
Memory Safety

Andreea Costea

Delft University of Technology

2025-09-09

Today

The Pillars of Memory Safety in Rust

1. Ownership
2. References
3. Mutability
4. Lifetimes
5. Slices
6. A sample of Enum types (more next lecture)

Git Demo

Andreea Costea Lecture 3: Memory Safety 2025-09-09 2

Ownership

1 let x = vec![1, 2, 3]; // L2 Rust
2 let y = x; // L3
3 println!("Here's your vector {x:?}"); // L4

• x is a stack-allocated variable representing the pointer to the buffer stored in
the heap, plus length and capacity metadata.

Andreea Costea Lecture 3: Memory Safety 2025-09-09 4

1 let x = vec![1, 2, 3]; // L2 Rust
2 let y = x; // L3
3 println!("Here's your vector {x:?}"); // L4

• x is a stack-allocated variable representing the pointer to the buffer stored in
the heap, plus length and capacity metadata (for brevity of this presentation).

Andreea Costea Lecture 3: Memory Safety 2025-09-09 5

1 let x = vec![1, 2, 3]; // L2 Rust
2 let y = x; // L3
3 println!("Here's your vector {x:?}"); // L4

Andreea Costea Lecture 3: Memory Safety 2025-09-09 6

1 let x = vec![1, 2, 3]; // L2 Rust
2 let y = x; // L3
3 println!("Here's your vector {x:?}"); // L4

Andreea Costea Lecture 3: Memory Safety 2025-09-09 6

1 let x = vec![1, 2, 3]; // L2 Rust
2 let y = x; // L3
3 println!("Here's your vector {x:?}"); // L4

L2: x binds the value vec![1, 2, 3] – x is the owner of that value

Andreea Costea Lecture 3: Memory Safety 2025-09-09 6

1 let x = vec![1, 2, 3]; // L2 Rust
2 let y = x; // L3
3 println!("Here's your vector {x:?}"); // L4

L2: x binds the value vec![1, 2, 3] – x is the owner of that value

L3: ownerships moves from x to y (MOVE SEMANTICS)

Andreea Costea Lecture 3: Memory Safety 2025-09-09 6

Why is Rust doing this?

• Accountability: someone—the owner—has to be responsible for freeing the
memory.

Andreea Costea Lecture 3: Memory Safety 2025-09-09 7

Why is Rust doing this?

• Accountability: someone—the owner—has to be responsible for freeing the
memory.
‣ every value has an owner (for simplicity here, owner is a variable).
‣ every variable has a scope.
‣ when the owner goes out of scope, the value will be dropped (memory is

freed).

Andreea Costea Lecture 3: Memory Safety 2025-09-09 8

Why is Rust doing this?

• Accountability: someone—the owner—has to be responsible for freeing the
memory.
‣ every value has an owner (for simplicity here, owner is a variable).
‣ every variable has a scope.
‣ when the owner goes out of scope, the value will be dropped (memory is

freed).

Andreea Costea Lecture 3: Memory Safety 2025-09-09 9

1 fn main(){ Rust
2 let x = vec![1, 2, 3];
3 let y = x;
4 println!("Here's your vector {y:?}");
5 }

• Scope of x: line 2 to end of main
• Scope of y: line 3 to end of main

Andreea Costea Lecture 3: Memory Safety 2025-09-09 10

1 fn length(v: Vec<i32>) -> usize { Rust
2 v.len()
3 }
4 fn main(){
5 let x = vec![1, 2, 3];
6 let y = length(x);
7 println!("The length of the vector is {y:?}");
8 }

• Scope of x: line 5 to end of main
• Scope of y: line 6 to end of main
• Scope of v: line 1 to end of foo

Andreea Costea Lecture 3: Memory Safety 2025-09-09 11

Why is Rust doing this?

