Rust Data Types

Andreea Costea

Delft University of Technology
2025-09-04

(slides adapted from Jana Dénszelmann)

]
TU Delft

Data Types in General

What is a Data Type?

Andreea Costea Lecture 2: Rust Data Types 2025-09-04

Data Types in General

What is a Data Type?

A Data Type classifies values and determines:
« What values exist (the domain)

« How are they represented in memory
» What operations are allowed on those values
» How the values behave when operations are applied

Andreea Costea Lecture 2: Rust Data Types 2025-09-04

Rust Data Types

Scalar Type

. Integers: u8, i8, ul6, i16, u32, i32, u64, i64, ul28, i128, usize, isize
» Floating point: 32, fe4

« Boolean: oot (true, false)

» Character: char (a Unicode Scalar Value, e.qg., ‘@', ‘a’, ‘')

Compound Type
« Tuple

* Array

 Structs

Andreea Costea Lecture 2: Rust Data Types 2025-09-04

Scalar Types - Integer example

* u8 iS just one byte
* u32is 4 bytes

1 // compiler, when I call "foo somewhere in my code
2 tn foo() {
3 // please make some room for me to use 4 bytes for something

4 // I'll use the name "a’ when I want to use it
5 let a: u32 = 3;

6

7 // and 16 more here, I'll call it b

8 let b: ul28 = 100 000;

9 }

Andreea Costea Lecture 2: Rust Data Types 2025-09-04

Scalar Types - Integer in General

« What values exist (the domain)?

Andreea Costea Lecture 2: Rust Data Types 2025-09-04

Scalar Types - Integer in General

« What values exist (the domain)?

us

ule

u3z

ug4

ul2s

o o o o

Andreea Costea

Maximum Type
281 i8
2161 i16
2321 i32
204 1 i64
2128 4 i128

Lecture 2: Rust Data Types

Minimum
(27)
219
23
253
2127

2025-09-04

Scalar Types - Integer in General

« What values exist (the domain)?

Number literals Example
Decimal 98_222

Hex Bxff

Octal 0077

Binary 8b1111_0008
Byte (ug only) b'A'

Andreea Costea Lecture 2: Rust Data Types 2025-09-04

Scalar Types - Integer in General

« What values exist (the domain)?
* How are they represented in memory?

Andreea Costea Lecture 2: Rust Data Types 2025-09-04

Scalar Types - Integer in General

« What values exist (the domain)?
* How are they represented in memory?

1 pub static a: u32 = 1;
2 pub static b: u6d4 = 0x01;
3 pub static c: ul28 = 0b0OO 01,

https://godbolt.org/z/EPnoz5cre

Andreea Costea Lecture 2: Rust Data Types 2025-09-04

https://godbolt.org/z/EPnoz5cre

Scalar Types - Integer in General

« What values exist (the domain)?

* How are they represented in memory?

» What operations are allowed on those values?

- How the values behave when operations are applied?

Andreea Costea Lecture 2: Rust Data Types 2025-09-04

Scalar Types - Integer in General

« What values exist (the domain)?

* How are they represented in memory?

» What operations are allowed on those values?

- How the values behave when operations are applied?

fn main() {

1

2 let age:u8 = u8::MAX; //255
3 let x:u8 = u8::MAX + 1;

4 let y:u8 = u8::MAX + 2;

5 println!("age is {} ",age);

6 println!("x is {}",x);

7 println!("y is {}",y); }

https://godbolt.org/z/EPnoz5cre

Andreea Costea Lecture 2: Rust Data Types 2025-09-04

https://godbolt.org/z/EPnoz5cre

Scalar Types - Integer in General

« What values exist (the domain)?
* How are they represented in memory?
» What operations are allowed on those values?

» How the values behave when operations are applied?

Andreea Costea Lecture 2: Rust Data Types 2025-09-04

Scalar Types - Integer in General

What values exist (the domain)?

How are they represented in memory?

What operations are allowed on those values?

How the values behave when operations are applied?

—E

Force users to make conscious choices about potentially unsafe operations.

Andreea Costea Lecture 2;: Rust Data Types 2025-09-04

Compound Data Types - Arrays

[1, 2, 4, 8, 16, 32, 64, 128];

[Ox01, Ox02, Ox04, Ox08, 0x10, 0x20, O0x40, 0x80];
0x01 02 04 08 10 20 40 80;

1 let a: [u8; 8]
2 let b: [u8; 8]
3 let c: u6b4d

Andreea Costea Lecture 2: Rust Data Types 2025-09-04

Compound Data Types - Arrays

[1, 2, 4, 8, 16, 32, 64, 128];

[Ox01, Ox02, Ox04, Ox08, 0x10, 0x20, O0x40, 0x80];
0x01 02 04 08 10 20 40 80;

1 let a: [u8; 8]
2 let b: [u8; 8]
3 let c: u6b4d

are a, b and c the same?

https://godbolt.org/z/G3doh6e4v

Andreea Costea Lecture 2: Rust Data Types 2025-09-04

https://godbolt.org/z/G3doh6e4v

Compound Data Types

1. Arrays [T; N]
* Fixed-size, allocated on the stack (unless part of a heap-allocated structure).
« Contiguous elements, so arr[0], arr[1], ... are stored back-to-back in memory.

