
Software Fundamentals
AY 2025/2026

Andreea Costea 

1st September 2025

Staf

Eric Jerman

Glenn Weeland (Head TA)

Koen Langendoen

2

Charlie Ciaś
 Utkarsh Verma
Max Guichard

Goal

Specification CodeTranslate

“Function foo takes two numbers as input and  
returns their sum.”

Specification?

3

Goal

Specification CodeTranslate

“Function foo takes two numbers as input and  
returns their sum.”

Specification?

4

Goal

Specification CodeTranslate

Specification?

5

Goal

Specification CodeTranslate

Specification?

6

Goal

Specification CodeTranslate

Specification?

7

Goal

Specification CodeTranslate

Specification?

8

Goal

Specification CodeTranslate

9

Informal / Formal
Ambiguos

Un-/Semi-/structured
Graphical

Mathematical / Logical

Executable

Precise
Maintainable

Correct

Safe

“Function foo takes two numbers as input and  
returns their sum.”

Study Goals

 After this course, you will be able to:

1. Explain the programming language concepts followed in Rust.

2. Design, implement and debug a small software system in Rust following the language standard
(including proper coding style).

3. Set up a project and build environment, using the Rust ecosystem.

4. Use Git to version and share source code contributions for collaborative development.

5. Evaluate and integrate code contributions of other team members.

10

Programming

Choices in programming languages

Making safe, reliable and correct programs

Developing software together

11

Hardware Fundamentals

 Digital Computer Systems

 Discrete Signals and Systems

 Design of Control Systems

Software Fundamentals

Part 1

Lectures (twice a week)

Individual Assignment (start this week!)

Labs and Tutorials (twice a week)

12

Part 2

Group Project

No lectures!

Mandatory attendance of at least one lab a week!

Week 2Week 1 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

Git  
Assignment

Individual  
Assignment

Group  
Project

WebLab WebLab WebLab WebLab

pass/fail 50% 50%
Evaluation

Software Fundamentals

Register on Brightspace so we can share the Git repository and your individual assignment with you.

Attend the lab session to complete the Git assignment (deadline: Sunday).

Work through the exercises on WebLab.

Start the Individual Assignment.

13

Week 2Week 1 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

Git  
Assignment

Individual  
Assignment

Group  
Project

WebLab WebLab WebLab WebLab

TODO this week Enjoy exploring and hacking with Rust!

Resources

Software Fundamentals website.

Books:

- The Rust Programming Language (Available Online)  
 by Steve Klabnik; Carol Nichols; The Rust Community,

- Rust for Rustaceans by Jon Gjengset

Software:

- Linux (recommend Fedora)

- Install Rust through `rustup`, avoid Ubuntu/Debian's repository

14

Software Fundamentals website

https://cese.ewi.tudelft.nl/software-fundamentals/
https://doc.rust-lang.org/book/

15

An Introduction to Rust

Andreea Costea

Delft University of Technology

2025-09-01

(slides adapted from Jana Dönszelmann)

• Why choosing a programming language matters?
• Why did we choose Rust?
• Some basics of Rust

Tell me about you

Question:

What programming languages have you used in the past? And what for?

• work, hobby, in teams, alone?

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 3

Drones!

Question:

What properties do we care about for the software of this drone?

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 4

Programming Languages for Embedded Systems
• We’re teaching about Rust

Question:

What other options are there?

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 5

Programming Languages for Embedded Systems
• We’re teaching about Rust

• C

• C++

From the https://osdev.org wiki: people have written kernels in:

Forth, Lisp, C#, Modula-2, Ada, Bliss, Smalltalk, PL/1, Assembly, Zig, D

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 5

https://osdev.org

Programming Languages for Embedded Systems
• We’re teaching about Rust

• C

• C++

From the https://osdev.org wiki: people have written kernels in:

Forth, Lisp, C#, Modula-2, Ada, Bliss, Smalltalk, PL/1, Assembly, Zig, D

Question:

Can you use python on embedded systems?

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 5

https://osdev.org

Programming Languages for Embedded Systems
• We’re teaching about Rust

• C

• C++

From the https://osdev.org wiki: people have written kernels in:

Forth, Lisp, C#, Modula-2, Ada, Bliss, Smalltalk, PL/1, Assembly, Zig, D

Question:

Why shouldn’t you use python on an embedded system?