• Accountability: someone—the owner—has to be responsible for freeing the
memory.
‣ every value has an owner (for simplicity here, owner is a variable).
‣ every variable has a scope.
‣ when the owner goes out of scope, the value will be dropped (memory is

freed).

Andreea Costea Lecture 3: Memory Safety 2025-09-09 12

1 fn length(v: Vec<i32>) -> usize { // L4 Rust
2 v.len()
3 } //L6
4 fn main(){
5 let x = vec![1, 2, 3]; // L2
6 let y = length(x); // L3 L7
7 println!("The length of the vector is {y:?}");
8 } // L9

Andreea Costea Lecture 3: Memory Safety 2025-09-09 13

1 fn length(v: Vec<i32>) -> usize { // L4 Rust
2 v.len()
3 } //L6
4 fn main(){
5 let x = vec![1, 2, 3]; // L2
6 let y = length(x); // L3 L7
7 println!("The length of the vector is {y:?}");
8 } // L9

Andreea Costea Lecture 3: Memory Safety 2025-09-09 13

1 fn length(v: Vec<i32>) -> usize { // L4 Rust
2 v.len()
3 } //L6
4 fn main(){
5 let x = vec![1, 2, 3]; // L2
6 let y = length(x); // L3 L7
7 println!("The length of the vector is {y:?}");
8 } // L9

Andreea Costea Lecture 3: Memory Safety 2025-09-09 13

1 fn length(v: Vec<i32>) -> usize { // L4 Rust
2 v.len()
3 } //L6
4 fn main(){
5 let x = vec![1, 2, 3]; // L2
6 let y = length(x); // L3 L7
7 println!("The length of the vector is {y:?}");
8 } // L9

• every data structure that allocates memory on the heap has a drop method.
• when a variable goes out of scope, its drop method is called.
• Vec’s drop deallocates the heap buffer at line 3

Andreea Costea Lecture 3: Memory Safety 2025-09-09 13

Safety Principle:

Every value in Rust has a variable that’s called its owner. There can only be one
owner at a time. When the owner goes out of scope, the value is dropped.

Andreea Costea Lecture 3: Memory Safety 2025-09-09 14

Question:

Where does the value owned by x go out of scope?

Andreea Costea Lecture 3: Memory Safety 2025-09-09 15

Question:

Where does the value owned by x go out of scope?

1 fn main(){ Rust
2 let x = vec![1, 2, 3];
3 println!("x is {x:?}");
4 }

Andreea Costea Lecture 3: Memory Safety 2025-09-09 15

Question:

Where does the value owned by x go out of scope?

1 fn main(){ Rust
2 let y = vec![1, 2, 3];
3 if y.len() > 2 {
4 let x = y;
5 println!("x is {x:?}");
6 }
7 println!("end of main");
8 }

Andreea Costea Lecture 3: Memory Safety 2025-09-09 15

Question:

Where does the value owned by x go out of scope?

1 fn main(){ Rust
2 let y = 3;
3 let x = y;
4 println!("y = {y:?}");
5 }

Andreea Costea Lecture 3: Memory Safety 2025-09-09 15

Question:

Where does the value owned by x go out of scope?

1 fn main(){ Rust
2 let y = 3;
3 let x = y;
4 println!("y = {y:?}");
5 }

• the values on the stack are copied, not moved

Andreea Costea Lecture 3: Memory Safety 2025-09-09 15

Question:

Where does the value owned by x go out of scope?

1 fn main(){ Rust
2 let y = 3;
3 let x = y;
4 println!("y = {y:?}");
5 }

Andreea Costea Lecture 3: Memory Safety 2025-09-09 15

Recap

• Every value has a single owner
• When the owner goes out of scope, the value is dropped
• Ownership can be moved between variables
• Some types (scalar types) are Copy, and don’t move, but copy instead

Andreea Costea Lecture 3: Memory Safety 2025-09-09 16

But what if we want this?