* Access is fast (constant time) because the compiler can compute offsets

let arr: [i32; 3] = [1, 2, 31;

let first = arr[0];
let second = arr[1];

S U1 B W N =

println!("Array: {:?7}", arr);

Andreea Costea Lecture 2: Rust Data Types 2025-09-04

Compound Data Types

1. Arrays ([T; N]): fixed-size, stack-allocated, cannot change length.

Andreea Costea Lecture 2: Rust Data Types 2025-09-04

Compound Data Types

1. Arrays ([T; N]): fixed-size, stack-allocated, cannot change length.
2. Vectors (Vec):

« Dynamic-size, heap-allocated, can grow or shrink.
» The buffer inside the vector is contiguous on the heap.
1 let mut v = vec![1,2,3]; // The numbers 1, 2, 3 are stored contiguously in memory.

* v is a stack-allocated variable representing the pointer to the buffer, plus
length and capacity metadata.

Andreea Costea Lecture 2: Rust Data Types 2025-09-04

Compound Data Types: grouped values of different types

Different types bundled together, called a “tuple”:

1 let today: (u8, u8, u32) = (4, 9, 2025);
2 let tomorrow: (u8, u8, u32) = (5, 9, 2025);

Andreea Costea Lecture 2: Rust Data Types 2025-09-04

Compound Data Types: grouped values of different types

n

Different types bundled together, called a “tuple”:

1 let today: (u8, u8, u32) = (4, 9, 2025);
2 let tomorrow: (u8, u8, u32) = (5, 9, 2025);

Which we can name:

type Date = (u8, u8, u32);
/] ...

Llet today: Date = (4, 9, 2025);

Llet tomorrow: Date = (5, 9, 2025);

A~ W NN =

Andreea Costea Lecture 2: Rust Data Types 2025-09-04

Compound Data Types: grouped values of different types

Or a more common way to write that:

1 struct Date {
2 day: u8,

3 month: u8§,

4 year: u32,

5 1}

6 // ...

7 let today: Date = Date {
8 day: 4,

9 year: 2025,

10 month: 9,

11 };

12
13 let year = today.year;

Andreea Costea Lecture 2: Rust Data Types 2025-09-04

Struct layout

« Rust has lots of freedom with struct layouts
» https://doc.rust-lang.org/reference/type-layout.ntml
» Optimized code can take advantage of this

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 10

https://doc.rust-lang.org/reference/type-layout.html

Compound Data Types: Struct

2. Vectors (Vec): dynamic-size, heap-allocated, can grow or shrink.

1 let mut v:Vec<i32> = vec![1,2,3];

* v is a stack-allocated variable representing the pointer to the buffer, plus
length and capacity metadata.

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 11

Compound Data Types: Struct

2. Vectors (Vec): dynamic-size, heap-allocated, can grow or shrink.

1 let mut v:Vec<i32> = vec![1,2,3];

* v is a stack-allocated variable representing the pointer to the buffer, plus
length and capacity metadata.

1 struct Vec<T> {
2 ptr: *mut T, // pointer to heap-allocated buffer

3 len: usize, // number of elements

4 capacity: usize // allocated space in buffer

5 }

Lecture 2: Rust Data Types 2025-09-04 11

Andreea Costea

Exercise: 5 minutes

Go to play.rust-lang.org or open your fav editor and define a struct UdpHeader with these fields:

IPv6 pseudo header format

Offsets Octet 0 1 2 3
Octet Bit 0|1 2|3 4/5 6/ 7 8 9 10 11|12 13 14 15 16 17|18 19 20|21 22 23 24 25 26 27 28 29 30|31
0
32
Source |IPv6 Address
64

96
Destination IPv6 Address

UDP Length

Zeroes Next Header = Protocoll14]

Source Port Destination Port

Length Checksum

Adding a behavior to a type

* The inp1 keyword

1 struct SomeType {...};
2

3 impl SomeType {

4 fn do somethingl(...) {} // associated functions

5 fn do something2(&self) {} // associated methods

6 pub const SOME CONSTANT: u8 = 42; // associated constants

7 .

