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The Signals and Systems Abstraction

SystemSignal IN Signal OUT

Describe a system (physical, mathematical, or computational) 
by the way it transforms an input signal into an output signal. 
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Example: Mass and Spring
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Example: Tanks
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Example: Tanks
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Signals and Systems: Widely Applicable
The Signals and Systems approach has broad application: 
electrical, mechanical, optical, acoustic, biological, financial, ...
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Signals and Systems: Modular
The representation does not depend upon the physical substrate.

focuses on the flow of information, abstracts away everything else.
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Signals and Systems: Hierarchical
Representations of component systems are easily combined. 
Example: cascade of component systems

Component and composite systems have the same form, and are 
analysed with same methods.

Compositional 
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Signals and Systems
Signals are mathematical functions.
• independent variable = time
• dependent variable = voltage, flow rate, sound pressure
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Signals and Systems
continuous “time” (CT) and discrete “time” (DT)

Signals from physical systems often functions of continuous time. 
• mass and spring
• leaky tank

Signals from computation systems often functions of discrete time.
• state machines: given the current input and current state, what is 

the next output and next state.
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Signals and Systems
Sampling: converting CT to DT (Analog to Digital conversion A/D)

Important for computational manipulation of physical data. 
• digital representations of audio signals (e.g., MP3) 
• digital representations of images (e.g., JPEG) 

T = sampling interval
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Signals and Systems
Reconstruction: converting DT signals to CT 
zero-order hold 

commonly used in audio output devices such as CD players

T = sampling interval
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Signals and Systems
Reconstruction: converting DT signals to CT 
piecewise linear 

commonly used in rendering images

T = sampling interval
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Check yourself (2D signal) 
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Check yourself (2D signal) 
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Check yourself (2D signal) 
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The Signals and Systems Abstraction

SystemSignal IN Signal OUT

Describe a system (physical, mathematical, or computational) 
by the way it transforms an input signal into an output signal. 
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Example System: Leaky Tank
Formulate a mathematical description of this system. 

What determines the leak rate? 
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Check yourself
The holes in each of the following tanks have equal size. Which 
tank has the largest leak rate r1(t)?
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Check yourself
The holes in each of the following tanks have equal size. Which 
tank has the largest leak rate r1(t)?   2
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Example System: Leaky Tank
Formulate a mathematical description of this system. 

Assume linear leaking: r1(t) ∝ h1(t) 

What determines the height h1(t)?
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Example System: Leaky Tank
Formulate a mathematical description of this system. 

Assume linear leaking:

Assume water is conserved:

Solve:
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Check yourself
What are the dimensions of constant of proportionality C? 

𝑑𝑟! 𝑡
𝑑𝑡

= 𝐶(𝑟" 𝑡 − 𝑟! 𝑡 )
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Check yourself
What are the dimensions of constant of proportionality C? 
inverse time (to match dimensions of dt) 

𝑑𝑟! 𝑡
𝑑𝑡

= 𝐶(𝑟" 𝑡 − 𝑟! 𝑡 )
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Analysis of the Leaky tank
Call the constant of proportionality 1/𝜏
Then 𝜏 is called the time constant of the system.

𝑑𝑟! 𝑡
𝑑𝑡

=
𝑟" 𝑡
𝜏

−
𝑟! 𝑡
𝜏
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Check yourself
Which tank has the largest time constant 𝜏 ?
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Check yourself
Which tank has the largest time constant 𝜏 ?  4
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Analysis of the Leaky tank
Call the constant of proportionality 1/𝜏
Then 𝜏 is called the time constant of the system.

𝑑𝑟! 𝑡
𝑑𝑡

=
𝑟" 𝑡
𝜏

−
𝑟! 𝑡
𝜏

Assume that the tank is initially empty, and then water enters at 
a constant rate 𝑟! 𝑡 = 1. Determine the output rate 𝑟"(𝑡).

Explain the shape of this curve mathematically.
Explain the shape of this curve physically.
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Leaky Tanks and Capacitors
Although derived for a leaky tank, this sort of model can be used to 
represent a variety of physical systems.
Water accumulates in a leaky tank.

Charge accumulates in a capacitor. 

𝑑𝑣
𝑑𝑡 =

𝑖# 𝑡 	− 𝑖$(𝑡)
𝐶 	∝ 𝑖# − 𝑖$

𝑑ℎ
𝑑𝑡
	∝ 𝑟! − 𝑟"analogous to 
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Discrete Time Systems
We start with discrete-time (DT) systems because they
• are conceptually simpler than continuous-time systems
• illustrate same important modes of thinking as continuous-time
• are increasingly important (digital electronics and computation)

But also: 
Algebra is simpler than Calculus
Computers are Discrete Systems
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Discrete Time (DT) Systems
Systems can be represented in different ways to more easily 
address different types of issues.

