
O6

O7

O1

Block diagram

Decoder hardware implementation

33

Three-to-eight decoder

O0 = x’.y’.z’
O1 = x’.y’.z
O2 = x’.y.z’
O3 = x’.y.z
O4 = x.y’.z’
O5 = x.y’.z
O6 = x.y.z’
O7 = x.y.z

Logical expression

x

y

z

O0

O3

O2

O4

O5
O6

O7

O1

Block diagram

Decoder hardware implementation

33

Three-to-eight decoder

O0 = x’.y’.z’
O1 = x’.y’.z
O2 = x’.y.z’
O3 = x’.y.z
O4 = x.y’.z’
O5 = x.y’.z
O6 = x.y.z’
O7 = x.y.z

Logical expression

Circuit implementation

x

y

z

O0

O3

O2

O4

O5
O6

O7

O1

Block diagram

Decoder hardware implementation

33

Three-to-eight decoder

O0 = x’.y’.z’
O1 = x’.y’.z
O2 = x’.y.z’
O3 = x’.y.z
O4 = x.y’.z’
O5 = x.y’.z
O6 = x.y.z’
O7 = x.y.z

Logical expression

x y z

O0

O3

O4

O5

O6

O7

O1

O2

Circuit implementation

x

y

z

O0

O3

O2

O4

O5
O6

O7

O1

Block diagram

Decoder hardware implementation

33

Three-to-eight decoder

O0 = x’.y’.z’
O1 = x’.y’.z
O2 = x’.y.z’
O3 = x’.y.z
O4 = x.y’.z’
O5 = x.y’.z
O6 = x.y.z’
O7 = x.y.z

Logical expression

x y z

O0

O3

O4

O5

O6

O7

O1

O2

Circuit implementation

x

y

z

O0

O3

O2

O4

O5
O6

O7

O1

Block diagram 4 to 16 decoder

Can be built using 3 to 8 decoder

Decoder hardware implementation

33

Three-to-eight decoder

O0 = x’.y’.z’
O1 = x’.y’.z
O2 = x’.y.z’
O3 = x’.y.z
O4 = x.y’.z’
O5 = x.y’.z
O6 = x.y.z’
O7 = x.y.z

Logical expression

x y z

O0

O3

O4

O5

O6

O7

O1

O2

Circuit implementation

x

y

z

O0

O3

O2

O4

O5
O6

O7

O1

Block diagram

x
y

z

O0

O3

O2

O4

O5

O6

O7

O1

w
O8

O11

O10

O12

O13

O14

O15

O9

4 to 16 decoder

Can be built using 3 to 8 decoder

Decoder application: Memory address decoder

34

• Different portions of memory are used for different purposes: RAM, ROM, I/O devices
• Address decoding is the process of generating chip select (CS*) signals from the address bus for

each device in the system

Decoder application: Memory address decoder

34

• Different portions of memory are used for different purposes: RAM, ROM, I/O devices
• Address decoding is the process of generating chip select (CS*) signals from the address bus for

each device in the system
• The address bus lines are split into two sections

• The N most significant bits are used to generate the CS* signals for the different devices
• The M least significant signals are passed to the devices as addresses to the different

memory cells or internal registers

Decoder application: Memory address decoder

35

• Let’s assume a very simple microprocessor with 10 address lines (1KB memory)
• Let’s assume we wish to implement all its memory space and we use 128x8 memory

Decoder application: Memory address decoder

35

• Let’s assume a very simple microprocessor with 10 address lines (1KB memory)
• Let’s assume we wish to implement all its memory space and we use 128x8 memory
• Solution

• We will need 8 memory chips (8x128=1024)
• We will need 3 address lines to select each one of the 8 chips
• Each chip will need 7 address lines to address its internal memory cells

Decoder application: Memory address decoder

35

• Let’s assume a very simple microprocessor with 10 address lines (1KB memory)
• Let’s assume we wish to implement all its memory space and we use 128x8 memory
• Solution

• We will need 8 memory chips (8x128=1024)
• We will need 3 address lines to select each one of the 8 chips
• Each chip will need 7 address lines to address its internal memory cells