8 }

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 13

Adding a behavior to a type

* The inp1 keyword
» For example:

1 struct UdpHeader{
2 . // fields

3 1

4

5 impl UdpHeader {

6 pub const ZEROS: u8 = 0; //no memory overhead per instance.

7}

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 14

Adding a behavior to a type

* The inp1 keyword
» For example:

// somewehere in the standard library
struct u64;

1

2

3

4 impl u6d {
5 fn add(&self, other: Self) -> u64 {}
6

}

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 15

Adding a behavior to a type

* The inp1 keyword
» For example:

// somewehere in the standard library
struct u64;

1
2
3
4 impl u6d {

5 fn add(&self, other: Self) -> u64 {}

6 // actualy roughly means:

7 fn add(&self: u64, other: u64) -> u6d {}
8

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 16

Adding a behavior to a type

* The inp1 keyword
« Now we can:

// somewhere in the standard library
impl u64 {

fn add(&self, other: Self) -> u64 {}
}

1
2
3
4
5
6 let x: u64d = 3;
7

8

x.add(5)

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 17

Adding a behavior to a type

* The inp1 keyword
« Now we can:

1 // somewhere in the standard library
2 impl ub4 {

3 fn add(&self, other: Self) -> u64 {}

4 '}

5

6 let x: ubd = 3;

7

8 x.add(5)

9 // but you might be more used to:

10 x + 5

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 18

Exercise: 5 minutes

Go to play.rust-lang.org or open your fav editor and:

 Create a struct called range with two integer fields, start and end
« Add these functions to the range type

> 1en Which says how far start is from end

> middle Which gives the middle of the range

> new Which creates a new range and checks whether end > start

Hint: use assert!(a > b) to Mmake sure conditions hold (and panic otherwise)

Types as Proofs

» Types don't have to be only related to memory
» They can also communicate that you checked something,.

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 20

Types as Proofs

» Types don't have to be only related to memory
» They can also communicate that you checked something,.

1 struct Range { start: usize, end: usize,}
2

3 impl Range {

4 fn new(start: usize, end: usize) -> Self {

5 assert!(end > start, "end must be greater than start");
6 Range { start, end }

7 }

8 pub fn len(&self) -> usize {

9 self.end - self.start // cannot fail! (can't be negative)
10 }

11 }

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 20

Types as Proofs

» Types don't have to be only related to memory
» They can also communicate that you checked something,.

« Examples:

> NonZero<T> Proves that the integer 7 is not zero
> &str isS like bytes (s1us1), but proves UTF-8
> string IS like a vec<us> but proves UTF-8

Andreea Costea

Lecture 2: Rust Data Types

2025-09-04 20

Types as Proofs

» Types don't have to be only related to memory
» They can also communicate that you checked something,.

« Examples:
> NonZero<T> Proves that the integer 7 is not zero
> &str isS like bytes (s1us1), but proves UTF-8
> string IS like a vec<us> but proves UTF-8

let bytes = vec![0xff, Ox61]; // Vec<u8> ok, not valid UTF-8
// let s = String::from utf8(bytes).unwrap(); // would panic, invalid UTF-8

let s = String::from("hello"); // guaranteed UTF-8

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 20

Types as Proofs

» Types don't have to be only related to memory
» They can also communicate that you checked something,.

« Examples:
> NonZero<T> Proves that the integer 7 is not zero
> &str isS like bytes (s1us1), but proves UTF-8
> string IS like a vec<us> but proves UTF-8

« Zero-sized types are even possible;

1 struct ZeroSized {};

2 let x: ZeroSized = ZeroSized {};

https://www.hardmo.de/article/2021-03-14-zst-proof-types.md

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 20

https://www.hardmo.de/article/2021-03-14-zst-proof-types.md

Scalar Types - Integer in General

« What values exist (the domain)?

* How are they represented in memory?

» What operations are allowed on those values?

- How the values behave when operations are applied?

fn main() {

1

2 let age:u8 = u8::MAX; //255
3 let x:u8 = u8::MAX + 1;

4 let y:u8 = u8::MAX + 2;

5 println!("age is {} ",age);

6 println!("x is {}",x);

7 println!("y is {}",y); }

https://godbolt.org/z/EPnoz5cre

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 21

https://godbolt.org/z/EPnoz5cre

Compound Data Types: Struct
1 struct Date {

2 day: u8,
3 month: u8§,
4 year: u32,
5 1}

How many bytes do we need for a pate?

https://godbolt.org/z/PYs6WTzvq

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 22

https://godbolt.org/z/PYs6WTzvq

Compound Data Types: Struct

—ES

Rust needs to know the size of every type at compile time because it stores
variables directly on the stack.

