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Today

The Pillars of Memory Safety in Rust

1. Ownership
2. References
3. Mutability
4. Lifetimes
5. Slices
6. A sample of Enum types (more next lecture)

Git Demo
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Ownership



1  let x = vec![1, 2, 3];                 // L2          Rust
2  let y = x;                             // L3 
3  println!("Here's your vector {x:?}");  // L4 

• x is a stack-allocated variable representing the pointer to the buffer stored in
the heap, plus length and capacity metadata.
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1  let x = vec![1, 2, 3];                 // L2          Rust
2  let y = x;                             // L3 
3  println!("Here's your vector {x:?}");  // L4 

• x is a stack-allocated variable representing the pointer to the buffer stored in
the heap, plus length and capacity metadata (for brevity of this presentation).
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1 let x = vec![1, 2, 3];                 // L2          Rust
2 let y = x;                             // L3 
3 println!("Here's your vector {x:?}");  // L4 
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1 let x = vec![1, 2, 3];                 // L2          Rust
2 let y = x;                             // L3 
3 println!("Here's your vector {x:?}");  // L4 
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1 let x = vec![1, 2, 3];                 // L2          Rust
2 let y = x;                             // L3 
3 println!("Here's your vector {x:?}");  // L4 

L2: x binds the value vec![1, 2, 3] – x is the owner of that value
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1 let x = vec![1, 2, 3];                 // L2          Rust
2 let y = x;                             // L3 
3 println!("Here's your vector {x:?}");  // L4 

L2: x binds the value vec![1, 2, 3] – x is the owner of that value

L3: ownerships moves from x to y (MOVE SEMANTICS)
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Why is Rust doing this?

• Accountability: someone—the owner—has to be responsible for freeing the
memory.
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Why is Rust doing this?

• Accountability: someone—the owner—has to be responsible for freeing the
memory.
‣ every value has an owner (for simplicity here, owner is a variable).
‣ every variable has a scope.
‣ when the owner goes out of scope, the value will be dropped (memory is

freed).
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Why is Rust doing this?

• Accountability: someone—the owner—has to be responsible for freeing the
memory.
‣ every value has an owner (for simplicity here, owner is a variable).
‣ every variable has a scope.
‣ when the owner goes out of scope, the value will be dropped (memory is

freed).
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1 fn main(){ Rust
2   let x = vec![1, 2, 3];                       
3   let y = x;             
4   println!("Here's your vector {y:?}");   
5 }

• Scope of x: line 2 to end of main
• Scope of y: line 3 to end of main
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1 fn length(v: Vec<i32>) -> usize { Rust
2   v.len() 
3 }
4 fn main(){
5   let x = vec![1, 2, 3];                 
6   let y = length(x);
7   println!("The length of the vector is {y:?}");  
8 }

• Scope of x: line 5 to end of main
• Scope of y: line 6 to end of main
• Scope of v: line 1 to end of foo
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Why is Rust doing this?

• Accountability: someone—the owner—has to be responsible for freeing the
memory.
‣ every value has an owner (for simplicity here, owner is a variable).
‣ every variable has a scope.
‣ when the owner goes out of scope, the value will be dropped (memory is

freed).
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1 fn length(v: Vec<i32>) -> usize {     // L4 Rust
2   v.len()                     
3 }                                     //L6
4 fn main(){
5   let x = vec![1, 2, 3];              // L2             
6   let y = length(x);                  // L3  L7
7   println!("The length of the vector is {y:?}");  
8 }                                     // L9
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3 }                                     //L6
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1 fn length(v: Vec<i32>) -> usize {     // L4 Rust
2   v.len()                     
3 }                                     //L6
4 fn main(){
5   let x = vec![1, 2, 3];              // L2             
6   let y = length(x);                  // L3  L7
7   println!("The length of the vector is {y:?}");  
8 }                                     // L9
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1 fn length(v: Vec<i32>) -> usize {     // L4 Rust
2   v.len()                     
3 }                                     //L6
4 fn main(){
5   let x = vec![1, 2, 3];              // L2             
6   let y = length(x);                  // L3  L7
7   println!("The length of the vector is {y:?}");  
8 }                                     // L9

• every data structure that allocates memory on the heap has a drop method.
• when a variable goes out of scope, its drop method is called.
• Vec’s drop deallocates the heap buffer at line 3
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Safety Principle:

Every value in Rust has a variable that’s called its owner. There can only be one
owner at a time. When the owner goes out of scope, the value is dropped.
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Question:

Where does the value owned by x go out of scope?
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Question:

Where does the value owned by x go out of scope?

