
Rust Data Types

Andreea Costea

Delft University of Technology

2025-09-04

(slides adapted from Jana Dönszelmann)

Data Types in General

Question:

What is a Data Type?

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 2

Data Types in General

Question:

What is a Data Type?

A Data Type classifies values and determines:
• What values exist (the domain)
• How are they represented in memory
• What operations are allowed on those values
• How the values behave when operations are applied

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 2

Rust Data Types

Scalar Type
• Integers: u8, i8, u16, i16, u32, i32, u64, i64, u128, i128, usize, isize
• Floating point: f32, f64
• Boolean: bool (true, false)
• Character: char (a Unicode Scalar Value, e.g., ‘a’, ‘α’, ‘∞’)

Compound Type
• Tuple
• Array
• Structs

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 3

Scalar Types - Integer example

• u8 is just one byte
• u32 is 4 bytes

1 // compiler, when I call `foo` somewhere in my code Rust
2 fn foo() {
3 // please make some room for me to use 4 bytes for something
4 // I'll use the name `a` when I want to use it
5 let a: u32 = 3;
6
7 // and 16 more here, I'll call it b
8 let b: u128 = 100_000;
9 }

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 4

Scalar Types - Integer in General

• What values exist (the domain)?

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 5

Scalar Types - Integer in General

• What values exist (the domain)?

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 5

Scalar Types - Integer in General

• What values exist (the domain)?

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 5

Scalar Types - Integer in General

• What values exist (the domain)?
• How are they represented in memory?

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 5

Scalar Types - Integer in General

• What values exist (the domain)?
• How are they represented in memory?

1 pub static a: u32 = 1; Rust
2 pub static b: u64 = 0x01;
3 pub static c: u128 = 0b00_01;

https://godbolt.org/z/EPnoz5cre

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 5

https://godbolt.org/z/EPnoz5cre

Scalar Types - Integer in General

• What values exist (the domain)?
• How are they represented in memory?
• What operations are allowed on those values?
• How the values behave when operations are applied?

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 5

Scalar Types - Integer in General

• What values exist (the domain)?
• How are they represented in memory?
• What operations are allowed on those values?
• How the values behave when operations are applied?

1 fn main() { Rust
2 let age:u8 = u8::MAX; //255
3 let x:u8 = u8::MAX + 1;
4 let y:u8 = u8::MAX + 2;
5 println!("age is {} ",age);
6 println!("x is {}",x);
7 println!("y is {}",y); }

https://godbolt.org/z/EPnoz5cre

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 5

https://godbolt.org/z/EPnoz5cre

Scalar Types - Integer in General

• What values exist (the domain)?

• How are they represented in memory?

• What operations are allowed on those values?

• How the values behave when operations are applied?

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 5

Scalar Types - Integer in General

• What values exist (the domain)?

• How are they represented in memory?

• What operations are allowed on those values?

• How the values behave when operations are applied?

Rust:

Force users to make conscious choices about potentially unsafe operations.

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 5

Compound Data Types - Arrays

1 let a: [u8; 8] = [1, 2, 4, 8, 16, 32, 64, 128]; Rust
2 let b: [u8; 8] = [0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80];
3 let c: u64 = 0x01_02_04_08_10_20_40_80;

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 6

Compound Data Types - Arrays

1 let a: [u8; 8] = [1, 2, 4, 8, 16, 32, 64, 128]; Rust
2 let b: [u8; 8] = [0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80];
3 let c: u64 = 0x01_02_04_08_10_20_40_80;

Question:

are a, b and c the same?

https://godbolt.org/z/G3doh6e4v

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 6

https://godbolt.org/z/G3doh6e4v

Compound Data Types

1. Arrays [T; N]

• Fixed-size, allocated on the stack (unless part of a heap-allocated structure).

• Contiguous elements, so arr[0], arr[1], … are stored back-to-back in memory.

