Scope or Lifetime?

same, same but different

Scope

1 £n main(){

2 let v = vec![l, 2, 3];
3

4 let mut x = y;

5

6 X.push(4);

7

8 let 1 = &x[0];

9
10 println! ("{}", 1);
11}

A scope indicates the code block where a variable is valid:
e starts where the variable is first introduced,
* ends at the corresponding closing “ } .

2 let v = vec![1l, 2, 3]; yé

3 i
4 let mut x=y;] |

5 i

6 Vec: :push(&mut x,4);

A scope indicates the code block where a variable is valid:
e starts where the variable is first introduced,
* ends at the corresponding closing “ } .

Scope Liveness

_____ L fn main () 1 fn main(){
2 let y = vecl!l[1l, 2, 3]; vl 2 let v = vec![1, 2, 31; y
3 i 3

4 let mut x =y;] | 4 let mut x = y; N

S i 5

E 6 Vec::push(&mut x,4); 6 Vec::push(&mut x,4);

S S 7

N let 1 = &x[0]; i 3 let i = &x[0];

. 9 9

:10 println! ("{}", 1); 10 println! ("{}", i);

R T I 11}

A scope indicates the code block where a variable is valid: A variable is live (owner is valid) from initialisation until:
e starts where the variable is first introduced, e |ts value is moved, or
* ends at the corresponding closing “ } ”. * it goes out of scope (and is dropped).

Liveness

1 £fn main(){
2 let v = vec![1l, 2, 3]; y
3
4 let mut x = y; <
Every value has a variable that’s called its owner. L
There can only be one owner at a time. 3 let 1 = &x[0];
N) 9
10 println! ("{}", 1);
11}

A variable is live (owner is valid) from initialisation until:
e |ts value is moved, or
* it goes out of scope (and is dropped).

Scope Non-Lexical Lifetime

_____ 1 fn main(){ 1 £n main(){

2 let v = vec![1l, 2, 3]; y? 2 let v = vec![1l, 2, 3];

3 i 3
: 4 let mut x = y; <! 4 let mut x = y;
P S i S
: 6 Vec::push(&mut x,4); 6 Vec::push(&mut x,4); smut x
S A
E 8 let 1 = &x[0]; i . 8 let i = &x[0]; ‘&X[O]E
i 9 .9 g
i10 println! ("{}", 1i); 10 println! ("{}", 1i);
N S O 11}

A scope indicates the code block where a variable is valid: A lifetime indicates the code block where a borrow is valid:
e starts where the variable is first introduced, e starts where the reference is created,
* ends at the corresponding closing “ } . * ends where the reference is last used/needed.

Non-Lexical Lifetime

1 £fn main(){
2 let v = vec![1l, 2, 3];
3
4 let mut x = y;
Safety Principle 3 e ‘b
a ety rinciple A 6 Vec: :pU.Sh (&mut X P 4) 7 sSmut x
A mutable borrow can only be created if its 7 ... Y O—]
lender has no other borrows living at that time. . 8 let 1 = &x[0]; &x[0] \
.9 5
_ :
’ 10 println! ("{}", 1);

|_I
I—l
-

A lifetime indicates the code block where a borrow is valid:
e starts where the reference is created,
e ends where the reference is last used/needed.

Non-Lexical Lifetime

fn main(){
let v = vec![1l, 2, 3];

Safety Principle 3 N e let i = &x[0]; ‘a S x [O]\
. 7 ;

A mutable borrow can only be created if its O) o) W :
lender has no other borrows living at tha '

o & W N B

|_I
'—l
-

A lifetime indicates the code block where a borrow is valid:
e starts where the reference is created,
e ends where the reference is last used/needed.

Non-Lexical Lifetime

fn main(){
let v = vec![1l, 2, 3];

Safety Principle 3 ~ 6 """"""" 1et1=&x[0] """"""""""""""" o= i
7

A mutable borrow can only be created if its O) o) - :
lender has no other borrows living at tha '

o & W N B

|_I
'—l
-

A lifetime indicates the code block where a borrow is valid:
e starts where the reference is created,
e ends where the reference is last used/needed.

1 fn main(){
let mut x = vec![1l, 2, 3];

J
w N

Safety Principle 4

The lender cannot be modified as long as
one of its (shared) borrowers still liv

\O
-

10

Safety Principle 2

The lender needs to outlive
all of its (alive) references.

1 fn main(){

2 let mut x = vec![l, 2, 3]; <
3] --
|4 let i=s&x; -

5
6 let v = x;
7

_____ 8 ...printdIn! ("{} ", 1[01)7]
9 }

11

Safety Principle 1

Every value has a variable that’s called its owner.
There can only be one owner at a time.