1 fn length(v: Vec<i32>) -> usize { v.len() } Rust
2 fn main(){
3 let x = vec![1, 2, 3];
4 let y = length(x);
5 println!("The length of {x:?} is {y:?}");
6 }

Andreea Costea Lecture 3: Memory Safety 2025-09-09 17

But what if we want this?

1 fn length(v: Vec<i32>) -> usize { /*L4*/ v.len() } Rust
2 fn main(){
3 let x = vec![1, 2, 3];
4 let y = length(x.clone()); // L7 DEEP COPY
5 println!("The length of {x:?} is {y:?}");
6 }

Andreea Costea Lecture 3: Memory Safety 2025-09-09 18

But what if we want this?

1 fn length(v: Vec<i32>) -> usize { /*L4*/ v.len() } Rust
2 fn main(){
3 let x = vec![1, 2, 3];
4 let y = length(x.clone()); // L7 DEEP COPY
5 println!("The length of {x:?} is {y:?}");
6 }

• clone duplicates the value on the heap (deep copy)

Andreea Costea Lecture 3: Memory Safety 2025-09-09 18

But what if we want this?

1 fn length(v: Vec<i32>) -> usize { /*L4*/ v.len() } Rust
2 fn main(){
3 let x = vec![1, 2, 3];
4 let y = length(x.clone()); // L7 DEEP COPY
5 println!("The length of {x:?} is {y:?}");
6 }

Andreea Costea Lecture 3: Memory Safety 2025-09-09 18

Disadvantages of Cloning

• Using clone we double the amount of memory needed
• Cloning takes O(n) time for a vector of n elements
• Can we do better?

Andreea Costea Lecture 3: Memory Safety 2025-09-09 19

Borrowing

But what if we want this?

1 fn length(v: &Vec<i32>) -> usize { /*L4*/ v.len() } Rust
2 fn main(){
3 let x = vec![1, 2, 3];
4 let y = length(&x); // L7 create a REFERENCE
5 println!("The length of {x:?} is {y:?}");
6 }

Andreea Costea Lecture 3: Memory Safety 2025-09-09 21

But what if we want this?

1 fn length(v: &Vec<i32>) -> usize { /*L4*/ v.len() } Rust
2 fn main(){
3 let x = vec![1, 2, 3];
4 let y = length(&x); // L7 create a REFERENCE
5 println!("The length of {x:?} is {y:?}");
6 }

Andreea Costea Lecture 3: Memory Safety 2025-09-09 21

But what if we want this?

1 fn length(v: &Vec<i32>) -> usize { /*L4*/ v.len() } Rust
2 fn main(){
3 let x = vec![1, 2, 3];
4 let y = length(&x); // L7 create a REFERENCE
5 println!("The length of {x:?} is {y:?}");
6 }

• We call this borrowing
• v borrows the value vec![1, 2, 3], x still owns it

Andreea Costea Lecture 3: Memory Safety 2025-09-09 21

But what if we want this?

1 fn length(v: &Vec<i32>) -> usize { /*L4*/ v.len() } Rust
2 fn main(){
3 let x = vec![1, 2, 3];
4 let y = length(&x); // L7 create a REFERENCE
5 println!("The length of {x:?} is {y:?}");
6 }

• We call this borrowing
• v borrows the value vec![1, 2, 3], x still owns it
• v does own something though

‣ all values have an owner
‣ v just owns a value that’s a reference, not the real vec![1, 2, 3]

Andreea Costea Lecture 3: Memory Safety 2025-09-09 21

Watch out though! We can only reference something that still exists.

1 fn example() -> &Vec<i32> { Rust
2 let a = vec![1, 2, 3];
3 return &a;
4 // a goes out of scope here
5 }
6
7 fn main() {
8 // what are we pointing to?
9 let ref_to_a = example();
10 }

Andreea Costea Lecture 3: Memory Safety 2025-09-09 22

Borrowing

1 fn main() { Rust
2 let x;
3 {
4 let y = vec![1, 2, 3];
5 x = &y;
6 }
7 println!("{x}");
8 }

Andreea Costea Lecture 3: Memory Safety 2025-09-09 23

Borrowing

1 fn main() { Rust
2 let x;
3 {
4 let y = vec![1, 2, 3];
5 x = &y;
6 }
7 println!("{x}");
8 }

• y is out of scope before the last use of x.
• y does not live long enough.