Decoder application: Full adder implementation

36

3-to-8 decoder as a Full adder
• Truth table

Decoder application: Full adder implementation

36

row x y z C S

0 0 0 0 0 0

1 0 0 1 0 1

2 0 1 0 0 1

3 0 1 1 1 0

4 1 0 0 0 1

5 1 0 1 1 0

6 1 1 0 1 0

7 1 1 1 1 1

3-to-8 decoder as a Full adder
• Truth table

Decoder application: Full adder implementation

36

row x y z C S

0 0 0 0 0 0

1 0 0 1 0 1

2 0 1 0 0 1

3 0 1 1 1 0

4 1 0 0 0 1

5 1 0 1 1 0

6 1 1 0 1 0

7 1 1 1 1 1

3-to-8 decoder as a Full adder
• Truth table

S(x, y, z) = (1,2,4,7)∑

C(x, y, z) = (3,5,6,7)∑

Decoder application: Full adder implementation

36

row x y z C S

0 0 0 0 0 0

1 0 0 1 0 1

2 0 1 0 0 1

3 0 1 1 1 0

4 1 0 0 0 1

5 1 0 1 1 0

6 1 1 0 1 0

7 1 1 1 1 1

3-to-8 decoder as a Full adder
• Truth table

S(x, y, z) = (1,2,4,7)∑

C(x, y, z) = (3,5,6,7)∑

x

y

z

S

C

Decoder modeling in Verilog: 2-to-4 decoder

37

A
B

E

O3

O2

O1

O0

Decoder modeling in Verilog: 2-to-4 decoder

37

A
B

E

O3

O2

O1

O0

E A B

0 x x

1 0 0

1 0 1

1 1 0

1 1 1

Decoder modeling in Verilog: 2-to-4 decoder

37

A
B

E

O3

O2

O1

O0

E A B

0 x x

1 0 0

1 0 1

1 1 0

1 1 1

O0 O1 O2 O3

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Decoder modeling in Verilog: 2-to-4 decoder

37

A
B

E

O3

O2

O1

O0

module decoder2to4(input A, B, E,

output O0, O1, O2, O3);

assign O0 = ((~A) & (~B) & (E));

assign O1 = ((~A) & (B) & (E));

assign O2 = ((A) & (~B) & (E));

assign O3 = ((A) & (B) & (E));

endmodule

E A B

0 x x

1 0 0

1 0 1

1 1 0

1 1 1

O0 O1 O2 O3

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Decoder modeling in Verilog: 2-to-4 decoder

38

module decoder2to4_tb();

reg A, B, E;

wire O0, O1, O2, O3;

decoder2to4(.A(A), .B(B), .E(E, .O0(O0), .O1(O1), .O2(O2), .O3(O3));

initial begin

Time =0, A=x, B= x, E=x ➔ O0=x, O1 =x, O2 =x, O3 =x

Decoder modeling in Verilog: 2-to-4 decoder

38

module decoder2to4_tb();

reg A, B, E;

wire O0, O1, O2, O3;

decoder2to4(.A(A), .B(B), .E(E, .O0(O0), .O1(O1), .O2(O2), .O3(O3));

initial begin

A = 0; B = 0; E = 0; #10; //apply inputs, wait 10ns

Time =0, A=x, B= x, E=x ➔ O0=x, O1 =x, O2 =x, O3 =x

Time =0, A=0, B= 0, E=0 ➔ O0=0, O1 =0, O2 =0, O3 =0Initialization➔

Decoder modeling in Verilog: 2-to-4 decoder

38

module decoder2to4_tb();

reg A, B, E;

wire O0, O1, O2, O3;

decoder2to4(.A(A), .B(B), .E(E, .O0(O0), .O1(O1), .O2(O2), .O3(O3));

initial begin

A = 0; B = 0; E = 0; #10; //apply inputs, wait 10ns

E = 1; #10; //change the value of c, wait 10ns

Time =0, A=x, B= x, E=x ➔ O0=x, O1 =x, O2 =x, O3 =x

Time =0, A=0, B= 0, E=0 ➔ O0=0, O1 =0, O2 =0, O3 =0

Time =10, A=0, B= 0, E=1 ➔ O0=1, O1 =0, O2 =0, O3 =0
Initialization➔

Decoder modeling in Verilog: 2-to-4 decoder

38

module decoder2to4_tb();

reg A, B, E;

wire O0, O1, O2, O3;

decoder2to4(.A(A), .B(B), .E(E, .O0(O0), .O1(O1), .O2(O2), .O3(O3));

initial begin

A = 0; B = 0; E = 0; #10; //apply inputs, wait 10ns

E = 1; #10; //change the value of c, wait 10ns
B = 1; #10; //change the values of b, wait 10ns