1  fn main(){ Rust
2   let x = vec![1, 2, 3];           
3   println!("x is {x:?}");  
4  }                                     
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Question:

Where does the value owned by x go out of scope?

1  fn main(){ Rust
2   let y = vec![1, 2, 3];
3   if y.len() > 2 { 
4      let x = y;              
5      println!("x is {x:?}");  
6   }
7   println!("end of main");   
8  }                                     
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Question:

Where does the value owned by x go out of scope?

1  fn main(){ Rust
2   let y = 3;             
3   let x = y;               
4   println!("y = {y:?}"); 
5  }                                      
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Question:

Where does the value owned by x go out of scope?

1  fn main(){ Rust
2   let y = 3;             
3   let x = y;               
4   println!("y = {y:?}"); 
5  }                                      

• the values on the stack are copied, not moved
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Question:

Where does the value owned by x go out of scope?

1  fn main(){ Rust
2   let y = 3;             
3   let x = y;               
4   println!("y = {y:?}"); 
5  }                                      
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Recap

• Every value has a single owner
• When the owner goes out of scope, the value is dropped
• Ownership can be moved between variables
• Some types (scalar types) are Copy, and don’t move, but copy instead
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But what if we want this?

1 fn length(v: Vec<i32>) -> usize { v.len() } Rust
2 fn main(){
3   let x = vec![1, 2, 3];              
4   let y = length(x);                  
5   println!("The length of {x:?} is {y:?}");  
6 }                                     
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But what if we want this?

1 fn length(v: Vec<i32>) -> usize { /*L4*/ v.len() } Rust
2 fn main(){
3   let x = vec![1, 2, 3];              
4   let y = length(x.clone());     // L7 DEEP COPY         
5   println!("The length of {x:?} is {y:?}");  
6 }                                                
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But what if we want this?

1 fn length(v: Vec<i32>) -> usize { /*L4*/ v.len() } Rust
2 fn main(){
3   let x = vec![1, 2, 3];              
4   let y = length(x.clone());     // L7 DEEP COPY         
5   println!("The length of {x:?} is {y:?}");  
6 }                                                

• clone duplicates the value on the heap (deep copy)
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But what if we want this?

1 fn length(v: Vec<i32>) -> usize { /*L4*/ v.len() } Rust
2 fn main(){
3   let x = vec![1, 2, 3];              
4   let y = length(x.clone());     // L7 DEEP COPY         
5   println!("The length of {x:?} is {y:?}");  
6 }                                                
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Disadvantages of Cloning

• Using clone we double the amount of memory needed
• Cloning takes O(n) time for a vector of n elements
• Can we do better?
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Borrowing



But what if we want this?

1 fn length(v: &Vec<i32>) -> usize { /*L4*/ v.len() } Rust
2 fn main(){
3   let x = vec![1, 2, 3];              
4   let y = length(&x);             // L7 create a REFERENCE 
5   println!("The length of {x:?} is {y:?}");  
6 }                                                
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5   println!("The length of {x:?} is {y:?}");  
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But what if we want this?

1 fn length(v: &Vec<i32>) -> usize { /*L4*/ v.len() } Rust
2 fn main(){
3   let x = vec![1, 2, 3];              
4   let y = length(&x);             // L7 create a REFERENCE 
5   println!("The length of {x:?} is {y:?}");  
6 }                                                

• We call this borrowing
• v borrows the value vec![1, 2, 3], x still owns it
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But what if we want this?

1 fn length(v: &Vec<i32>) -> usize { /*L4*/ v.len() } Rust
2 fn main(){
3   let x = vec![1, 2, 3];              
4   let y = length(&x);             // L7 create a REFERENCE 
5   println!("The length of {x:?} is {y:?}");  
6 }                                                

• We call this borrowing
• v borrows the value vec![1, 2, 3], x still owns it
• v does own something though

‣ all values have an owner
‣ v just owns a value that’s a reference, not the real vec![1, 2, 3]
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Watch out though! We can only reference something that still exists.