Andreea Costea Lecture 3: Memory Safety 2025-09-09 23

Safety Principle:

The lender needs to outlive all of its (alive) references: a reference lives from
the place it started borrowing until its last use.

Andreea Costea Lecture 3: Memory Safety 2025-09-09 24

Types with Behaviours

The &self means we get a reference to the value when we call the method.

1 struct A; Rust
2 impl A {
3 // takes a reference to Self
4 fn do_something_with_a(&self) {}
5 }
6 ...
7 let x = A;
8 x.do_something_with_a(); // BORROW
9 // x still available

Andreea Costea Lecture 3: Memory Safety 2025-09-09 25

Types with Behaviours

We can also make a method takes onwership (useful for converting values)

1 struct A; struct B; Rust
2 impl A {
3 // takes ownership of Self
4 fn do_something_with_a(self) -> B {...}
5 }
6 ...
7 let x = A;
8 let b = x.do_something_with_a(); //MOVE
9 // x no longer available

Andreea Costea Lecture 3: Memory Safety 2025-09-09 26

References are `Copy`

1 let x = vec![1, 2, 3] Rust
2
3 let a = &x;
4 let b = a;
5
6 // all fine!
7 println!("{:?}", a);
8 println!("{:?}", b);
9 println!("{:?}", x);

Once we have one reference, it doesn’t matter how many more we create!

Andreea Costea Lecture 3: Memory Safety 2025-09-09 27

Mutability

Mutability

A binding is either mutable, or not

1 let x = 3; Rust
2 let mut y = 3;
3
4 x = 4; // illegal
5 y = 5; // ok!

Andreea Costea Lecture 3: Memory Safety 2025-09-09 29

1 let x = vec![1, 2, 3]; Rust
2 // x.push(4) doesn't work
3
4 // move to a mutable binding
5 let mut y = x;
6 // works just fine
7 y.push(4)

Question:

Why is it ok to add mutability to a value later on?

Andreea Costea Lecture 3: Memory Safety 2025-09-09 30

A borrow cannot mutate

1 fn add_four(y: &Vec<i32>) { Rust
2 // error!
3 y.push(4);
4 }
5 fn main() {
6 let mut x = vec![1, 2, 3];
7 add_four(&x);
8 }

Andreea Costea Lecture 3: Memory Safety 2025-09-09 31

What if we want to change a value in a function?
• we could move owenrship:

1 // move the vector to this function Rust
2 fn add_four(mut y: Vec<i32>) -> Vec<i32> {
3 y.push(4);
4 y // and move back again
5 }
6
7 fn main() {
8 let mut x = vec![1, 2, 3];
9 x = add_four(x);
10 }

Andreea Costea Lecture 3: Memory Safety 2025-09-09 32

What if we want to change a value in a function?
• Or we use a mutable reference

1 fn add_four(y: &mut Vec<i32>) { Rust
2 y.push(4);
3 }
4
5 fn main() {
6 let mut x = vec![1, 2, 3];
7 // &mut x only possible if x is mutable
8 add_four(&mut x);
9 }

Andreea Costea Lecture 3: Memory Safety 2025-09-09 33

Mutability

Mutable references aren’t like normal references
• You can’t copy them:

1 let mut x = vec![1, 2, 3]; Rust
2
3 let a = &mut x;
4 let b = a; // a moved into b, not copied
5
6 // so a is not valid anymore here
7 a.push(4);
8 b.push(5);

Andreea Costea Lecture 3: Memory Safety 2025-09-09 34

Mutability

Mutable references aren’t like normal references
• You can’t copy them
• You can’t have two at the same time at all!