Verbal description: ‘To reduce the number of bits needed to store a 
sequence of large numbers that are nearly equal, record the first 
number, and then record successive differences.’

Difference equation:
𝑦 𝑛 = 𝑥 𝑛 − 𝑥[𝑛 − 1] 

Block diagram:

We will exploit particular strengths of each of these representations. 
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Difference Equations
Difference equations are mathematically precise and compact.

Example:
𝑦 𝑛 = 𝑥 𝑛 − 𝑥[𝑛 − 1] 

Let 𝑥 𝑛 	equal the “unit sample” signal 𝛿[𝑛], 

𝑥 𝑛 	= 	𝛿[𝑛] 𝛿[𝑛] 	= )	1, 	𝑡 = 0	
0, 	𝑡 ≠ 0
	

We will use the unit sample as a “primitive” (building-block signal) 
to construct more complex signals. 
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Check yourself
Solve: 𝑦 𝑛 = 𝑥 𝑛 − 𝑥[𝑛 − 1]
Given: 𝑥 𝑛 	= 	𝛿[𝑛] 

How many of the following are true? 

1. 𝑦 2 > 𝑦[1]
2. 𝑦 3 > 𝑦 2
3. 𝑦 2 = 0
4. 𝑦 𝑛 − 𝑦 𝑛 − 1 = 𝑥 𝑛 − 2𝑥 𝑛 − 1 + 𝑥 𝑛 − 2
5. 𝑦 119 = 0
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Step-by-step solutions
Difference equations are convenient for step-by-step analysis.

Find 𝑦 𝑛 	given 𝑥 𝑛 	= 	𝛿[𝑛]: 

𝑦 −1 = 𝑥 −1 − 𝑥 −2 = 0 − 0 = 0
𝑦 0 = 𝑥 0 − 𝑥 −1 	 = 1 − 0 = 1
𝑦 1 = 𝑥 1 − 𝑥 0 	 = 0 − 1 = −1
𝑦 2 = 𝑥 2 − 𝑥 1 	 = 0 − 0 = 0
𝑦 3 = 𝑥 3 − 𝑥 2 	 = 0 − 0 = 0

…

𝑦 𝑛 = 𝑥 𝑛 − 𝑥 𝑛 − 1

𝑥 𝑛 	= 	𝛿[𝑛] 𝑦 𝑛
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Check yourself
Solve: 𝑦 𝑛 = 𝑥 𝑛 − 𝑥[𝑛 − 1]
Given: 𝑥 𝑛 	= 	𝛿[𝑛] 

How many of the following are true? 4 

1. 𝑦 2 > 𝑦[1]
2. 𝑦 3 > 𝑦 2
3. 𝑦 2 = 0
4. 𝑦 𝑛 − 𝑦 𝑛 − 1 = 𝑥 𝑛 − 2𝑥 𝑛 − 1 + 𝑥 𝑛 − 2
5. 𝑦 119 = 0

V
X
V
V
V
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Step-by-step solutions
Block diagrams are also useful for step-by-step analysis.
Represent 𝑦 𝑛 = 𝑥 𝑛 − 𝑥[𝑛 − 1] with a block diagram: start “at rest”

𝑥 𝑛 	= 	𝛿[𝑛] 𝑦 𝑛

Can be directly implemented in HW
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Step-by-step solutions
Block diagrams are also useful for step-by-step analysis.
Represent 𝑦 𝑛 = 𝑥 𝑛 − 𝑥[𝑛 − 1] with a block diagram: start “at rest”

𝑥 𝑛 	= 	𝛿[𝑛] 𝑦 𝑛



38

Step-by-step solutions
Block diagrams are also useful for step-by-step analysis.
Represent 𝑦 𝑛 = 𝑥 𝑛 − 𝑥[𝑛 − 1] with a block diagram: start “at rest”

𝑥 𝑛 	= 	𝛿[𝑛] 𝑦 𝑛
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Step-by-step solutions
Block diagrams are also useful for step-by-step analysis.
Represent 𝑦 𝑛 = 𝑥 𝑛 − 𝑥[𝑛 − 1] with a block diagram: start “at rest”

𝑥 𝑛 	= 	𝛿[𝑛] 𝑦 𝑛
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Step-by-step solutions
Block diagrams are also useful for step-by-step analysis.
Represent 𝑦 𝑛 = 𝑥 𝑛 − 𝑥[𝑛 − 1] with a block diagram: start “at rest”

𝑥 𝑛 	= 	𝛿[𝑛] 𝑦 𝑛
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Step-by-step solutions
Block diagrams are also useful for step-by-step analysis.
Represent 𝑦 𝑛 = 𝑥 𝑛 − 𝑥[𝑛 − 1] with a block diagram: start “at rest”

𝑥 𝑛 	= 	𝛿[𝑛] 𝑦 𝑛
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Step-by-step solutions
Block diagrams are also useful for step-by-step analysis.
Represent 𝑦 𝑛 = 𝑥 𝑛 − 𝑥[𝑛 − 1] with a block diagram: start “at rest”

𝑥 𝑛 	= 	𝛿[𝑛] 𝑦 𝑛
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Step-by-step solutions
Block diagrams are also useful for step-by-step analysis.
Represent 𝑦 𝑛 = 𝑥 𝑛 − 𝑥[𝑛 − 1] with a block diagram: start “at rest”

𝑥 𝑛 	= 	𝛿[𝑛] 𝑦 𝑛
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Check yourself
DT systems can be described by difference equations and/or 
block diagrams.