Time =0, A=x, B= x, E=x ➔ O0=x, O1 =x, O2 =x, O3 =x

Time =0, A=0, B= 0, E=0 ➔ O0=0, O1 =0, O2 =0, O3 =0

Time =10, A=0, B= 0, E=1 ➔ O0=1, O1 =0, O2 =0, O3 =0

Time =20, A=0, B= 1, E=1 ➔ O0=0, O1 =1, O2 =0, O3 =0

Initialization➔

Decoder modeling in Verilog: 2-to-4 decoder

38

module decoder2to4_tb();

reg A, B, E;

wire O0, O1, O2, O3;

decoder2to4(.A(A), .B(B), .E(E, .O0(O0), .O1(O1), .O2(O2), .O3(O3));

initial begin

A = 0; B = 0; E = 0; #10; //apply inputs, wait 10ns

E = 1; #10; //change the value of c, wait 10ns
B = 1; #10; //change the values of b, wait 10ns

A = 1; B = 0; #10;

Time =0, A=x, B= x, E=x ➔ O0=x, O1 =x, O2 =x, O3 =x

Time =0, A=0, B= 0, E=0 ➔ O0=0, O1 =0, O2 =0, O3 =0

Time =10, A=0, B= 0, E=1 ➔ O0=1, O1 =0, O2 =0, O3 =0

Time =20, A=0, B= 1, E=1 ➔ O0=0, O1 =1, O2 =0, O3 =0

Time =30, A=1, B= 0, E=1 ➔ O0=0, O1 =0, O2 =1, O3 =0

Initialization➔

Decoder modeling in Verilog: 2-to-4 decoder

38

module decoder2to4_tb();

reg A, B, E;

wire O0, O1, O2, O3;

decoder2to4(.A(A), .B(B), .E(E, .O0(O0), .O1(O1), .O2(O2), .O3(O3));

initial begin

A = 0; B = 0; E = 0; #10; //apply inputs, wait 10ns

E = 1; #10; //change the value of c, wait 10ns
B = 1; #10; //change the values of b, wait 10ns

A = 1; B = 0; #10;

B = 1; #10;

end

endmodule

Time =0, A=x, B= x, E=x ➔ O0=x, O1 =x, O2 =x, O3 =x

Time =0, A=0, B= 0, E=0 ➔ O0=0, O1 =0, O2 =0, O3 =0

Time =10, A=0, B= 0, E=1 ➔ O0=1, O1 =0, O2 =0, O3 =0

Time =20, A=0, B= 1, E=1 ➔ O0=0, O1 =1, O2 =0, O3 =0

Time =30, A=1, B= 0, E=1 ➔ O0=0, O1 =0, O2 =1, O3 =0

Time =40, A=1, B= 1, E=1 ➔ O0=0, O1 =0, O2 =0, O3 =1

Initialization➔

Verilog restirictions

39

• Always blocks: always blocks may be used in testbenches, or to build registers.

Verilog restirictions

39

• Always blocks: always blocks may be used in testbenches, or to build registers.

• always blocks for registers must be of the form always @ (posedge Clock) and must use
nonblocking assignment <=

Verilog restirictions

39

• Always blocks: always blocks may be used in testbenches, or to build registers.

• always blocks for registers must be of the form always @ (posedge Clock) and must use
nonblocking assignment <=

• You may not put any combination logic in a register
• In always @ (posedge Clock) block may not contain even a simple counter

Verilog restirictions

39

• Always blocks: always blocks may be used in testbenches, or to build registers.

• always blocks for registers must be of the form always @ (posedge Clock) and must use
nonblocking assignment <=

• You may not put any combination logic in a register
• In always @ (posedge Clock) block may not contain even a simple counter

• Variable index:

• Variable-indexed shifts (<< or >>) and bit-selects (x[y] or x[y:z]) are not allowed

Verilog restirictions

39

• Always blocks: always blocks may be used in testbenches, or to build registers.

• always blocks for registers must be of the form always @ (posedge Clock) and must use
nonblocking assignment <=

• You may not put any combination logic in a register
• In always @ (posedge Clock) block may not contain even a simple counter

• Variable index:

• Variable-indexed shifts (<< or >>) and bit-selects (x[y] or x[y:z]) are not allowed

• Looping:

• The keywords forever, repeat, while, for, fork and join may appear only in testbenches

Verilog restirictions

39

• Always blocks: always blocks may be used in testbenches, or to build registers.