1 let mut x = vec![1, 2, 3]; Rust
2 let a = &mut x;
3 let b = &mut x; // second reference to x
4
5 a.push(4);
6 b.push(5);

Error: cannot borrow x as mutable more than once at a time

Andreea Costea Lecture 3: Memory Safety 2025-09-09 35

Mutability

Mutable references aren’t like normal references
• You can’t copy them
• You can’t have two at the same time
• Nor can you have a mutable and normal reference at the same time!

1 let mut x = vec![1, 2, 3]; Rust
2 let a = &mut x;
3 let b = &x; // *immutable* reference to x
4
5 a.push(4);
6 println!("{:?}", b);

Error: cannot borrow x as immutable because it is also borrowed as mutable.

Andreea Costea Lecture 3: Memory Safety 2025-09-09 36

Mutability

Mutable references aren’t like normal references
• You can’t copy them
• You can’t have any other reference at the same time!

A better name for a “mutable reference” is an “exclusive reference”

Question:

But why?

Andreea Costea Lecture 3: Memory Safety 2025-09-09 37

Example 1: growing vectors

1 let mut x = vec![1, 2, 3] Rust
2
3 // first reference, to an element
4 let first_elem = &x[0];
5 // second reference, mutable this time
6 x.push(4); // COMPILATION ERROR
7
8 println!("{}", first_elem);

Andreea Costea Lecture 3: Memory Safety 2025-09-09 38

Example 2: copying elements:

1 fn fill_vector_with_ref(src: &u32, dst: &mut Vec<u32>) { Rust
2 for i in 0..src.len() { dst[i] = *src + 1; }
3 }
4
5 fn fill_vector_with_ref(src: &u32, dst: &mut Vec<u32>) {
6 let value = *src + 1;
7 for i in 0..src.len() { dst[i] = value; }
8 }

Question:

Are these functions the same?

Andreea Costea Lecture 3: Memory Safety 2025-09-09 39

Example 2: copying elements—What if src is an element in dst?

1 fn fill_vector_with_ref(src: &u32, dst: &mut Vec<u32>) { Rust
2 for i in 0..src.len() { dst[i] = *src; }
3 }
4
5 fn fill_vector_with_ref(src: &u32, dst: &mut Vec<u32>) {
6 let value = *src;
7 for i in 0..src.len() { dst[i] = value; }
8 }
9
10 let mut x = vec![1, 2, 3];
11 fill_vector_with_ref(&x[1], &mut x);

Andreea Costea Lecture 3: Memory Safety 2025-09-09 40

Mutability

But Rust would reject this program.

1 let mut x = vec![1, 2, 3]; Rust
2 // obviously wrong
3 // mutable *and* immutable reference at the same time
4 fill_vector_with_ref(&x[1], &mut x);

Andreea Costea Lecture 3: Memory Safety 2025-09-09 41

Mutability

Safety Principle:

A mutable borrow can only be created if its lender has no other borrows living
at that time.

Andreea Costea Lecture 3: Memory Safety 2025-09-09 42

Mutability

Safety Principle:

A mutable borrow can only be created if its lender has no other borrows living
at that time.

Safety Principle:

The lender cannot be modified as long as one of its (shared) borrowers still
lives.

Andreea Costea Lecture 3: Memory Safety 2025-09-09 42

Example 1: growing vectors - How can we fix this error?

1 let mut x = vec![1, 2, 3] Rust
2
3 // first reference, to an element
4 let first_elem = &x[0];
5 // second reference, mutable this time
6 x.push(4); // COMPILATION ERROR
7
8 println!("{}", first_elem);

Andreea Costea Lecture 3: Memory Safety 2025-09-09 43

Example 1: growing vectors - How can we fix this error?

