Hardware Fundamentals
ICESE4005]

Signals and Systems

Lecturers: Anteneh Gebrgiorgious & Georgi Gaydadjiev
Teaching Assistant: Antonio Costa Bernardes

September 2024

]
TUDelft :

The Signals and Systems Abstraction

Describe a system (physical, mathematical, or computational)
by the way it transforms an input signal into an output signal.

Signal IN

]
TUDelft

System

» Signal OUT

Example: Mass and Spring

]
TUDelft

t z(t)
1 y(t)
y(t)
mass & /\
spring — t
system ‘/ \/

Example: Tanks

]
TUDelft

ro(t)

p—

hi(t) I

ro(t)

L 71 (t)
ha(t) T
L 72 (t)
ro(t)
ro(t)
tank Lo
system

Example: Tanks

" Q) -

Tl sound out
cell
t —» ohone -
SYStem

P
TUDelft

Signals and Systems: Widely Applicable

The Signals and Systems approach has broad application:
electrical, mechanical, optical, acoustic, biological, financial, ...

z(t)
mass & ‘
t —» spring L /\ t
system T/ \/

hi(t) I
— r1(2) ro(t) ()

tank
ha(t) I t system
r2(t)

l

sound in sound out

cell
R phone
system

]
TUDelft

Signals and Systems: Modular

The representation does not depend upon the physical substrate.

>>>> sound out

qound i >>>>

sound
_.’

N

cell
phone

} }
E/M optic E/M
—» |tower W tower—

cell
phone

sound
—>

out

focuses on the flow of information, abstracts away everything else.

]
TUDelft

Signals and Systems: Hierarchical

Representations of component systems are easily combined.
Example: cascade of component systems

sound cell | E/M

- > —
in phone

optic
tower——|tower
fiber

E/M | cell sound

—>
phone out

Compositional

sound
- >
in

cell phone system

sound
out

Component and composite systems have the same form, and are

analysed with same met

]
TUDelft

hods.

Signals

Signals are mathematical functions.
 independent variable = time
» dependent variable = voltage, flow rate, sound pressure

x(t) y(t)

mass &
/\ t - spring /\

\/ A I A -
ro(t) ra(t)
r 6 = s;sa,tne‘;n = /\t
sound in sound out

cell
t —» phone >
system

]
TUDelft

Signals

continuous “time” (CT) and discrete “time” (DT)

z(t) z[n]
6
——T—T—T T T 717711 { T T ? T T T T T n
0O 2 4 6 8 10 0 2 4 6 8 10

Signals from physical systems often functions of continuous time.
 mass and spring
« leaky tank

Signals from computation systems often functions of discrete time.
« state machines: given the current input and current state, what is
the next output and next state.

]
TUDelft

10

Signals

Sampling: converting CT to DT (Analog to Digital conversion A/D)
z(t) z[n| = z(nT)

——— ¢ IT???TTTTTn

67 871 10T 0 2 4 6 8 10

07 2T 4T

T = sampling interval

Important for computational manipulation of physical data.
 digital representations of audio signals (e.g., MP3)
 digital representations of images (e.g., JPEG)

]
TUDelft

11

Signals

Reconstruction: converting DT signals to CT
zero-order hold

6
T T ? ? ? T T T T T n ' I_? ! :_f_:_j_: t
0 2 4 o6 &8 10 0 27T 4T 6T 8T 10T

T = sampling interval

commonly used in audio output devices such as CD players

]
TUDelft 12

Signals

Reconstruction: converting DT signals to CT
piecewise linear

zn] z(t)
6

TT????TTTTn —r— 1 ©

' | |

' I ' I ' I
0 2 4 6 8 10 0 27 4T 6T 8T 10T

T = sampling interval

commonly used in rendering images

]
TUDelft

Check yourself (2D signal)

y f(iB, y)

250 0 250 L

How many images match the expressions beneath them?

250 0 250 % 250 0 250 % 9250 0 250
filz,y)=Ff(2z,y) ? fo(z,y)=f(2x—250,y) ? f3(x,y)=f(—x—250,y) 7

]
TUDelft

14

Check yourself (2D signal)

250

9

_2-50

Y

A

2§0
2§0 N~

9

_2|50

]
TUDelft

L 250 0 250 % 250 0 250 % 250 0 250
fi(z,y) = f(2z,y) 7 fo(z,y) = f(22z—250,y) ? f3(x,y) = f(—2—250,y) ?

x=0 — f1(0,y) = £(0,y)
r =250 — f1(250,y) = £(500,y)

T = — f2(0,y) = f(—250,y)
=250 — f2(250,y) = £(250,y)

z = — f3(0,9) = f(—250,y)
z =250 — f3(250,y) = f(—500,y)

X X U0 X <

15

Check yourself (2D signal)

y f(iB, y)

>
X

-250 0 250

How many images match the expressions beneath them?