• Access is fast (constant time) because the compiler can compute offsets

1 let arr: [i32; 3] = [1, 2, 3]; Rust
2
3 let first = arr[0];
4 let second = arr[1];
5
6 println!("Array: {:?}", arr);

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 7

Compound Data Types

1. Arrays ([T; N]): fixed-size, stack-allocated, cannot change length.

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 8

Compound Data Types

1. Arrays ([T; N]): fixed-size, stack-allocated, cannot change length.
2. Vectors (Vec):

• Dynamic-size, heap-allocated, can grow or shrink.

• The buffer inside the vector is contiguous on the heap.

1 let mut v = vec![1,2,3]; // The numbers 1, 2, 3 are stored contiguously in memory. Rust

• v is a stack-allocated variable representing the pointer to the buffer, plus
length and capacity metadata.

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 8

Compound Data Types: grouped values of different types

Different types bundled together, called a “tuple”:

1 let today: (u8, u8, u32) = (4, 9, 2025); Rust
2 let tomorrow: (u8, u8, u32) = (5, 9, 2025);

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 9

Compound Data Types: grouped values of different types

Different types bundled together, called a “tuple”:

1 let today: (u8, u8, u32) = (4, 9, 2025); Rust
2 let tomorrow: (u8, u8, u32) = (5, 9, 2025);

Which we can name:

1 type Date = (u8, u8, u32); Rust
2 // ...
3 let today: Date = (4, 9, 2025);
4 let tomorrow: Date = (5, 9, 2025);

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 9

Compound Data Types: grouped values of different types

Or a more common way to write that:

1 struct Date { Rust
2 day: u8,
3 month: u8,
4 year: u32,
5 }
6 // ...
7 let today: Date = Date {
8 day: 4,
9 year: 2025,
10 month: 9,
11 };
12
13 let year = today.year;

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 9

Struct layout

• Rust has lots of freedom with struct layouts
• https://doc.rust-lang.org/reference/type-layout.html
• Optimized code can take advantage of this

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 10

https://doc.rust-lang.org/reference/type-layout.html

Compound Data Types: Struct

2. Vectors (Vec): dynamic-size, heap-allocated, can grow or shrink.

1 let mut v:Vec<i32> = vec![1,2,3]; Rust

• v is a stack-allocated variable representing the pointer to the buffer, plus
length and capacity metadata.

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 11

Compound Data Types: Struct

2. Vectors (Vec): dynamic-size, heap-allocated, can grow or shrink.

1 let mut v:Vec<i32> = vec![1,2,3]; Rust

• v is a stack-allocated variable representing the pointer to the buffer, plus
length and capacity metadata.

1 struct Vec<T> { Rust
2 ptr: *mut T, // pointer to heap-allocated buffer
3 len: usize, // number of elements
4 capacity: usize // allocated space in buffer
5 }

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 11

Exercise: 5 minutes

Go to play.rust-lang.org or open your fav editor and define a struct UdpHeader with these fields:

Adding a behavior to a type

• The impl keyword

1 struct SomeType {...}; Rust
2
3 impl SomeType {
4 fn do_something1(...) {} // associated functions
5 fn do_something2(&self) {} // associated methods
6 pub const SOME_CONSTANT: u8 = 42; // associated constants
7 ...
8 }

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 13

Adding a behavior to a type

• The impl keyword
• For example:

1 struct UdpHeader{ Rust
2 ... // fields
3 };
4
5 impl UdpHeader {
6 pub const ZEROS: u8 = 0; //no memory overhead per instance.
7 }

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 14

Adding a behavior to a type

• The impl keyword
• For example:

1 // somewehere in the standard library Rust
2 struct u64;
3
4 impl u64 {
5 fn add(&self, other: Self) -> u64 {}
6 }

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 15

Adding a behavior to a type

• The impl keyword
• For example:

1 // somewehere in the standard library Rust
2 struct u64;
3
4 impl u64 {
5 fn add(&self, other: Self) -> u64 {}
6 // actualy roughly means:
7 fn add(&self: u64, other: u64) -> u64 {}
8 }

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 16

Adding a behavior to a type

• The impl keyword
• Now we can:

1 // somewhere in the standard library Rust
2 impl u64 {
3 fn add(&self, other: Self) -> u64 {}
4 }
5
6 let x: u64 = 3;
7
8 x.add(5)

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 17

Adding a behavior to a type

• The impl keyword
• Now we can:

1 // somewhere in the standard library Rust
2 impl u64 {
3 fn add(&self, other: Self) -> u64 {}
4 }
5
6 let x: u64 = 3;
7
8 x.add(5)
9 // but you might be more used to:
10 x + 5

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 18

Exercise: 5 minutes

Go to play.rust-lang.org or open your fav editor and:

• Create a struct called Range with two integer fields, start and end
• Add these functions to the Range type

‣ len which says how far start is from end
‣ middle which gives the middle of the range
‣ new which creates a new range and checks whether end > start

Hint: use assert!(a > b) to make sure conditions hold (and panic otherwise)

Types as Proofs

• Types don’t have to be only related to memory
• They can also communicate that you checked something.

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 20

Types as Proofs

• Types don’t have to be only related to memory
• They can also communicate that you checked something.

1 struct Range { start: usize, end: usize,} Rust
2
3 impl Range {
4 fn new(start: usize, end: usize) -> Self {
5 assert!(end > start, "end must be greater than start");
6 Range { start, end }
7 }
8 pub fn len(&self) -> usize {
9 self.end - self.start // cannot fail! (can't be negative)
10 }
11 }

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 20

Types as Proofs

• Types don’t have to be only related to memory
• They can also communicate that you checked something.

• Examples:
‣ NonZero<T> proves that the integer T is not zero
‣ &str is like bytes (&[u8]), but proves UTF-8
‣ String is like a Vec<u8> but proves UTF-8

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 20

Types as Proofs

• Types don’t have to be only related to memory
• They can also communicate that you checked something.

• Examples:
‣ NonZero<T> proves that the integer T is not zero
‣ &str is like bytes (&[u8]), but proves UTF-8
‣ String is like a Vec<u8> but proves UTF-8

1 let bytes = vec![0xff, 0x61]; // Vec<u8> ok, not valid UTF-8 Rust
2 // let s = String::from_utf8(bytes).unwrap(); // would panic, invalid UTF-8
3
4 let s = String::from("hello"); // guaranteed UTF-8

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 20

Types as Proofs

• Types don’t have to be only related to memory
• They can also communicate that you checked something.

• Examples:
‣ NonZero<T> proves that the integer T is not zero
‣ &str is like bytes (&[u8]), but proves UTF-8
‣ String is like a Vec<u8> but proves UTF-8

• Zero-sized types are even possible:

1 struct ZeroSized {}; Rust
2 let x: ZeroSized = ZeroSized {};

https://www.hardmo.de/article/2021-03-14-zst-proof-types.md

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 20

https://www.hardmo.de/article/2021-03-14-zst-proof-types.md

Scalar Types - Integer in General

• What values exist (the domain)?
• How are they represented in memory?
• What operations are allowed on those values?
• How the values behave when operations are applied?

1 fn main() { Rust
2 let age:u8 = u8::MAX; //255
3 let x:u8 = u8::MAX + 1;
4 let y:u8 = u8::MAX + 2;
5 println!("age is {} ",age);
6 println!("x is {}",x);
7 println!("y is {}",y); }

https://godbolt.org/z/EPnoz5cre

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 21

https://godbolt.org/z/EPnoz5cre

Compound Data Types: Struct

1 struct Date { Rust
2 day: u8,
3 month: u8,
4 year: u32,
5 }

Question:

How many bytes do we need for a Date?

https://godbolt.org/z/PYs6WTzvq

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 22

https://godbolt.org/z/PYs6WTzvq

Compound Data Types: Struct

Rust:

Rust needs to know the size of every type at compile time because it stores
variables directly on the stack.

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 23

Compound Data Types: Struct

Rust:

Rust needs to know the size of every type at compile time because it stores
variables directly on the stack.

1 struct Node { Rust
2 value: i32,
3 next: Node, // ERROR: recursive type
4 }

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 23

Compound Data Types: Struct

Rust:

Rust needs to know the size of every type at compile time because it stores
variables directly on the stack.

1 struct Node { Rust
2 value: i32,
3 next: Node, // ERROR: recursive type
4 }

• The compiler cannot know the size of Node: Node contains a Node,… infinitely.

