
Scope or Lifetime?
same, same but different

Scope

Scope
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

fn main(){
 let y = vec![1, 2, 3];

 let mut x = y;

 x.push(4);

 let i = &x[0];

 println!("{}", i);
 }

2

A scope indicates the code block where a variable is valid:

• starts where the variable is first introduced,

• ends at the corresponding closing “ } ”.

Scope
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

fn main(){
 let y = vec![1, 2, 3];

 let mut x = y;

 Vec::push(&mut x,4);

 let i = &x[0];

 println!("{}", i);
 }

3

x

i

A scope indicates the code block where a variable is valid:

• starts where the variable is first introduced,

• ends at the corresponding closing “ } ”.

y

Scope
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

fn main(){
 let y = vec![1, 2, 3];

 let mut x = y;

 Vec::push(&mut x,4);

 let i = &x[0];

 println!("{}", i);
 }

4

x

i

A scope indicates the code block where a variable is valid:

• starts where the variable is first introduced,

• ends at the corresponding closing “ } ”.

y
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

fn main(){
 let y = vec![1, 2, 3];

 let mut x = y;

 Vec::push(&mut x,4);

 let i = &x[0];

 println!("{}", i);
 }

Liveness

A variable is live (owner is valid) from initialisation until:

• its value is moved, or

• it goes out of scope (and is dropped).

x

y

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

fn main(){
 let y = vec![1, 2, 3];

 let mut x = y;

 Vec::push(&mut x,4);

 let i = &x[0];

 println!("{}", i);
 }

Liveness

A variable is live (owner is valid) from initialisation until:

• its value is moved, or

• it goes out of scope (and is dropped).

x

y

Every value has a variable that’s called its owner.  
There can only be one owner at a time.

Safety Principle 1

Scope
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

fn main(){
 let y = vec![1, 2, 3];

 let mut x = y;

 Vec::push(&mut x,4);

 let i = &x[0];

 println!("{}", i);
 }

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

fn main(){
 let y = vec![1, 2, 3];

 let mut x = y;

 Vec::push(&mut x,4);

 let i = &x[0];

 println!("{}", i);
 }

6

x

i &x[0]

&mut x

Non-Lexical Lifetime

A scope indicates the code block where a variable is valid:

• starts where the variable is first introduced,

• ends at the corresponding closing “ } ”.

 A lifetime indicates the code block where a borrow is valid:

• starts where the reference is created,

• ends where the reference is last used/needed.

y

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

fn main(){
 let y = vec![1, 2, 3];

 let mut x = y;

 Vec::push(&mut x,4);

 let i = &x[0];

 println!("{}", i);
 }

7

&x[0]

&mut x

Non-Lexical Lifetime

 A lifetime indicates the code block where a borrow is valid:

• starts where the reference is created,

• ends where the reference is last used/needed.

A mutable borrow can only be created if its  
lender has no other borrows living at that time.

Safety Principle 3

‘a

‘b

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

fn main(){
 let y = vec![1, 2, 3];

 let mut x = y;

 let i = &x[0];

 Vec::push(&mut x,4);

 println!("{}", i);
 }

8

Non-Lexical Lifetime

 A lifetime indicates the code block where a borrow is valid:

• starts where the reference is created,

• ends where the reference is last used/needed.

A mutable borrow can only be created if its  
lender has no other borrows living at that time.

Safety Principle 3 &x[0]
‘a

&mut x
‘b

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

fn main(){
 let y = vec![1, 2, 3];

 let mut x = y;

 let i = &x[0];

 Vec::push(&mut x,4);

 println!("{}", i);
 }

9

Non-Lexical Lifetime

 A lifetime indicates the code block where a borrow is valid:

• starts where the reference is created,

• ends where the reference is last used/needed.

A mutable borrow can only be created if its  
lender has no other borrows living at that time.

Safety Principle 3 ‘a

‘b

1
2
3
4
5
6
7
8
9

fn main(){
 let mut x = vec![1, 2, 3];

 let i = &x;

 x = vec![3,4];

 println!("{}", i[0]);
 }

10

The lender cannot be modified as long as
one of its (shared) borrowers still lives.

Safety Principle 4
‘a

1
2
3
4
5
6
7
8
9

fn main(){
 let mut x = vec![1, 2, 3];

 let i = &x;

 let y = x;

 println!("{}", i[0]);
 }

11

The lender needs to outlive  
all of its (alive) references.

Safety Principle 2 x

‘a

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

fn main(){
 let mut x = vec![10, 11];

 let v = &mut x;

 let i = &mut (*v)[0];

 println!(“x[0] = {}", *i);

 Vec::push(v, 12);
}

12

The lender needs to outlive  
all of its (alive) references.