1 let mut x = vec![1, 2, 3] Rust
2
3 // SWAP the order of the borrowing creation
4 x.push(4);
5 // first reference, to an element
6 let first_elem = &x[0];
7
8 println!("{}", first_elem);

Andreea Costea Lecture 3: Memory Safety 2025-09-09 44

Example 1: growing vectors - How can we fix this error?

1 let mut x = vec![1, 2, 3] Rust
2
3 // SWAP the order of the borrowing creation
4 x.push(4); // The life of &mut x STARTS and ENDS here
5 // first reference, to an element
6 let first_elem = &x[0]; // The life of &x STARTS here
7
8 println!("{}", first_elem); // The life of &x ENDS here

• lifetimes are associated with references
• a reference lives until it is last used

Andreea Costea Lecture 3: Memory Safety 2025-09-09 45

Recap

Ownership: Who owns what?
• Every value in Rust has a single owner — usually a variable.
• When the owner goes out of scope, the value is dropped (freed).
• Ownership can be moved (transfer ownership to another variable) or copied (if

the type implements Copy).

Andreea Costea Lecture 3: Memory Safety 2025-09-09 46

Recap

Ownership: Who owns what?
• Every value in Rust has a single owner — usually a variable.
• When the owner goes out of scope, the value is dropped (freed).
• Ownership can be moved (transfer ownership to another variable) or copied (if

the type implements Copy).

References: Borrowing instead of owning
• You can borrow a value instead of taking ownership using & (shared reference)

or &mut (mutable reference).
• Shared borrows (&T): many at once, but read-only.
• Mutable borrows (&mut T): only one at a time, and no shared borrows while it’s

active.
• These rules ensure no data races or use-after-free.

Andreea Costea Lecture 3: Memory Safety 2025-09-09 46

Recap

The three rules that matter most

• Ownership rule: exactly one owner at a time.
• Borrowing rules:

‣ Many immutable borrows allowed, OR
‣ One mutable borrow allowed, but not both.

• Lifetime rule: a reference must not outlive its owner.

Andreea Costea Lecture 3: Memory Safety 2025-09-09 47

Slices

Sometimes you want to reference more than one thing at a time:

1 let x = vec![1, 2, 3, 4]; Rust
2
3 let a: &[u32] = &x[0..2] // index 0, and 1 (excluding 2)
4 let b = &x[2..] // elements at indexes starting from 2
5
6 for i in b { // you can iterate over a slice
7 println!("{i}");
8 }
9
10 println!("{}", a.len()); // or get its length

Andreea Costea Lecture 3: Memory Safety 2025-09-09 49

Slices can be mutable:

1 let mut x = vec![1, 2, 3, 4]; Rust
2
3 // index 0, and 1 (excluding 2)
4 let a: &mut [u32] = &mut x[0..2]
5 for i in a {
6 *i += 3;
7 }
8
9 // prints 4, 5, 3, 4
10 println!("{:?}", x);

Andreea Costea Lecture 3: Memory Safety 2025-09-09 50

Some things coerce to slices:

1 // input is a slice Rust
2 fn sum(res: &[u32]) -> u32 { /* ... */ }
3
4 // but we can call it with a vector!
5 let x = vec![1, 2, 3];
6 sum(&x);
7 // or a bit of a vector
8 sum(&x[1..]);
9 // or an array
10 sum(&[1, 2, 3]);

So writing sum like this is more flexible

Andreea Costea Lecture 3: Memory Safety 2025-09-09 51

Slices

This gives us a fun way to write sum:

1 fn sum(input: &[u32]) -> u32 { Rust
2 if input.is_empty() {
3 0
4 } else {
5 // add element 0 to everything after element 0
6 input[0] + sum(&input[1..])
7 }
8 }

Works for anything that looks like a sequence of u32, like vectors

Andreea Costea Lecture 3: Memory Safety 2025-09-09 52

Enums

Enums

• Last lecture: all about types
• Next lecture: all about enum types

But here are the basics, so you can get started using them

Andreea Costea Lecture 3: Memory Safety 2025-09-09 54

Enums

Question:

How many possible values does a bool have?