-250 0 250 L —-250 0 250

]
TUDelft 16

T

The Signals and Systems Abstraction

Describe a system (physical, mathematical, or computational)
by the way it transforms an input signal into an output signal.

Signal IN

]
TUDelft

System

» Signal OUT

17

Example System: Leaky Tank

Formulate a mathematical description of this system.

—..70(?)

hi(t) 4 L ()

What determines the leak rate?

]
TUDelft

18

Check yourself

The holes in each of the following tanks have equal size. Which
tank has the largest leak rate r1(t)?

el
D —

o]
TUDelft

19

Check yourself

The holes in each of the following tanks have equal size. Which
tank has the largest leak rate r1(t)? 2

el
D —

o]
TUDelft

20

Example System: Leaky Tank

Formulate a mathematical description of this system.

—..70(?)

hi(t) 4

Assume linear leaking: r1(t) oc h1(t)

What determines the height h1(1)?

]
TUDelft

r1(t)

21

Example System: Leaky Tank

Formulate a mathematical description of this system.

—..70(?)

ha(t) 4 L ()
Assume linear leaking: r1(t) o< hi(t)
Assume water is conserved: dhi (t)

5 <ro(t) =7i(t)

Solve: dr; 1:t) o rolt) — 11(0)

]
TUDelft

22

Check yourself

What are the dimensions of constant of proportionality C?

dry (t)
dt

= C(ro(t) — 1 (¢))

]
TUDelft

23

Check yourself

What are the dimensions of constant of proportionality C?
inverse time (to match dimensions of df)

dry (t)
dt

= C(ro(t) — 1 (¢))

]
TUDelft

24

Analysis of the Leaky tank

Call the constant of proportionality 1/t
Then t is called the time constant of the system.

dri(t) 1o(t) o (t)
dt 1 T

]
TUDelft

25

Check yourself

Which tank has the largest time constant t ?

el
L e—

o]
TUDelft

26

Check yourself

Which tank has the largest time constantt ? 4

el
L e—

o]
TUDelft

27

Analysis of the Leaky tank

Call the constant of proportionality 1/t
Then 7 is called the time constant of the system.

dri(t) ro(t) 1r(t)
dt 1t 1

Assume that the tank is initially empty, and then water enters at
a constant rate r,(t) = 1. Determine the output rate ry (t).

r1(t)

| | time (seconds)
1 2 3

Explain the shape of this curve mathematically.
Explain the shape of this curve physically.

]
TUDelft

28

Leaky Tanks and Capacitors

Although derived for a leaky tank, this sort of model can be used to
represent a variety of physical systems.
Water accumulates in a leaky tank.

=—..70(%)

hl(t) t L Tl(t)
Charge accumulates in a capacitor.
IR
+
C —— v
d—vzii(t)_iO(t)(xi,_i @OCr .
dt C i~ to analogous to dt o~

]
TUDelft 29

Discrete Time Systems

We start with discrete-time (DT) systems because they

e are conceptually simpler than continuous-time systems
 illustrate same important modes of thinking as continuous-time
« are increasingly important (digital electronics and computation)

But also:
Algebra is simpler than Calculus
Computers are Discrete Systems

]
TUDelft

30

Discrete Time (DT) Systems

Systems can be represented in different ways to more easily
address different types of issues.

Verbal description: “To reduce the number of bits needed to store a
sequence of large numbers that are nearly equal, record the first

number, and then record successive differences.’

Difference equation:
yIn] = x[n] —x[n - 1]

Block diagram: z[n]

Ly ot !

We will exploit particular strengths of each of these representations.

]
TUDelft

31

Difference Equations

Difference equations are mathematically precise and compact.

Example:
yIn] = x[n] — x[n — 1]

Let x[n] equal the “unit sample” signal §[n],

5[n] ={(1): i;g x[n] = &[n]

We will use the unit sample as a “primitive” (building-block signal)
to construct more complex signals.