• always blocks for registers must be of the form always @ (posedge Clock) and must use
nonblocking assignment <=

• You may not put any combination logic in a register
• In always @ (posedge Clock) block may not contain even a simple counter

• Variable index:

• Variable-indexed shifts (<< or >>) and bit-selects (x[y] or x[y:z]) are not allowed

• Looping:

• The keywords forever, repeat, while, for, fork and join may appear only in testbenches

• Macros:

• The keyword ‘timescale must appear in every testbench, and nowhere else

Verilog common pitfalls

40

• If you program sequentially, the synthesizer may add a lot of
hardware to try to do what you say

• If you program in parallel (multiple “always” blocks), you can get non-
deterministic execution
• Which “always” happens first?

• You create lots of state that you didn’t intend
if (x == 1) out = 0;

if (y == 1) out = 1; // else out retains previous state? R-S latch!

• You don’t realize how much hardware you’re specifying
• x = x + 1 can be a LOT of hardware

• Slight changes may suddenly make your code “blow up”
• A chip that previously fit suddenly is too large or slow

Verilog common pitfalls

41

• Several common pitfalls which trap the novice Verilog programs

Verilog common pitfalls

41

• Several common pitfalls which trap the novice Verilog programs

• Unlike Java or even C, Verilog does not check the types or widths of signals very seriously.

Verilog common pitfalls

41

• Several common pitfalls which trap the novice Verilog programs

• Unlike Java or even C, Verilog does not check the types or widths of signals very seriously.

• In the below cases, the compiler may not warn you of your mistake

Verilog common pitfalls

41

• Several common pitfalls which trap the novice Verilog programs

• Unlike Java or even C, Verilog does not check the types or widths of signals very seriously.

• In the below cases, the compiler may not warn you of your mistake

➢ Case1: Undeclared wires:
➢ Any undeclared signal is automatically treated as a 1-bit wire
➢ Assigning to undeclared signals from an always or initial block ➔ results in compiler errors
➢ Forgetting to declare a bus or bit-vector will result in only the the 0th being connected properly

Verilog common pitfalls

42

➢ Case2: width mismatch (small wires):
➢ Connecting a small wire (e.g. 1-bit) to a large port (e.g., 4-bit) ➔ cause port width mismatch
➢ Some of the signals intended for the bus will be lost
➢ Only the lowest few bits will appear at the port

Verilog common pitfalls

42

➢ Case2: width mismatch (small wires):
➢ Connecting a small wire (e.g. 1-bit) to a large port (e.g., 4-bit) ➔ cause port width mismatch
➢ Some of the signals intended for the bus will be lost
➢ Only the lowest few bits will appear at the port

➢ Case3: width mismatch (large wires):
➢ Connecting a large wire (e.g., 4-bit) to a small port (e.g., 1-bit) ➔ cause port width mismatch
➢ Many waveforms will appear in blue ➔ denoting undriven signal