Andreea Costea Lecture 3: Memory Safety 2025-09-09 55

Enums

Question:

How many possible values does a u8 have?

Andreea Costea Lecture 3: Memory Safety 2025-09-09 56

Enums

Question:

How many possible values does a u32 have?

Andreea Costea Lecture 3: Memory Safety 2025-09-09 57

Enums

Question:

How many possible values does this type have?

1 struct X { Rust
2 a: bool,
3 b: bool,
4 }

Andreea Costea Lecture 3: Memory Safety 2025-09-09 58

Enums

• We call a struct a “product type”.
• If type A has n possible values
• If type B has m possible values
• Then a struct with A and B in it has 𝑛 ×𝑚 possible values

Andreea Costea Lecture 3: Memory Safety 2025-09-09 59

Enums

Sometimes, you know that not all values are possible.

1 // NOTE: only 1-7 are valid Rust
2 type WeekDay = u8;
3
4
5 // ???
6 let x: WeekDay = 8;

Andreea Costea Lecture 3: Memory Safety 2025-09-09 60

Enums

Sometimes, you know that not all values are possible.

1 // Only has 7 possible values Rust
2 enum WeekDay {
3 Monday, Tuesday, Wednesday,
4 Thursday, Friday, Saturday, Sunday,
5 }
6
7 // we can only choose one of the valid values!
8 let x: WeekDay = WeekDay::Monday;

Andreea Costea Lecture 3: Memory Safety 2025-09-09 61

Enums

1 // Only has 7 possible values Rust
2 enum WeekDay {
3 Monday, Tuesday, Wednesday,
4 Thursday, Friday, Saturday, Sunday,
5 }
6
7 // we can only choose one of the valid values!
8 let x: WeekDay = WeekDay::Monday;

Andreea Costea Lecture 3: Memory Safety 2025-09-09 62

Enums

Unlike in many other programming languages, enums can have values

1 enum IpAddress { Rust
2 Ipv4([u8; 4]),
3 Ipv6([u8; 16]),
4 }
5
6 let x: IpAddress = IpAddress::Ipv4([127, 0, 0, 1]);

Andreea Costea Lecture 3: Memory Safety 2025-09-09 63

Enums

How many possible values?

1 enum IpAddress { Rust
2 Ipv4([u8; 4]), // 2^32 ~= 4 billion
3 Ipv6([u8; 16]), // 2^128 ~= a lot
4 }

In total: 232 + 2128

Enums are sometimes called “sum types”

Andreea Costea Lecture 3: Memory Safety 2025-09-09 64

Enums

Another example: Option<T>

1 enum Option<T> { Rust
2 Some(T),
3 None
4 }
5
6 // 257 possible values
7 // 256 if Some, or one more: None
8 let x: Option<u8> = Some(3);

Andreea Costea Lecture 3: Memory Safety 2025-09-09 65

Assignment: 5 minutes

• Create an enum for a JSON value called Value
• a JSON value is either:

‣ a floating point number
‣ a string
‣ true
‣ false
‣ null
‣ a list of other JSON values
‣ a json object, std::collections::HashMap<String, Value>

JSON spec

https://www.json.org/json-en.html

https://www.json.org/json-en.html

	Today
	Why is Rust doing this?
	Why is Rust doing this?
	Why is Rust doing this?
	Why is Rust doing this?
	Recap
	Disadvantages of Cloning
	Borrowing
	Types with Behaviours
	Types with Behaviours
	References are `Copy`
	Mutability
	Mutability
	Mutability
	Mutability
	Mutability
	Mutability
	Mutability
	Recap
	Recap
	Slices
	Enums
	Enums
	Enums
	Enums
	Enums
	Enums
	Enums
	Enums
	Enums
	Enums
	Enums
	Enums
	Assignment: 5 minutes