]
TUDelft

32

Check yourself

Solve: y[n]

=X
Given: x[n] =

[n] — x[n — 1]
o[n]

How many of the following are true?

LN WN N
RIS
_ S N W N
HI—Il—II—II—I

]
TUDelft

33

Step-by-step solutions

Difference equations are convenient for step-by-step analysis.
Find y[n] given x[n] = §[n]: y[n] = x[n] — x[n — 1]

y[—1] = x[-1] —x[-2] =0—-0=0
y[0] = x[0] —x[-1] =1-0=1
y[1] = x[1] —x[0] =0—-1=-1
y|2] = x[2] —x[1] =0—-0=0

y[3] = x[3] — x[2] 0—-0=0
x[n] = 6[n] y[n]
(o) oo (o)
-0——0—0—10—0"n -0— n

]
TUDelft 34

Check yourself

Solve: y[n]

= x[n] — x[n — 1]
Given: x[n] = §]

nj

How many of the following are true? 4

LN WN N
RIS
_ S N W N
HI—Il—II—II—I

]
TUDelft

< < < XK

35

Step-by-step solutions

Block diagrams are also useful for step-by-step analysis.
Represent y[n] = x[n] — x[n — 1] with a block diagram: start “at rest”

cD— 4

z[n]
LI>—> Delay —T 0
Can be directly implemented in HW
x[n] = &[n] y[n]
(o
-0——0—0—00T"n -0 n
. —-10 1 2 3 4 —-1¢0 1 2 3 4
TUDelft

36

Step-by-step solutions

Block diagrams are also useful for step-by-step analysis.
Represent y[n] = x[n] — x[n — 1] with a block diagram: start “at rest”

LI>—> Delay—T 0
—1
x[n] = 6[n] y[n]
(o) oo (o
O0—F—O0—0—10—0"n -0 n
—-10 1 2 3 4 —-10 1 2 3 4
]
TUDelft

Step-by-step solutions

Block diagrams are also useful for step-by-step analysis.
Represent y[n] = x[n] — x[n — 1] with a block diagram: start “at rest”

1—0 ’@—’
L|>—> Delay—T 0——1
—1
x[n] = 6[n] y[n]
o) . o]
-0——0—0—10—0"n -0 n
10 1 2 3 4 10 1 2 3 4
]
TUDelft

Step-by-step solutions

Block diagrams are also useful for step-by-step analysis.
Represent y[n] = x[n] — x[n — 1] with a block diagram: start “at rest

1—0
L|>—> Delay—T 0——1
—1
x[n] = 6[n] y[n]
(o] (o]
-0——0—0—10—0T"n -0 n
1012 3 4 —1()i234

]
TUDelft

Step-by-step solutions

Block diagrams are also useful for step-by-step analysis.
Represent y[n] = x[n] — x[n — 1] with a block diagram: start “at rest”

0
L|>—> Delay—T —1
0
x[n] = &[n] y|n]
(o] oo (o]
o0—|—o0—o0-o0-on o n
101 2 3 4 —1()i234

]
TUDelft

Step-by-step solutions

Block diagrams are also useful for step-by-step analysis.
Represent y[n] = x[n] — x[n — 1] with a block diagram: start “at rest

0
L[>—> Delay —T —1—=0
0
x[n] = &[n] y|n]
(o] oo (o]
o0—|—o0—o0-o0-on o n
101 2 3 4 —1()i234

]
TUDelft

Step-by-step solutions

Block diagrams are also useful for step-by-step analysis.

Represent y[n] = x[n] — x[n — 1] with a block diagram: start “at rest”

>(H)— 0

—T—1—>O

0
—>I>—> Delay |
0
x[n] = &[n]
n
—1 1 2 3 4 —1

]
TUDelft

42

Step-by-step solutions

Block diagrams are also useful for step-by-step analysis.
Represent y[n] = x[n] — x[n — 1] with a block diagram: start “at rest”

LI>—> Delay —T 0
0
x[n] = &[n] y|n]

A 00O <, 00O
-0——0—0—0—01"n -0— n
-10 1 2 3 4 —1 0 2 3 4

]
TUDelft

Check yourself

DT systems can be described by difference equations and/or
block diagrams.

Difference equation:
ylnl = x[n] — x[n — 1]

z[n]

>®—> y[n]

Lbﬂ ot}

In what ways are these representations different?