1 fn example() -> &Vec<i32> { Rust
2   let a = vec![1, 2, 3];
3   return &a;
4   // a goes out of scope here
5 }
6
7 fn main() {
8   // what are we pointing to?
9   let ref_to_a = example();
10 }
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Borrowing

1 fn main() { Rust
2   let x;
3   {
4     let y = vec![1, 2, 3];
5     x = &y;
6   }
7   println!("{x}");
8 }
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Borrowing

1 fn main() { Rust
2   let x;
3   {
4     let y = vec![1, 2, 3];
5     x = &y;
6   }
7   println!("{x}");
8 }

• y is out of scope before the last use of x.
• y does not live long enough.
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Safety Principle:

The lender needs to outlive all of its (alive) references: a reference lives from
the place it started borrowing until its last use.
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Types with Behaviours

The &self means we get a reference to the value when we call the method.

1 struct A; Rust
2 impl A {
3   // takes a reference to Self
4   fn do_something_with_a(&self) {}
5 }
6 ...
7 let x = A;
8 x.do_something_with_a(); // BORROW
9 // x still available
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Types with Behaviours

We can also make a method takes onwership (useful for converting values)

1 struct A; struct B; Rust
2 impl A {
3   // takes ownership of Self
4   fn do_something_with_a(self) -> B {...}
5 }
6 ...
7 let x = A;
8 let b = x.do_something_with_a();  //MOVE
9 // x no longer available
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References are `Copy`

1 let x = vec![1, 2, 3] Rust
2
3 let a = &x;
4 let b = a;
5
6 // all fine!
7 println!("{:?}", a);
8 println!("{:?}", b);
9 println!("{:?}", x);

Once we have one reference, it doesn’t matter how many more we create!

Andreea Costea Lecture 3: Memory Safety 2025-09-09 27



Mutability



Mutability

A binding is either mutable, or not

1 let x = 3; Rust
2 let mut y = 3;
3
4 x = 4; // illegal
5 y = 5; // ok!
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1 let x = vec![1, 2, 3]; Rust
2 // x.push(4) doesn't work
3
4 // move to a mutable binding
5 let mut y = x;
6 // works just fine
7 y.push(4)

Question:

Why is it ok to add mutability to a value later on?
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A borrow cannot mutate

1 fn add_four(y: &Vec<i32>) { Rust
2   // error!
3   y.push(4);
4 }
5 fn main() {
6   let mut x = vec![1, 2, 3];
7   add_four(&x);
8 }
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What if we want to change a value in a function?
• we could move owenrship:

1 // move the vector to this function Rust
2 fn add_four(mut y: Vec<i32>) -> Vec<i32> {
3   y.push(4);
4   y     // and move back again
5 }
6
7 fn main() {
8   let mut x = vec![1, 2, 3];
9   x = add_four(x);
10 }
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What if we want to change a value in a function?
• Or we use a mutable reference

1 fn add_four(y: &mut Vec<i32>) { Rust
2   y.push(4);
3 }
4
5 fn main() {
6   let mut x = vec![1, 2, 3];
7   // &mut x only possible if x is mutable
8   add_four(&mut x);
9 }
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Mutability

Mutable references aren’t like normal references
• You can’t copy them:

1 let mut x = vec![1, 2, 3]; Rust
2
3 let a = &mut x;
4 let b = a; // a moved into b, not copied
5
6 // so a is not valid anymore here
7 a.push(4);
8 b.push(5);
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Mutability

Mutable references aren’t like normal references
• You can’t copy them
• You can’t have two at the same time at all!

1 let mut x = vec![1, 2, 3]; Rust
2 let a = &mut x;
3 let b = &mut x; // second reference to x
4
5 a.push(4);
6 b.push(5); 

Error: cannot borrow x as mutable more than once at a time
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Mutability

Mutable references aren’t like normal references
• You can’t copy them
• You can’t have two at the same time
• Nor can you have a mutable and normal reference at the same time!