Verilog vs system Verilog

43

Major areas of System Verilog improvement over Verilog

Verilog vs system Verilog

43

Major areas of System Verilog improvement over Verilog

1. SVD – System Verilog for Design ➔Enhancements to design constructs

• E.g., more data types unum, struct, class etc

Verilog vs system Verilog

43

Major areas of System Verilog improvement over Verilog

1. SVD – System Verilog for Design ➔Enhancements to design constructs

• E.g., more data types unum, struct, class etc

2. SVTB - System Verilog for Testbench ➔ biggest enhancement

• Support all testbench modeling

• Object oriented support

• Creating constrained random stimulus, semaphore, concurrent process etc

Verilog vs system Verilog

43

Major areas of System Verilog improvement over Verilog

1. SVD – System Verilog for Design ➔Enhancements to design constructs

• E.g., more data types unum, struct, class etc

2. SVTB - System Verilog for Testbench ➔ biggest enhancement

• Support all testbench modeling

• Object oriented support

• Creating constrained random stimulus, semaphore, concurrent process etc

3. SVA - System Verilog Assertions ➔ features for temporal and concurrent
assertions

Verilog vs system Verilog

43

Major areas of System Verilog improvement over Verilog

1. SVD – System Verilog for Design ➔Enhancements to design constructs

• E.g., more data types unum, struct, class etc

2. SVTB - System Verilog for Testbench ➔ biggest enhancement

• Support all testbench modeling

• Object oriented support

• Creating constrained random stimulus, semaphore, concurrent process etc

3. SVA - System Verilog Assertions ➔ features for temporal and concurrent
assertions

4. SVDPI - System Verilog Direct Program Interface ➔ features for better C/C++
integration

Verilog vs system Verilog

43

Major areas of System Verilog improvement over Verilog

1. SVD – System Verilog for Design ➔Enhancements to design constructs

• E.g., more data types unum, struct, class etc

2. SVTB - System Verilog for Testbench ➔ biggest enhancement

• Support all testbench modeling

• Object oriented support

• Creating constrained random stimulus, semaphore, concurrent process etc

3. SVA - System Verilog Assertions ➔ features for temporal and concurrent
assertions

4. SVDPI - System Verilog Direct Program Interface ➔ features for better C/C++
integration

5. SVAPI - System Verilog Application Program Interface ➔ features for better
integration of APIs

44

Thank you

	Slide 1: Introduction to Verilog: Part 2
	Slide 2: Overview
	Slide 3: Recap
	Slide 4: Recap
	Slide 5: Recap
	Slide 6: Recap
	Slide 7: Recap
	Slide 8: Recap
	Slide 9: Recap
	Slide 10: Recap
	Slide 11: Recap
	Slide 12: Recap
	Slide 13: Recap
	Slide 14: Recap
	Slide 15: Using the always block
	Slide 16: Using the always block
	Slide 17: Using the always block
	Slide 18: Using the always block
	Slide 19: Using always block to describe a combinational circuit
	Slide 20: Using always block to describe a combinational circuit
	Slide 21: Using always block to describe a combinational circuit
	Slide 22: Using always block to describe a combinational circuit
	Slide 23: Using always block to describe a combinational circuit
	Slide 24: Using always block to describe a combinational circuit
	Slide 25: Using always block to describe a combinational circuit
	Slide 26: Blocking vs. Nonblocking Assignment
	Slide 27: Blocking vs. Nonblocking Assignment
	Slide 28: Blocking vs. Nonblocking Assignment
	Slide 29: Blocking vs. Nonblocking Assignment
	Slide 30: Blocking vs. Nonblocking Assignment
	Slide 31: Blocking vs. Nonblocking Assignment
	Slide 32: Blocking vs. Nonblocking Assignment
	Slide 33: Blocking vs. Nonblocking Assignment
	Slide 34: Blocking vs. Nonblocking Assignment
	Slide 35: Rules for Signal Assignment
	Slide 36: Rules for Signal Assignment
	Slide 37: Rules for Signal Assignment
	Slide 38: Rules for Signal Assignment
	Slide 39: Rules for Signal Assignment
	Slide 40: Demo circuits: seven segment display
	Slide 41: Demo circuits: seven segment display
	Slide 42: Demo circuits: seven segment display
	Slide 43: Demo circuits: priority circuit
	Slide 44: Demo circuits: priority circuit
	Slide 45: Demo circuits: priority circuit
	Slide 46: Demo circuits: priority circuit with don’t cares
	Slide 47: Demo circuits: priority circuit with don’t cares
	Slide 48: Demo circuits: priority circuit with don’t cares