Block diagram:

]
TUDelft

44

Check yourself

In what ways are difference equations different from block diagrams.

Difference equation:
yIn] = x[n] —x[n —1]

Difference equations are “declarative.”
They tell you rules that the system obeys.

z[n] >(H)— yln]

Block diagram: L
[>—> Delay —T

Block diagrams are “imperative.”
They tell you what to do.

Block diagrams contain more information than the corresponding
difference equation (e.g., what is the input? what is the output?)

]
TUDelft 45

From Samples to Signals

Lumping all of the (possibly infinite) samples into a single object —
the signal — simplifies its manipulation.

This lumping is an abstraction that is analogous to
* representing coordinates in three-space as points
» representing lists of numbers as vectors in linear algebra

« creating an object in Python

]
TUDelft

46

From Samples to Signals

Operators manipulate signals rather than individual samples.

>@—> y[n]

qu et]

Nodes represent whole signals (e.g., X and Y).

zn]

The boxes operate on those signals:

« Delay = shift whole signal to right 1 time step
 Add = sum two signals

« —1: multiply by -1

Signals are the primitives.
Operators are the means of combination.

]
TUDelft

47

Operator Notation

Symbols can now compactly represent diagrams.

Let R represent the right-shift operator:
Y = R{X} = RX

where X represents the whole input signal (x/n] for all n) and Y
represents the whole output signal (y[n] for all n)

>(D—> yln]

Lo

Y=X-RX=(1-R)X

Representing the difference machine z[n]

with R leads to the equivalent representation

As consize as difference equations but imperative

]
TUDelft 48

Check yourself (Operator Notation)

Let Y = RX how many of the following are true?

XN N KN

none of the above

]
TUDelft

Check yourself (Operator Notation)

Consider a simple signal:

o

—-10 1 2 3 4
Then
Y =RX
(o)
—0—0—0- N
—1 1 2 3 4

Clearly y[1] = z[0]. Equivalently, if n =0, then y[n + 1] = z[n].

The same sort of argument works for all other n.

]
TUDelft

50

Check yourself (Operator Notation)

Let Y = RX how many of the following are true?

SR NSV R

none of the above

]
TUDelft

Operator Representation of a Cascaded System

System operations have simple operator representations.

Cascade systems — multiply operator expressions.
Y1
»@ - 12

Lbﬂ Lbﬂ sat)

Using operator notation:
=(1-R)X
Yo=(1-R)11
Substituting for Yj:
Yo=(1-R)(1-R)X

X

]
TUDelft 52

Operator Algebra

Operator expressions can be manipulated as polynomials.
Y1
Q - ¥

L& L% .

Using difference equations:
y2[n] = y1[n] — y1[n — 1]
= (z[n] —z[n —1]) — (z[n — 1] — 2[n — 2))
= z[n] — 2z[n — 1] + z[n — 2]

X

Using operator notation:
Yo=1-R)Y1=1-R)(1-R)X

_ . 2
=(1-R)"X Isomorphism between
=(1-2R + R2) X polinomials and DT systems

]
TUDelft 53

Operator Approach

Applies your expertise with polynomials to understand
block diagrams, and thereby understand systems.

]
TUDelft

54

Operator Algebra

Operator notation facilitates seeing relations among systems.

“Equivalent” block diagrams|(assuming both initially at rest):

X b@—b Yo

Lbﬁ sot] Lbﬂ ot}

X — (DY

Delay

>
\4

Delay

Equivalent operator expressions:
1-R)(1-R)=1-2R+R?

The operator equivalence is much easier to see.

]
TUDelft

55

Check yourself

e)

Operator expressions for these “equivalent” systems
(if started “at rest”) obey what mathematical property?

>@—> Delay— Y

L& o]

X »| Delay >®—> Y

LD—» Delay | Delay —T

1. commutate 2. associative
3. distributive 4. transitive
5. none of the above
_ J

What property of polinomials is emphasized here?

]
TUDelft

Check yourself

>@—> Delay > Y

X
|—>|>—> Delay —T
Y =R(1-R)X
X »| Delay

—>

Delay —T

L>

Y =(R-R*)X

Multiplication by R distributes over addition.