~

| (

Safety Principle 2

The lender needs to outlive
all of its (alive) references.

Safety Principle 3

A mutable borrow can only be created if its
lender has no other borrows living at that time.

l (

-

Safety Principle 4

The lender cannot be modified as long as
one of its (shared) borrowers still lives.

=

R O W 00 JOo O s WDN -

Reborrowing

12

fn main() {

1
2 let v = vec![10, 20, 307];
3 let def = 0;

""" 4 let ref d = s&def; el
5
""" 77T et re siz2 = Al
8 if v.len()>0 { &v[O0] }
9 else { ref d } ;
e
11 println! ("{}", r);
12y
\
The lender needs to outlive » starts where the reference is created,
all of its (alive) references.
Y,

e ends where the reference is last used/needed.

A lifetime indicates the code block where a borrow is valid:

13

fn main() {

1
2 let v = vec![10, 20, 307];
3 let def = 0;

""" 4 let ref d = s&def; el
5
""" 77T et re siz2 = Al
8 if v.len()>0 { &v[O0] }
9 else { ref d } ;
10
11 println! ("{}", r);
12y
\
The lender needs to outlive » starts where the reference is created,
all of its (alive) references.
Y,

e ends where the reference is last used/needed.

A lifetime indicates the code block where a borrow is valid:

14

1 £n main() {

2 let v = vec![10, 20, 307;
3 let def = 0;

4 let ref d = &def;

5

7 let r: &132 =

8 if v.len()>0 { &v[O0] }
o) else { ref d } ;

10

11 println! ("{}", r);

12 }

Safety Principle 2 N

The lender needs to outlive
all of its (alive) references.

if v.len()>0 { &v[O0] }
else { ref d } ;

1 £n main() {

2 let v = vec![10, 20,
3 let def = 0;

4 let ref d = &def;
5

7 let r: &132 =

8

9

10

11 println! ("{}", r);
12}

Safety Principle 2 N

The lender needs to outlive
all of its (alive) references.

307;

16

fn get first(v: &Vec<i32>, ref d: &132) -> &132 {

if v.len()>0 { &v[O0] }
else { ref d } ;

}
1 £n main() {
2 let v = vec![10, 20, 307;
3 let def = 0;
4 let ref d = &def;
5
7 let r: &132 =
8
S
10
11 println! ("{}", r);
12}

Safety Principle 2 N

The lender needs to outlive
all of its (alive) references.

fn get first(v: &Vec<i32>, ref d: &132) -> &132 {

if v.len()>0 { &v[O0] }
else { ref d } ;

}
1 £n main() {
2 let v = vec![10, 20, 307];
3 let def = 0;
4 let ref d = &def;
5
7 let r: &132 = get first(&v, ref d);
8
9
10
11 println! ("{}", r);
12 }

Safety Principle 2 N

The lender needs to outlive
all of its (alive) references.

18

Non-Lexical Lifetime

(parameterised)

fn get firstq’a|>(v: & ‘alvec<i32>, ref d:&("'a|i32) -> &|‘'a|i32 {

if v.len()>0 { &v[O0] }
else { ref d } ;

}
1 £n main() {
2 let v = vec![10, 20, 307];
3 let def = 0;
4 let ref d = &def;
5
7 let r: &132 = get first(&v, ref d);
8
9
10
11 println! ("{}", r);
12}

Safety Principle 2 N

The lender needs to outlive
all of its (alive) references.

Liveness

fn main(){

Non-Lexical Lifetime

1 fn main(){
© 2 lety=vecl![l, 2, 31; [
3 Y
E 4 let mut x = y; xi
» 5 '
: 6 Vec: :push(&mut x,4);
A
§ 8 let i = &x[0]; il
= 9
2 10 println! ("{}", 1i); R
e P e I

A scope indicates the code block where a variable is valid:

e starts where the variable is first introduced,
e ends at the corresponding closing “ } ”.

let y = vec![1l, 2, 3];

R O W 00 J O O W N

= =

let mut x = y;
Vec::push(&mut x,4);
let i = &x[0];

println! ("{}", 1i);

1 fn main(){
v 2 let y = vec![1l, 2, 3];
3
% 4 let mut x = y;
S NP al
6 Vec::push(&mut x,4);
R b —..
I8 let i = &x[0]; D
+ 9
:10 println! ("{}", 1);
B S i

A variable is live (owner is valid) from initialisation until:

its value is moved, or
it goes out of scope (and is dropped).

A lifetime indicates the code block where a borrow is valid:
e starts where the reference is created,
e ends where the reference is last used/needed.

20

https://cel.cs.brown.edu/aquascope