Difference equation:
𝑦 𝑛 = 𝑥 𝑛 − 𝑥[𝑛 − 1] 

Block diagram:

In what ways are these representations different? 
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Check yourself
In what ways are difference equations different from block diagrams.

Difference equation:
𝑦 𝑛 = 𝑥 𝑛 − 𝑥[𝑛 − 1] 

Difference equations are “declarative.” 
They tell you rules that the system obeys. 

Block diagram:

Block diagrams are “imperative.” 
They tell you what to do. 

Block diagrams contain more information than the corresponding 
difference equation (e.g., what is the input? what is the output?) 
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From Samples to Signals
Lumping all of the (possibly infinite) samples into a single object — 
the signal — simplifies its manipulation.

This lumping is an abstraction that is analogous to 
• representing coordinates in three-space as points
• representing lists of numbers as vectors in linear algebra 
• creating an object in Python



47

From Samples to Signals
Operators manipulate signals rather than individual samples. 

Nodes represent whole signals (e.g., X and Y).
 
The boxes operate on those signals: 
• Delay = shift whole signal to right 1 time step 
• Add = sum two signals 
• −1: multiply by −1 

Signals are the primitives.
Operators are the means of combination. 
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Operator Notation
Symbols can now compactly represent diagrams. 

Let	ℛ represent the right-shift operator: 
𝑌 = ℛ 𝑋 ≡ ℛ𝑋

where X represents the whole input signal (x[n] for all n) and Y 
represents the whole output signal (y[n] for all n) 

Representing the difference machine 

with	ℛ leads to the equivalent representation

𝑌 = 𝑋 − ℛ𝑋 = 1 − ℛ 𝑋

As consize as difference equations but imperative
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Check yourself (Operator Notation)

Let 𝑌 = ℛ𝑋	 how many of the following are true? 

1. 𝑦 𝑛 = 𝑥 𝑛 	 ∀	𝑛
2. 𝑦 𝑛 + 1 = 𝑥 𝑛 	∀	𝑛
3. 𝑦 𝑛 = 𝑥 𝑛 + 1 	∀	𝑛
4. 𝑦 𝑛 − 1 = 𝑥 𝑛 ∀	𝑛
5. none of the above
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Check yourself (Operator Notation)
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Check yourself (Operator Notation)

Let 𝑌 = ℛ𝑋	 how many of the following are true? 

1. 𝑦 𝑛 = 𝑥 𝑛 	 ∀	𝑛
2. 𝑦 𝑛 + 1 = 𝑥 𝑛 	∀	𝑛
3. 𝑦 𝑛 = 𝑥 𝑛 + 1 	∀	𝑛
4. 𝑦 𝑛 − 1 = 𝑥 𝑛 ∀	𝑛
5. none of the above
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Operator Representation of a Cascaded System
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Operator Algebra

Isomorphism between 
polinomials and DT systems
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Operator Approach

Applies your expertise with polynomials to understand 
block diagrams, and thereby understand systems. 
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Operator Algebra
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Check yourself

What property of polinomials is emphasized here?
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Check yourself
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Check yourself
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Check yourself
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Check yourself
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Check yourself
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Operator Algebra: Explicit and Implicit Rules

declarative!
(compute the 
input from 
the output)
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Example: Accumulator

(lower the abstraction)
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Example: Accumulator
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Example: Accumulator

This is an imperative system
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Example: Accumulator
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Example: Accumulator
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Feedback
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Cyclic Signal Paths, Feedback, and Modes
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Cyclic Signal Paths, Feedback, and Modes
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Feedback, Cyclic Signal Paths and Modes
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Feedback, Cyclic Signal Paths and Modes
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Feedback, Cyclic Signal Paths and Modes
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Check yourself
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Check yourself
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Finite and Infinite Impulse Responses
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Analysis of Cyclic Systems: Geometric Growth

If traversing the cycle decreases or increases the magnitude of the 
signal, then the fundamental mode will decay or grow, respectively. 

If the response decays toward zero, then we say that it converges. 

Otherwise, we it diverges. 



78

Check yourself
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Check yourself
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Check yourself
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Check yourself
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Cyclic Systems: Geometric Growth



83

Multiple Representations of DTime Systems