]
TUDelft

57

Check yourself

Operator expressions for these ‘“equivalent” systems
(if started “at rest”) obey what mathematical property? 3

\

D L >(+)—+[Delay}— v

> Seiay}]

X L »| Delay >@—> vy

>—> Delay | Delay —T

1. commutate 2. associative
3. distributive 4. transitive
5. none of the above

]
TUDelft

58

Check yourself

-

|

How many of the following systems are equivalent to
Y =(4R?°+4R+1)X 7

-

X —»|Delay

»l}-»(?——» Delay —»I}—v@—> Y

X —»| Delay

i ;
Delay —;

X — | Delay |+ @—>®—> Y
*

]
TUDelft

59

Check yourself

Delay —»[}—»G?—

X_

—=

Y=2R+1)(2R+1)X

Delay —»I}—v@?—» Y

X —»| Delay

Delay —»‘: >—>@—> Y
f f

Y =(4R?+4R+1)X

X —r—»

Delay

Y =(4R?+4R+1) X

]
TUDelft

All implement Y = (4R2+ 4R +1) X

60

Check yourself

-

|

How many of the following systems are equivalent to
Y =AR*+4R+1)X 7 3

o

X ——»|Delay

_>[>—>E;>——> Delay —»[}—»G’D—» Y

Delay »@—» Delay —»‘: >—>@—> Y
i i
Delay 3
—»{Delay |» @—»@—» Y
X

]
TUDelft

61

Operator Algebra: Explicit and Implicit Rules

Recipes versus constraints.

Recipe: subtract a right-shifted version of the input signal from a

copy of the input signal.

X

>@—>Y

B Y=1-R)X

Lbﬁ

Constraint: the difference between Y and RY is X.

X —(3)

T— Delay [«

> Y
Y =RY + X declarative!

(compute the
1-R)Y=X input from

the output)

But how does one solve such a constraint?

]
TUDelft

62

Example: Accumulator

Try step-by-step analysis: it always works. Start “at rest.”

(lower the abstraction) id _’@

L

Delay

Find y[n] given z[n| = [n]:

—-10 1 2 3 4

]
TUDelft

J > y[n]

yln] = z[n] +yln —1]

—-101 2 3 4

63

Example: Accumulator

Try step-by-step analysis: it always works. Start “at rest.”

T— Delay J

Find y[n] given z[n] =46[n]: y[n] = x[n] + y[n — 1]
yl0] = z[0] +y[-1] =1+0=1
y[l] =z[1]+y[0] =04+1=1
yl2] =z[2] +y[l] =0+1=1
z[n| = d[n] ~ yln]
—-101 2 3 4 —-101 2 3 4

Persistent response to a transient input!

]
TUDelft

64

Example: Accumulator

The response of the accumulator system could also be generated by
a system with infinitely many paths from input to output, each with
one unit of delay more than the previous.

—»| Delay (>

Delay

—»| Delay (>

Delay

Delay

Y=(01+R+R*+R>+--.

y[n]

1@(U Delft M

-101 2 3 4

X /@-» Y
—>| Delay

This is an imperative system

65

Example: Accumulator

These systems are equivalent in the sense that if each is initially at
rest, they will produce identical outputs from the same input.

1-R)Yi=X1 7?7 Yo=>1+R+R>+R3+--)X,

Proof: Assume X9 = X7:

Yo=(14+R+R*+R3+--) X
=(1+R+R*+R3+--) X3
=(1+R+R*+R3+--)(1-R)V

I4+R+R*+R3+--) —R+R*+R3+--)1

|

It follows that Yy = Y].

p It also follows that (1-R) and (1+R+R?+R3+--.) are reciprocals.
TUDelft 66

Example: Accumulator

The reciprocal of 1-—R can also be evaluated using synthetic division.

1 +R +R? +R3 +---

1-R|1
1 —R
R
R —R2
RZ
R2 —R3
R3

Therefore

I 2 13 | i
=1+ RARIA R 4R+

]
TUDelft

Feedback

Systems with signals that depend on previous values of the same
signal are said to have feedback.

Example: The accumulator system has feedback.

X—»@ —> Y
T—Delay<J

By contrast, the difference machine does not have feedback.
>(H)— ynl

qu ot}

z[n]

]
TUDelft

68

Cyclic Signal Paths, Feedback, and Modes
Block diagrams help visualize feedback.

Feedback occurs when there is a cyclic signal flow path.

X Y

e 'Delay|

acyclic cyclic

Acyclic: all paths through system go from input to output with no
cycles.

Cyclic: at least one cycle.