• Problem: this is a type with unknown size — Rust refuses this.

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 23

Compound Data Types: Nested Structs

Solution: Box<T> - a pointer to a value on the heap.
• A pointer always has a known, fixed size.
• So if we wrap a recursive type in Box, Rust now sees:

1 struct Node { Rust
2 value: i32,
3 next: Box<Node>, // fixed size pointer
4 }

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 24

Compound Data Types: Nested Structs

Solution: Box<T> - a pointer to a value on the heap.
• A pointer always has a known, fixed size.
• So if we wrap a recursive type in Box, Rust now sees:

1 struct Node { Rust
2 value: i32,
3 next: Box<Node>, // fixed size pointer
4 }

• size of Node = size of i32 + size of the pointer (Box)
• The actual Node that Box points to is on the heap, and the heap can grow

arbitrarily — Rust doesn’t need to know its full size at compile time.

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 24

Compound Data Types: Nested Structs

Solution: Box<T> - a pointer to a value on the heap.
• A pointer always has a known, fixed size.
• So if we wrap a recursive type in Box, Rust now sees:

1 struct Node { Rust
2 value: i32,
3 next: Box<Node>, // fixed size pointer
4 }

where Box is defined as:

1 struct Box<T> { Rust
2 ptr: *mut T
3 }

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 24

Compound Data Types: Nested Structs

1 // NOTE: pseudocode Rust
2 impl Box<T> {
3 pub fn new(value: T) -> Self {
4 let pointer = malloc(size_of::<T>());
5 // write the value there
6 *pointer = value;
7 // return a wrapped pointer
8 return Box(pointer);
9 }
10 }

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 25

Compound Data Types: Nested Structs

1 // NOTE: pseudocode Rust
2 impl Box<T> {
3 pub fn drop(&mut self) {
4 // automatically frees
5 free(self.pointer);
6 }
7 }

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 25

Recap

• Types (mostly*) disappear at runtime
• But types do influence code generation: https://godbolt.org/z/d9ofb1YvK

Rust:

Force users to make conscious choices about potentially unsafe operations.

Rust:

Rust needs to know the size of every type at compile time because it stores
variables directly on the stack.

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 26

https://godbolt.org/z/d9ofb1YvK

Function Signatures

• Communicates behavior of code through types

1 fn is_even(value: i64) -> bool {...} Rust
2 fn contains(haystack: &[i64], needle: i64) -> bool {...}
3
4 // can you guess the name?
5 fn ______(haystack: &[i64], needle: i64) -> usize {...}

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 27

Function Signatures

• Communicates behavior of code through types

1 fn is_even(value: i64) -> bool {...} Rust
2 fn contains(haystack: &[i64], needle: i64) -> bool {...}
3
4 // can you guess the name?
5 type Index = usize;
6 fn ______(haystack: &[i64], needle: i64) -> Index {...}

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 28

Individual Assignment

• Graded for 50% of your grade
• DSMR Telegram parser

‣ See https://cese.ewi.tudelft.nl for all info
• An assignment to get you familiar with the basics of Rust
• Don’t be scared about the sheer amount of documentation online, take it step

by step
• Ask questions in the labs

Andreea Costea Lecture 2: Rust Data Types 2025-09-04 29

https://cese.ewi.tudelft.nl

	Data Types in General
	Rust Data Types
	Scalar Types - Integer example
	Scalar Types - Integer in General
	Compound Data Types - Arrays
	Compound Data Types
	Compound Data Types
	Compound Data Types: grouped values of different types
	Struct layout
	Compound Data Types: Struct
	Exercise: 5 minutes
	Adding a behavior to a type
	Adding a behavior to a type
	Adding a behavior to a type
	Adding a behavior to a type
	Adding a behavior to a type
	Adding a behavior to a type
	Exercise: 5 minutes
	Types as Proofs
	Scalar Types - Integer in General
	Compound Data Types: Struct
	Compound Data Types: Struct
	Compound Data Types: Nested Structs
	Compound Data Types: Nested Structs
	Recap
	Function Signatures
	Function Signatures
	Individual Assignment