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 5

https://osdev.org

Programming Languages for Embedded Systems
• We’re teaching about Rust

• C

• C++

From the https://osdev.org wiki: people have written kernels in:

Forth, Lisp, C#, Modula-2, Ada, Bliss, Smalltalk, PL/1, Assembly, Zig, D

So clearly, the features of a programming language matters.

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 5

https://osdev.org

Programming Languages for Embedded Systems

Question:

What properties do we care about when we want to use a programming language for
embedded systems?

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 6

Programming Languages for Embedded Systems

Question:

What properties do we care about when we want to use a programming language for
embedded systems?

• Compiled
• Low-level access to locations in memory
• Precise control over all program resources
• Guarantees about correctness

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 6

Programming Languages for Embedded Systems

Question:

What properties do we care about when we want to use a programming language for
embedded systems?

• Compiled
• Low-level access to locations in memory
• Precise control over all program resources
• Guarantees about correctness

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 6

Programming Languages for Embedded Systems

Question:

What properties do we care about when we want to use a programming language for
embedded systems?

• Compiled
• Low-level access to locations in memory
• Precise control over all program resources
• Guarantees about correctness

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 6

Programming Languages for Embedded Systems

Question:

What properties do we care about when we want to use a programming language for
embedded systems?

• Compiled
• Low-level access to locations in memory
• Precise control over all program resources
• Guarantees about correctness

Question:

Is there a conflict in these requirements?

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 6

Problems with low level control and safety

Access a peripheral (great!):

1 int main() { C
2 (int *)(address_of_peripheral) = 10;
3 }

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 7

Problems with low level control and safety

Access a peripheral (great!):

1 int main() { C
2 (int *)(address_of_peripheral) = 10;
3 }

this works for any random address too (not ok!):

1 int main() { C
2 (int *)(0x12345678) = 10;
3 }

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 7

Problems with low level control and safety

1 char *alloc_str(char *src) { C
2 size_t len = strlen(src);
3 char *dst = malloc(len);
4 memcpy(dst, src, len);
5 return dst;
6 }
7
8 int main() {
9 char *something = alloc_str("something");
10 printf("%s\n", something);
11 free(something);
12 }

https://godbolt.org/z/aP5cj16cT

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 7

https://godbolt.org/z/aP5cj16cT

How far can we go?

1 int main() { C
2 char *arr = malloc(10);
3 for (int i = 0; i < 1500; i++) {
4 arr[i] = 5;
5 }
6 }

https://godbolt.org/z/15qqq74oe

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 8

https://godbolt.org/z/15qqq74oe

Undefined Behavior

1 int main () { C++
2 while (1) {}
3 }
4
5 int unreachable() {
6 std::cout << "hello, world" << std::endl;;
7 }

https://godbolt.org/z/qKMeE9xfb

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 9

https://godbolt.org/z/qKMeE9xfb

Undefined Behavior

1 int main () { C++
2 while (1) {}
3 }
4
5 int unreachable() {
6 std::cout << "hello, world" << std::endl;;
7 }

https://godbolt.org/z/qKMeE9xfb

• In some compilers it’s common to not define certain behavior.
• The compiler is allowed to assume those cases never happen
• The programmer should simply make sure those cases never happen!

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 9

https://godbolt.org/z/qKMeE9xfb

The Good Programmer Myth
• A good programmer knows to avoid undefined behavior
• If someone causes a memory safety bug, they can’t have been a very good programmer

‣ Look in the manual! It clearly states that this is undefined behavior!

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 10

The Good Programmer Myth
• A good programmer knows to avoid undefined behavior
• If someone causes a memory safety bug, they can’t have been a very good programmer

‣ Look in the manual! It clearly states that this is undefined behavior!

• Realy?! Heartbleed: million of users affected by stable code written by professional
programmers

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 10

https://www.heartbleed.com

The Good Programmer Myth
• A good programmer knows to avoid undefined behavior
• If someone causes a memory safety bug, they can’t have been a very good programmer

‣ Look in the manual! It clearly states that this is undefined behavior!

• Realy?! Heartbleed: million of users affected by stable code written by professional
programmers

• Chrome: “Around 70% of our high severity security bugs are memory unsafety problems”

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 10

https://www.heartbleed.com
https://www.chromium.org/Home/chromium-security/memory-safety/

The Good Programmer Myth
• A good programmer knows to avoid undefined behavior
• If someone causes a memory safety bug, they can’t have been a very good programmer

‣ Look in the manual! It clearly states that this is undefined behavior!