	Slide 49: Describing a D flip-flop
	Slide 50: Describing a D flip-flop
	Slide 51: Describing a D flip-flop with reset
	Slide 52: Describing a D flip-flop with reset
	Slide 53: Describing a D flip-flop with reset
	Slide 54: Describing a latch
	Slide 55: Describing a latch
	Slide 56: Describing a latch
	Slide 57: Describing a latch
	Slide 58: Registers
	Slide 59: Registers
	Slide 60: Registers
	Slide 61: Finite State Machines
	Slide 62: Finite State Machines
	Slide 63: Finite State Machines
	Slide 64: Finite State Machines
	Slide 65: Finite State Machines
	Slide 66: FSM Example 1: Even/Odd FSM
	Slide 67: FSM Example 1: Even/Odd FSM
	Slide 68: FSM Example 1: Even/Odd FSM
	Slide 69: FSM Example 1: Even/Odd FSM
	Slide 70: FSM Example 1: Even/Odd FSM
	Slide 71: FSM Example 1: Even/Odd FSM
	Slide 72: FSM Example 1: Even/Odd FSM
	Slide 73: FSM Example 1: Even/Odd FSM
	Slide 74: FSM Example 1: Even/Odd FSM
	Slide 75: FSM Example 1: Even/Odd FSM
	Slide 76: FSM Example 2: Sequence Detector
	Slide 77: Sequence Detector FSM: Moore
	Slide 78: FSM Example 3: Sequence Detector
	Slide 79: Sequence Detector FSM: Mealy
	Slide 80: Sequence Detector FSM: Mealy
	Slide 81: Sequence Detector FSM: Mealy
	Slide 82: FSM Testbench
	Slide 83: FSM Testbench
	Slide 84: FSM Testbench
	Slide 85: Counter
	Slide 86: Counter
	Slide 87: Counter
	Slide 88: Counter simulation
	Slide 89: Counter simulation
	Slide 90: Adder design in verilog
	Slide 91: Adder design in verilog
	Slide 92: Adder design in verilog
	Slide 93: Adder design in verilog
	Slide 94: Simple multi-bit adder
	Slide 95: Simple multi-bit adder
	Slide 96: Simple multi-bit adder
	Slide 97: Adder circuit implementation
	Slide 98: Adder circuit implementation
	Slide 99: Adder circuit implementation
	Slide 100: Adder circuit implementation
	Slide 101: Adder circuit implementation
	Slide 102: Full adder impementation in verilog
	Slide 103: Full adder impementation in verilog
	Slide 104: Full adder impementation in verilog
	Slide 105: Full adder impementation in verilog
	Slide 106: Full adder impementation in verilog
	Slide 107: Verilog for Ripple Carry Adder (RCA)
	Slide 108: Verilog for Ripple Carry Adder (RCA)
	Slide 109: Verilog for Ripple Carry Adder (RCA)
	Slide 110: Verilog for Ripple Carry Adder (RCA)
	Slide 111: Decoders
	Slide 112: Decoders
	Slide 113: Decoders
	Slide 114: Decoders
	Slide 115: Decoders
	Slide 116: Decoders
	Slide 117: Decoder hardware implementation
	Slide 118: Decoder hardware implementation
	Slide 119: Decoder hardware implementation
	Slide 120: Decoder hardware implementation
	Slide 121: Decoder hardware implementation
	Slide 122: Decoder hardware implementation
	Slide 123: Decoder application: Memory address decoder
	Slide 124: Decoder application: Memory address decoder
	Slide 125: Decoder application: Memory address decoder
	Slide 126: Decoder application: Memory address decoder
	Slide 127: Decoder application: Memory address decoder
	Slide 128: Decoder application: Full adder implementation
	Slide 129: Decoder application: Full adder implementation
	Slide 130: Decoder application: Full adder implementation
	Slide 131: Decoder application: Full adder implementation
	Slide 132: Decoder modeling in Verilog: 2-to-4 decoder
	Slide 133: Decoder modeling in Verilog: 2-to-4 decoder
	Slide 134: Decoder modeling in Verilog: 2-to-4 decoder
	Slide 135: Decoder modeling in Verilog: 2-to-4 decoder
	Slide 136: Decoder modeling in Verilog: 2-to-4 decoder
	Slide 137: Decoder modeling in Verilog: 2-to-4 decoder
	Slide 138: Decoder modeling in Verilog: 2-to-4 decoder
	Slide 139: Decoder modeling in Verilog: 2-to-4 decoder
	Slide 140: Decoder modeling in Verilog: 2-to-4 decoder
	Slide 141: Decoder modeling in Verilog: 2-to-4 decoder
	Slide 142: Verilog restirictions
	Slide 143: Verilog restirictions
	Slide 144: Verilog restirictions
	Slide 145: Verilog restirictions
	Slide 146: Verilog restirictions
	Slide 147: Verilog restirictions
	Slide 148: Verilog common pitfalls
	Slide 149: Verilog common pitfalls
	Slide 150: Verilog common pitfalls
	Slide 151: Verilog common pitfalls
	Slide 152: Verilog common pitfalls
	Slide 153: Verilog common pitfalls
	Slide 154: Verilog common pitfalls
	Slide 155: Verilog vs system Verilog
	Slide 156: Verilog vs system Verilog
	Slide 157: Verilog vs system Verilog
	Slide 158: Verilog vs system Verilog
	Slide 159: Verilog vs system Verilog
	Slide 160: Verilog vs system Verilog
	Slide 161