1 let mut x = vec![1, 2, 3]; Rust
2 let a = &mut x;
3 let b = &x; // *immutable* reference to x
4
5 a.push(4);
6 println!("{:?}", b);

Error: cannot borrow x as immutable because it is also borrowed as mutable.
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Mutability

Mutable references aren’t like normal references
• You can’t copy them
• You can’t have any other reference at the same time!

A better name for a “mutable reference” is an “exclusive reference”

Question:

But why?
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Example 1: growing vectors

1 let mut x = vec![1, 2, 3] Rust
2
3 // first reference, to an element
4 let first_elem = &x[0];
5 // second reference, mutable this time
6 x.push(4);      // COMPILATION ERROR
7
8 println!("{}", first_elem);
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Example 2: copying elements:

1 fn fill_vector_with_ref(src: &u32, dst: &mut Vec<u32>) { Rust
2   for i in 0..src.len() { dst[i] = *src + 1; }
3 }
4
5 fn fill_vector_with_ref(src: &u32, dst: &mut Vec<u32>) {
6   let value = *src + 1;
7   for i in 0..src.len() { dst[i] = value; }
8 }

Question:

Are these functions the same?
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Example 2: copying elements—What if src is an element in dst?

1 fn fill_vector_with_ref(src: &u32, dst: &mut Vec<u32>) { Rust
2   for i in 0..src.len() { dst[i] = *src; }
3 }
4
5 fn fill_vector_with_ref(src: &u32, dst: &mut Vec<u32>) {
6   let value = *src;
7   for i in 0..src.len() { dst[i] = value; }
8 }
9
10 let mut x = vec![1, 2, 3];
11 fill_vector_with_ref(&x[1], &mut x);
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Mutability

But Rust would reject this program.

1 let mut x = vec![1, 2, 3]; Rust
2 // obviously wrong
3 // mutable *and* immutable reference at the same time
4 fill_vector_with_ref(&x[1], &mut x);
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Mutability

Safety Principle:

A mutable borrow can only be created if its lender has no other borrows living
at that time.
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Mutability

Safety Principle:

A mutable borrow can only be created if its lender has no other borrows living
at that time.

Safety Principle:

The lender cannot be modified as long as one of its (shared) borrowers still
lives.
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Example 1: growing vectors - How can we fix this error?

1 let mut x = vec![1, 2, 3] Rust
2
3 // first reference, to an element
4 let first_elem = &x[0];
5 // second reference, mutable this time
6 x.push(4);      // COMPILATION ERROR
7
8 println!("{}", first_elem);
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Example 1: growing vectors - How can we fix this error?

1 let mut x = vec![1, 2, 3] Rust
2
3 // SWAP the order of the borrowing creation
4 x.push(4);     
5 // first reference, to an element
6 let first_elem = &x[0];
7
8 println!("{}", first_elem);
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Example 1: growing vectors - How can we fix this error?

1 let mut x = vec![1, 2, 3] Rust
2
3 // SWAP the order of the borrowing creation
4 x.push(4);         // The life of &mut x STARTS and ENDS here
5 // first reference, to an element
6 let first_elem = &x[0];      // The life of &x STARTS here
7
8 println!("{}", first_elem);  // The life of &x ENDS here

• lifetimes are associated with references
• a reference lives until it is last used

Andreea Costea Lecture 3: Memory Safety 2025-09-09 45



Recap

Ownership: Who owns what?
• Every value in Rust has a single owner — usually a variable.
• When the owner goes out of scope, the value is dropped (freed).
• Ownership can be moved (transfer ownership to another variable) or copied (if

the type implements Copy).
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Recap

Ownership: Who owns what?
• Every value in Rust has a single owner — usually a variable.
• When the owner goes out of scope, the value is dropped (freed).
• Ownership can be moved (transfer ownership to another variable) or copied (if

the type implements Copy).

References: Borrowing instead of owning
• You can borrow a value instead of taking ownership using & (shared reference)

or &mut (mutable reference).
• Shared borrows (&T): many at once, but read-only.
• Mutable borrows (&mut T): only one at a time, and no shared borrows while it’s

active.
• These rules ensure no data races or use-after-free.
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Recap

The three rules that matter most

• Ownership rule: exactly one owner at a time.
• Borrowing rules:

‣ Many immutable borrows allowed, OR
‣ One mutable borrow allowed, but not both.