• Realy?! Heartbleed: million of users affected by stable code written by professional
programmers

• Chrome: “Around 70% of our high severity security bugs are memory unsafety problems”

• Bugs aren’t always local

• Code review misses bugs (Khoshnoud, Fatemeh, et al.)

• https://steveklabnik.com/writing/memory-safety-is-a-red-herring

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 10

https://www.heartbleed.com
https://www.chromium.org/Home/chromium-security/memory-safety/
https://dl.acm.org/doi/abs/10.1145/3524842.3527997?casa_token=4_PW0nJHQcUAAAAA:LhZYg6hreES90Dg06A9y3PgEK-iohtYy0GfiTQLt9GJYvTsnUwd60WF8VtyrRCl2TeHRqc_egj98vg
https://steveklabnik.com/writing/memory-safety-is-a-red-herring

We're teaching you Rust
• By default, Rust does not contain any undefined behavior
• If you do want control, you can ask for it:

1 unsafe { Rust
2 *(0x1234_5678usize as *const u8) = 10;
3 }

• But don’t, you don’t usually need it!

Fewer bugs in android: https://security.googleblog.com/2022/12/memory-safe-languages-in-
android-13.html

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 11

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html

• Why choosing a programming language matters?
• Why did we choose Rust?
• Some Basics of Rust

Anatomy of a Program

1 const A: usize = 3; // CONSTANTS AND STATICS Rust
2 static B: i32 = 5;
3
4 struct Point { // TYPES
5 x: f32, // with fields
6 y: f32
7 }
8
9 fn example () {} // FUNCTIONS
10
11 fn main() { } // ONE MAIN FUNCTION--special function, program entry point

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 13

Anatomy of a Program

1 const A: usize = 3; // CONSTANTS AND STATICS Rust
2 static B: i32 = 5;
3
4 struct Point { // TYPES
5 x: f32, // with fields
6 y: f32
7 }
8
9 mod foo { // MODULES
10 fn example () {} // FUNCTIONS
11 }
12
13 fn main() { } // ONE MAIN FUNCTION--special function, program entry point

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 14

Anatomy of a Program

1 const A: usize = 3; // CONSTANTS AND STATICS Rust
2 static B: i32 = 5;
3
4 struct Point { // TYPES
5 x: f32, // with fields
6 y: f32
7 }
8
9 mod foo { // MODULES
10 pub fn example () {} // FUNCTIONS
11 }
12
13 use foo::example; // IMPORTS
14
15 fn main() { } // ONE MAIN FUNCTION--special function, program entry point

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 15

Most of Rust code is writing expressions

1 fn example () -> i32 { //BLOCK Rust
2
3
4
5 }
6
7 fn main () { //BLOCK
8
9
10 }

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 16

Most of Rust code is writing expressions

1 fn example () -> i32 { //BLOCK Rust
2 let a: i32 = 40; // VARIABLE BINDINGS
3 let b: i32 = 2; // STATEMENT
4 a + b // IMPLICIT RETURN
5 }
6
7 fn main () { //BLOCK
8 let x: i32 = example();
9 println!("Hello, world: {}", x); // MACROS
10 }

https://godbolt.org/z/ffaf15sdd

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 17

https://godbolt.org/z/ffaf15sdd

Most of Rust code is writing expressions

1 fn example () -> i32 { //BLOCK Rust
2 let a: i32 = 40; // VARIABLE BINDINGS
3 let b: i32 = 2; // STAMEMENT
4 a + b // IMPLICIT RETURN
5 }
6
7 fn main () { //BLOCK
8 let x: i32 = { example() + 6 };
9 println!("Hello, world: {}", x); // MACROS
10 }

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 18

Most of Rust code is writing expressions

1 fn example () -> i32 { //BLOCK Rust
2 let a: i32 = 40; // VARIABLE BINDINGS
3 let b: i32 = 2; // STAMEMENT
4 a + b // IMPLICIT RETURN
5 }
6
7 fn main () { //BLOCK
8 let x: i32 = { example() + 6 };
9 println!("Hello, world: {}", x); // MACROS
10 }

• Each of those expressions ending with a semicolon is known in Rust as a statement
• A block is made up of 0 or more statements, followed by at most one expression

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 18

Mutability

1 fn example () -> i32 { Rust
2 let a: i32 = 40; // IMMUTABLE
3 let b: i32 = 2; // IMMUTABLE
4 a + b
5 }
6
7 fn main () {
8 let x: i32 = { example() + 6 }; // IMMUTABLE
9 println!("Hello, world: {}", x);
10 }

Unless otherwise specified, variables are immutable.

https://godbolt.org/z/ffaf15sdd

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 19

https://godbolt.org/z/ffaf15sdd

Mutability

1 fn example () -> i32 { Rust
2 let a: i32 = 40; // IMMUTABLE
3 let b: i32 = 2; // IMMUTABLE
4 a + b
5 }
6
7 fn main () {
8 let mut x: i32 = { example() + 6 }; // MUTABLE
9 x += 5;
10 println!("Hello, world: {}", x);
11 }

• Unless otherwise specified, variables are immutable.
• Use mut to make them mutable.