]
TUDelft

69

Cyclic Signal Paths, Feedback, and Modes

The effect of feedback can be visualized by tracing each cycle
through the cyclic signal paths.

x =@ .y
.

<— Delay

z[n| = d[n] y[n]

n -0 n
—-101 2 3 4 -101 2 3 4

Each cycle creates another sample in the output.

]
TUDelft

Feedback, Cyclic Signal Paths and Modes

The effect of feedback can be visualized by tracing each cycle
through the cyclic signal paths.

X—-@ > J =Y
<— Delay
z[n] = é|n] y[n]
. o
-0——0—0—0—0- 1 -0 n
—-101 2 3 4 -101 2 3 4

Each cycle creates another sample in the output.

]
TUDelft 71

Feedback, Cyclic Signal Paths and Modes

The effect of feedback can be visualized by tracing each cycle
through the cyclic signal paths.

X =5 —ry
-Detay-

z[n] = d[n] y[{%l
Slo1234 Slo1234

Each cycle creates another sample in the output.

]
TUDelft 72

Feedback, Cyclic Signal Paths and Modes

The effect of feedback can be visualized by tracing each cycle
through the cyclic signal paths.

X =0 > Y
ﬂ-.
ey
z[n] = d[n] y[n] °
all
n -0 n
—-101 2 3 4 -101 2 3 4

Each cycle creates another sample in the output.

The response will persist even though the input is transient.

]
TUDelft 73

Check yourself

-

|

How many of the following systems have cyclic signal
paths?

|

X—}:@—»R—»@—»Y X—}z—»@—»@—}:y

] d] [
X*@j;@*y X*@j@jy

~

]
TUDelft

74

Check yourself

[

How many of the following systems have cyclic signal
paths? 3

|

X—7£>@—>R—>@—>Y XTR>@—>@T_T>Y

[]

X >0y X707
&] (B

\

]
TUDelft

75

Finite and Infinite Impulse Responses

The impulse response of an acyclic system has finite duration, while
that of a cyclic system can have infinite duration.

rH—Y x—=@)

Delay

qu sem] .

I
—_
=

2 3 4 —-10

]
TUDelft

76

Analysis of Cyclic Systems: Geometric Growth

If traversing the cycle decreases or increases the magnitude of the
signal, then the fundamental mode will decay or grow, respectively.

If the response decays toward zero, then we say that it converges.

Otherwise, we it diverges.

]
TUDelft 77

Check yourself

~

|

How many of these systems have divergent unit-sample

responses?

|

k

x —(+

%._

x —(+

> Y
Delay J

bl
._ Seiey

> Y
Delay J

Delay

—> Y

\

]
TUDelft

78

Check yourself
X —(®)

> Y
de«J

«

x —(+

> Y
de<J

L@«

X—»C}+de

]
TUDelft

T

79

Check yourself

x —() >Y
A

o X

Lo o
1 2 3 4
o

—10
y[n]
X —»(+ > Y
T—é]« Delay |« T T T v
o n
—-101 2 3 4
y[n]
X —>@—> Delay —>I> > Y
[N N J X
4— Delay [« -
—-101 2 3 4

]
TUDelft 80

Check yourself

|

How many of these systems have divergent unit-sample
responses? 1

G

X —»(+ —> Y
J X
%4— Delay
X —»(+ > Y
J y
T—é« Delay

X —>@—> Delay |+ Y

X
4— Delay

]
TUDelft

81

Cyclic Systems: Geometric Growth

If traversing the cycle decreases or increases the magnitude of the
signal, then the fundamental mode will decay or grow, respectively.

x—@ oy x—@ v
<— Delay |« T—él« Delay |«
y[n] y[n] o
—-101 2 3 4 —-101 2 3 4

These are geometric sequences: y[n| = (0.5)" and (1.2)"™ for n > 0.

These geometric sequences are called fundamental modes.

]
TUDelft 82

Multiple Representations of DTime Systems

Now you know four representations of discrete-time systems.
Verbal descriptions: preserve the rationale.

“To reduce the number of bits needed to store a sequence of
large numbers that are nearly equal, record the first number,
and then record successive differences.”

Difference equations: mathematically compact.

yln] = z[n] — z[n — 1]

Block diagrams: illustrate signal flow paths.

qu o]

Operator representations: analyze systems as polynomials.
Y=(1-R)X
- (1-R)
TUDelft 83