• Lifetime rule: a reference must not outlive its owner.
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Slices



Sometimes you want to reference more than one thing at a time:

1 let x = vec![1, 2, 3, 4]; Rust
2
3 let a: &[u32] = &x[0..2] // index 0, and 1 (excluding 2)
4 let b = &x[2..]          // elements at indexes starting from 2
5
6 for i in b {             // you can iterate over a slice
7   println!("{i}");
8 }
9
10 println!("{}", a.len()); // or get its length
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Slices can be mutable:

1 let mut x = vec![1, 2, 3, 4]; Rust
2
3 // index 0, and 1 (excluding 2)
4 let a: &mut [u32] = &mut x[0..2]
5 for i in a {
6   *i += 3;
7 }
8
9 // prints 4, 5, 3, 4
10 println!("{:?}", x);
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Some things coerce to slices:

1 // input is a slice Rust
2 fn sum(res: &[u32]) -> u32 {  /* ... */ }
3
4 // but we can call it with a vector!
5 let x = vec![1, 2, 3];
6 sum(&x);
7 // or a bit of a vector
8 sum(&x[1..]);
9 // or an array
10 sum(&[1, 2, 3]);

So writing sum like this is more flexible
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Slices

This gives us a fun way to write sum:

1 fn sum(input: &[u32]) -> u32 { Rust
2   if input.is_empty() {
3     0
4   } else {
5     // add element 0 to everything after element 0
6     input[0] + sum(&input[1..])
7   }
8 }

Works for anything that looks like a sequence of u32, like vectors
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Enums



Enums

• Last lecture: all about types
• Next lecture: all about enum types

But here are the basics, so you can get started using them
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Enums

Question:

How many possible values does a bool have?
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Enums

Question:

How many possible values does a u8 have?
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Enums

Question:

How many possible values does a u32 have?
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Enums

Question:

How many possible values does this type have?

1 struct X { Rust
2   a: bool,
3   b: bool,
4 }
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Enums

• We call a struct a “product type”.
• If type A has n possible values
• If type B has m possible values
• Then a struct with A and B in it has 𝑛 ×𝑚 possible values
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Enums

Sometimes, you know that not all values are possible.

1 // NOTE: only 1-7 are valid Rust
2 type WeekDay = u8;
3
4
5 // ???
6 let x: WeekDay = 8;
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Enums

Sometimes, you know that not all values are possible.

1 // Only has 7 possible values Rust
2 enum WeekDay {
3   Monday,  Tuesday,   Wednesday,
4   Thursday,  Friday,  Saturday, Sunday,
5 }
6
7 // we can only choose one of the valid values!
8 let x: WeekDay = WeekDay::Monday;
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Enums

1 // Only has 7 possible values Rust
2 enum WeekDay {
3   Monday,  Tuesday,   Wednesday,
4   Thursday,  Friday,  Saturday, Sunday,
5 }
6
7 // we can only choose one of the valid values!
8 let x: WeekDay = WeekDay::Monday;
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Enums

Unlike in many other programming languages, enums can have values

1 enum IpAddress { Rust
2   Ipv4([u8; 4]),
3   Ipv6([u8; 16]),
4 }
5
6 let x: IpAddress = IpAddress::Ipv4([127, 0, 0, 1]);
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Enums

How many possible values?

1 enum IpAddress { Rust
2   Ipv4([u8; 4]), // 2^32 ~= 4 billion
3   Ipv6([u8; 16]), // 2^128 ~= a lot
4 }

In total: 232 + 2128

Enums are sometimes called “sum types”
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Enums

Another example: Option<T>

1 enum Option<T> { Rust
2   Some(T),
3   None
4 }
5
6 // 257 possible values
7 // 256 if Some, or one more: None
8 let x: Option<u8> = Some(3);
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Assignment: 5 minutes

• Create an enum for a JSON value called Value
• a JSON value is either:

‣ a floating point number
‣ a string
‣ true
‣ false
‣ null
‣ a list of other JSON values
‣ a json object, std::collections::HashMap<String, Value>

JSON spec

https://www.json.org/json-en.html

https://www.json.org/json-en.html
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