Safety Principle 2
x

‘a

‘b

Every value has a variable that’s called its owner.  
There can only be one owner at a time.

Safety Principle 1

A mutable borrow can only be created if its  
lender has no other borrows living at that time.

Safety Principle 3

The lender cannot be modified as long as
one of its (shared) borrowers still lives.

Safety Principle 4

Reborrowing

13

 1
 2
 3
 4
 5
 7
 8
 9
10
11
12

fn main() {
 let v = vec![10, 20, 30];
 let def = 0;
 let ref_d = &def;

 let r: &i32 =
 if v.len()>0 { &v[0] }
 else { ref_d } ;

 println!("{}", r);
}

The lender needs to outlive  
all of its (alive) references.

Safety Principle 2

‘a

‘b

 A lifetime indicates the code block where a borrow is valid:

• starts where the reference is created,

• ends where the reference is last used/needed.

14

 1
 2
 3
 4
 5
 7
 8
 9
10
11
12

fn main() {
 let v = vec![10, 20, 30];
 let def = 0;
 let ref_d = &def;

 let r: &i32 =
 if v.len()>0 { &v[0] }
 else { ref_d } ;

 println!("{}", r);
}

The lender needs to outlive  
all of its (alive) references.

Safety Principle 2

‘a

‘b

 A lifetime indicates the code block where a borrow is valid:

• starts where the reference is created,

• ends where the reference is last used/needed.

15

 1
 2
 3
 4
 5
 7
 8
 9
10
11
12

fn main() {
 let v = vec![10, 20, 30];
 let def = 0;
 let ref_d = &def;

 let r: &i32 =

 println!("{}", r);
}

The lender needs to outlive  
all of its (alive) references.

Safety Principle 2

 if v.len()>0 { &v[0] }
 else { ref_d } ;

16

 1
 2
 3
 4
 5
 7
 8
 9
10
11
12

fn main() {
 let v = vec![10, 20, 30];
 let def = 0;
 let ref_d = &def;

 let r: &i32 =

 println!("{}", r);
}

The lender needs to outlive  
all of its (alive) references.

Safety Principle 2

 if v.len()>0 { &v[0] }
 else { ref_d } ;

17

 1
 2
 3
 4
 5
 7
 8
 9
10
11
12

fn main() {
 let v = vec![10, 20, 30];
 let def = 0;
 let ref_d = &def;

 let r: &i32 =

 println!("{}", r);
}

fn get_first(v: &Vec<i32>, ref_d: &i32) -> &i32 {

}

The lender needs to outlive  
all of its (alive) references.

Safety Principle 2

 if v.len()>0 { &v[0] }
 else { ref_d } ;

18

 1
 2
 3
 4
 5
 7
 8
 9
10
11
12

fn main() {
 let v = vec![10, 20, 30];
 let def = 0;
 let ref_d = &def;

 let r: &i32 = get_first(&v, ref_d);

 println!("{}", r);
}

fn get_first(v: &Vec<i32>, ref_d: &i32) -> &i32 {

}

The lender needs to outlive  
all of its (alive) references.

Safety Principle 2

 if v.len()>0 { &v[0] }
 else { ref_d } ;

19

 1
 2
 3
 4
 5
 7
 8
 9
10
11
12

fn main() {
 let v = vec![10, 20, 30];
 let def = 0;
 let ref_d = &def;

 let r: &i32 = get_first(&v, ref_d);

 println!("{}", r);
}

fn get_first< >(v: & Vec<i32>, ref_d:& i32) -> & i32 {

}

The lender needs to outlive  
all of its (alive) references.

Safety Principle 2

 if v.len()>0 { &v[0] }
 else { ref_d } ;

‘a ‘a ‘a ‘a

Non-Lexical Lifetime
(parameterised)

20

Scope

A scope indicates the code block where a variable is valid:

• starts where the variable is first introduced,

• ends at the corresponding closing “ } ”.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

fn main(){
 let y = vec![1, 2, 3];

 let mut x = y;

 Vec::push(&mut x,4);

 let i = &x[0];

 println!("{}", i);
 }

x

i

y

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

fn main(){
 let y = vec![1, 2, 3];

 let mut x = y;

 Vec::push(&mut x,4);

 let i = &x[0];

 println!("{}", i);
 }

Liveness

A variable is live (owner is valid) from initialisation until:

• its value is moved, or

• it goes out of scope (and is dropped).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

fn main(){
 let y = vec![1, 2, 3];

 let mut x = y;

 Vec::push(&mut x,4);

 let i = &x[0];

 println!("{}", i);
 }

Non-Lexical Lifetime

 A lifetime indicates the code block where a borrow is valid:

• starts where the reference is created,

• ends where the reference is last used/needed.

‘a

‘b

x

y

https://cel.cs.brown.edu/aquascope

21

22