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 23

Compound Data Types: Struct

—ES

Rust needs to know the size of every type at compile time because it stores
variables directly on the stack.

struct Node {

1
2 value: 132,

3 next: Node, // ERROR: recursive type
4

}

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 23

Compound Data Types: Struct

—ES

Rust needs to know the size of every type at compile time because it stores
variables directly on the stack.

struct Node {

1
2 value: 132,

3 next: Node, // ERROR: recursive type
4

}

» The compiler cannot know the size of Node: Node contains a Node,... infinitely.

* Problem: this is a type with unknown size — Rust refuses this.

Andreea Costea Lecture 2;: Rust Data Types 2025-09-04 23

Compound Data Types: Nested Structs

Solution: Box<T> - @ pointer to a value on the heap.
A pointer always has a known, fixed size.
 So if we wrap a recursive type in Box, Rust now sees:

1 struct Node {

2 value: 132,

3 next: Box<Node>, // fixed size pointer
4

24

Andreea Costea Lecture 2: Rust Data Types

2025-09-04

Compound Data Types: Nested Structs

Solution: Box<T> - @ pointer to a value on the heap.
A pointer always has a known, fixed size.
 So if we wrap a recursive type in Box, Rust now sees:

1 struct Node {
2 value: 132,

3 next: Box<Node>, // fixed size pointer

4 }

* size of Node = size of i32 + size of the pointer (sox)
» The actual node that Box points to is on the heap, and the heap can grow
arbitrarily — Rust doesn’t need to know its full size at compile time.

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 24

Compound Data Types: Nested Structs

Solution: Box<T> - @ pointer to a value on the heap.
A pointer always has a known, fixed size.
 So if we wrap a recursive type in Box, Rust now sees:

1 struct Node {
2 value: 132,

3 next: Box<Node>, // fixed size pointer

4 }

where Box is defined as:

1 struct Box<T> {
2 ptr: *mut T
3 1}

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 24

Compound Data Types: Nested Structs

// NOTE: pseudocode

impl Box<T> {
pub fn new(value: T) -> Self {
let pointer = malloc(size of::<T>());

*pointer = value;
// return a wrapped pointer

1

2

3

4

5 // write the value there
6

7

8 return Box(pointer);
9

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 25

Compound Data Types: Nested Structs

1 // NOTE: pseudocode

2 impl Box<T> {

3 pub fn drop(&mut self) {
// automatically frees
free(self.pointer);

}
}

~N o U b~

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 25

Recap

« Types (mostly*) disappear at runtime
» But types do influence code generation: https://godbolt.org/z/d9ofb1YvK

N

Force users to make conscious choices about potentially unsafe operations.

N

Rust needs to know the size of every type at compile time because it stores
variables directly on the stack.

Andreea Costea Lecture 2;: Rust Data Types 2025-09-04 26

https://godbolt.org/z/d9ofb1YvK

Function Signatures

« Communicates behavior of code through types

fn is_even(value: i64) -> bool {...}

1

2 fn contains(haystack: &[164], needle: 164) -> bool {...}
3

4 // can you guess the name?

5 fn (haystack: &[164], needle: i64) -> usize {...}

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 27

Function Signatures

« Communicates behavior of code through types

1 fn is even(value: i64) -> bool {...}
2 fn contains(haystack: &[164], needle: 164) -> bool {...}

3

4 // can you guess the name?

5 type Index = usize;

6 fn (haystack: &[164], needle: i64) -> Index {...}

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 28

Individual Assignment

« Graded for 50% of your grade

DSMR Telegram parser

> See https://cese.ewi.tudelft.nl for all info

An assignment to get you familiar with the basics of Rust

Don’t be scared about the sheer amount of documentation online, take it step
by step

Ask questions in the labs

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 PAS

https://cese.ewi.tudelft.nl

	Data Types in General
	Rust Data Types
	Scalar Types - Integer example
	Scalar Types - Integer in General
	Compound Data Types - Arrays
	Compound Data Types
	Compound Data Types
	Compound Data Types: grouped values of different types
	Struct layout
	Compound Data Types: Struct
	Exercise: 5 minutes
	Adding a behavior to a type
	Adding a behavior to a type
	Adding a behavior to a type
	Adding a behavior to a type
	Adding a behavior to a type
	Adding a behavior to a type
	Exercise: 5 minutes
	Types as Proofs
	Scalar Types - Integer in General
	Compound Data Types: Struct
	Compound Data Types: Struct
	Compound Data Types: Nested Structs
	Compound Data Types: Nested Structs
	Recap
	Function Signatures
	Function Signatures
	Individual Assignment