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 20

References

1 fn example () -> i32 { Rust
2 let a: i32 = 40; // IMMUTABLE
3 let b: i32 = 2; // IMMUTABLE
4 a + b
5 }
6
7 fn main () {
8 let mut x: i32 = { example() + 6 }; // MUTABLE
9 let y: &i32 = &x; // REFERENCE
10 *y += 5; // ERROR: cannot assign behind a `&` reference
11 println!("Hello, world: {}", y);
12 }

• Create a reference to a value with &

https://godbolt.org/z/xGcYbMqfa

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 21

https://godbolt.org/z/xGcYbMqfa

References

1 fn example () -> i32 { Rust
2 let a: i32 = 40; // IMMUTABLE
3 let b: i32 = 2; // IMMUTABLE
4 a + b
5 }
6
7 fn main () {
8 let mut x: i32 = { example() + 6 }; // MUTABLE
9 //let y: &i32 = &x; // IMMUTABLE REFERENCE
10 let y: &mut i32 = &mut x; // MUTABLE REFERENCE
11 *y += 5;
12 println!("Hello, world: {}", y);
13 }

• Create a reference to a value with &
• References carry mutability permissions: &T vs &mut T

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 22

(mostly) Automatic Memory Management

1 // a string always contains a length Rust
2 fn alloc_str(inp: &str) -> String {
3 String::from(inp)
4 }
5
6 fn main() {
7 let x = alloc_str("something");
8 println!("{x}");
9
10 // no free needed!
11 }

• No garbage colletor required

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 23

Loops

1 fn main() { Rust
2 let mut c: usize = 0;
3 while c < 10 {
4 println!("the counter is {c}");
5 c += 1;
6 }
7 }

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 24

Loops

1 fn main() { Rust
2 for c in 0..10 {
3 println!("the counter is {c}");
4 }
5 }

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 25

Conditionals

1 fn main() { Rust
2 for c in 0..10 {
3 if c != 3 {
4 println!("the counter is {c}");
5 }
6 }
7 }

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 26

Basics of Rust: Recap
• Expression oriented language

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 27

Basics of Rust: Recap
• Expression oriented language
• Variables are immutable by default, use mut to make them mutable

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 27

Basics of Rust: Recap
• Expression oriented language

• Variables are immutable by default, use mut to make them mutable

• References with & and &mut

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 27

Basics of Rust: Recap
• Expression oriented language

• Variables are immutable by default, use mut to make them mutable

• References with & and &mut

• Automatic memory management (no garbage collector)

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 27

Basics of Rust: Recap
• Expression oriented language

• Variables are immutable by default, use mut to make them mutable

• References with & and &mut

• Automatic memory management (no garbage collector)

• (for now) Control flow with if, while, and for

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 27

Assignment:
• Form pairs
• Go to https://projecteuler.net/archives
• Try one of 1, 5, or 14, or a slightly harder one: 18

Then:

• Go to https://play.rust-lang.org and program it :)
• See how far you get, I’ll walk around.
• If you get stuck somewhere? Also look at: https://doc.rust-lang.org/book/

Andreea Costea Lecture 1: An Introduction to Rust 2025-09-01 28

https://projecteuler.net/archives
https://play.rust-lang.org
https://doc.rust-lang.org/book/

	Lecture 1-short
	lecture-1-intro
	Tell me about you
	Drones!
	Programming Languages for Embedded Systems
	Programming Languages for Embedded Systems
	Problems with low level control and safety
	How far can we go?
	Undefined Behavior
	The Good Programmer Myth
	We're teaching you Rust
	Anatomy of a Program
	Anatomy of a Program
	Anatomy of a Program
	Most of Rust code is writing expressions
	Most of Rust code is writing expressions
	Most of Rust code is writing expressions
	Mutability
	Mutability
	References
	References
	(mostly) Automatic Memory Management
	Loops
	Loops
	Conditionals
	Basics of Rust: Recap
	Assignment:

