
An introduction to Rust
Jonathan Dönszelmann & Vivian Roest

Delft University of Technology

2024-11-18

Study Goals
After this course, students will be able to:

• Explain the programming language concepts followed in Rust.
• Design, implement and debug a small software system from scratch in Rust following the

language standard including proper coding style.
• Set up a project and build environment, using the Rust ecosystem.
• Use Git to version and share source code contributions for collaborative development.
• Evaluate and integrate code contributions of other team members.

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 2 / 41

In simpler terms
We will teach you about:
• Programming
• Choices in programming languages
• Making safe, reliable and correct programs
• Developing software together

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 3 / 41

Software Fundamentals

• Programming
• Choices in programming languages
• Making safe, reliable and correct programs
• Developing software together

Hardware Fundamentals

• Digital Computer Systems
• Discrete Signals and Systems
• Design of Control Systems

Part 1

• Lectures (twice a week)
• Individual assignment
• Labs and Tutorials (twice a week)

Part 2

1. Group project
2. No lectures!
3. Mandatory attendance of

at least one lab a week!

Staff
• Vivian Roest (Head TA)
• Shashwath Suresh
• Cleo Barik
• Felipe Perez
• Andre Herrera Gama

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 6 / 41

Evaluation
• Individual Assignment (50%)
• Group Project (50%)
• Git Assignment (pass/fail)

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 7 / 41

Resources

Book Recomendations:

• The Rust Programming Language Available Online
by Steve Klabnik; Carol Nichols; The Rust Community,

• Rust for Rustaceans by Jon Gjengset

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 8 / 41

https://doc.rust-lang.org/book/

Resources

Book Recomendations:

• The Rust Programming Language Available Online
by Steve Klabnik; Carol Nichols; The Rust Community,

• Rust for Rustaceans by Jon Gjengset

Software:

• Linux!!
• Install Rust through rustup, avoid Ubuntu/Debian’s repository!!

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 8 / 41

https://doc.rust-lang.org/book/

Let’s start!

• Why choosing a programming language matters
• Why do we teach you Rust?
• Some basics of Rust

Tell me about you
Question:

What programming languages have you used in the past? And what for?

• work, hobby, in teams, alone?

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 10 / 41

Drones!

Question:

What properties do we care about for the
software of this drone?

Programming languages for Embedded Systems
• We’re teaching about Rust

Question:

What other options are there?

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 12 / 41

Programming languages for Embedded Systems
• We’re teaching about Rust
• C
• C++

From the https://osdev.org wiki: people have written kernels in:

Forth, Lisp, C#, Modula-2, Ada, Bliss, Smalltalk, PL/1, Assembly, Zig, D

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 12 / 41

https://osdev.org

Programming languages for Embedded Systems
• We’re teaching about Rust
• C
• C++

From the https://osdev.org wiki: people have written kernels in:

Forth, Lisp, C#, Modula-2, Ada, Bliss, Smalltalk, PL/1, Assembly, Zig, D

Question:

Can you use python on embedded systems?

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 12 / 41

https://osdev.org

Programming languages for Embedded Systems
• We’re teaching about Rust
• C
• C++

From the https://osdev.org wiki: people have written kernels in:

Forth, Lisp, C#, Modula-2, Ada, Bliss, Smalltalk, PL/1, Assembly, Zig, D

Question:

Why shouldn’t you use python on an embedded system?

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 12 / 41

https://osdev.org

Programming languages for Embedded Systems
• We’re teaching about Rust
• C
• C++

From the https://osdev.org wiki: people have written kernels in:

Forth, Lisp, C#, Modula-2, Ada, Bliss, Smalltalk, PL/1, Assembly, Zig, D

So clearly, the features of a programming language matters.

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 12 / 41

https://osdev.org

Programming languages for Embedded Systems
Question:

What properties do we care about when we want to use a programming language for
embedded systems?

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 13 / 41

Programming languages for Embedded Systems
Question:

What properties do we care about when we want to use a programming language for
embedded systems?

• Compiled
• Low-level access to locations in memory
• Precise control over all program resources
• Guarantees about correctness

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 13 / 41

Programming languages for Embedded Systems
• Compiled
• Low-level access to locations in memory
• Precise control over all program resources
• Guarantees about correctness

Question:

Is there a conflict in these requirements?

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 13 / 41

What is a compiler?
Question:

Is gcc a compiler?

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 14 / 41

What is a compiler?
Question:

Is python a compiler?

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 14 / 41

What is a compiler?
Question:

Is mysql a compiler?

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 14 / 41

What is a compiler?
Question:

Is firefox a compiler?

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 14 / 41

What is a compiler?
Question:

Is Linux a compiler?

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 14 / 41

What is a compiler?
Question:

Is zip a compiler?

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 14 / 41

What is a compiler?
Question:

Is your cpu a compiler?

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 14 / 41

Problems with low level control and safety
1 int main() { C
2 (int *)(address_of_peripheral) = 10;
3 }

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 15 / 41

Problems with low level control and safety
1 int main() { C
2 (int *)(address_of_peripheral) = 10;
3 }

this works for any random address too:

1 int main() { C
2 (int *)(0x12345678) = 10;
3 }

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 15 / 41

Problems with low level control and safety
1 #include <...> C
2
3 char *alloc_str(char *src) {
4 size_t len = strlen(src);
5 char *dst = malloc(len);
6 memcpy(dst, src, len);
7 return dst;
8 }
9
10 int main() {
11 char *something = alloc_str("something");
12 printf("%s\n", something);
13 free(something);
14 }

https://godbolt.org/z/aP5cj16cT

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 15 / 41

https://godbolt.org/z/aP5cj16cT

How far can we go?
1 int main() { C
2 char *arr = malloc(10);
3 for (int i = 0; i < 1500; i++) {
4 arr[i] = 5;
5 }
6 }

https://godbolt.org/z/15qqq74oe

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 16 / 41

https://godbolt.org/z/15qqq74oe
https://godbolt.org/z/15qqq74oe

Undefined Behavior
1 int main () { C++
2 while (1) {}
3 }
4
5 int unused() {
6 std::cout << "unused?" << std::endl;
7 }

https://godbolt.org/z/qKMeE9xfb

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 17 / 41

https://godbolt.org/z/qKMeE9xfb
https://godbolt.org/z/qKMeE9xfb

Undefined Behavior
1 int main () { C++
2 while (1) {}
3 }
4
5 int unused() {
6 std::cout << "unused?" << std::endl;
7 }

https://godbolt.org/z/qKMeE9xfb
• In some compilers it’s common to not define certain behavior.
• 2′s complement in C
• The compiler is allowed to assume those cases never happen
• The programmer should simply make sure those cases never happen!

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 17 / 41

https://godbolt.org/z/qKMeE9xfb
https://godbolt.org/z/qKMeE9xfb

The Good Programmer Myth
• A good programmer knows to avoid undefined behavior
• If someone causes a memory safety bug, they can’t have been a very good programmer

‣ Look in the manual! It clearly states that this is undefined behavior!

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 18 / 41

The Good Programmer Myth
• Large projects with supposedly fine programmers still see many memory safety bugs:

https://www.chromium.org/Home/chromium-security/memory-safety/
• Bugs aren’t always local
• Code review misses bugs (Khoshnoud, Fatemeh, et al.)

https://steveklabnik.com/writing/memory-safety-is-a-red-herring

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 19 / 41

https://www.chromium.org/Home/chromium-security/memory-safety/
https://dl.acm.org/doi/abs/10.1145/3524842.3527997?casa_token=4_PW0nJHQcUAAAAA:LhZYg6hreES90Dg06A9y3PgEK-iohtYy0GfiTQLt9GJYvTsnUwd60WF8VtyrRCl2TeHRqc_egj98vg
https://steveklabnik.com/writing/memory-safety-is-a-red-herring
https://steveklabnik.com/writing/memory-safety-is-a-red-herring

We're teaching you Rust
• By default, Rust does not contain any undefined behavior
• If you do want control, you can ask for it:

1 unsafe { Rust
2 *(0x1234_5678usize as *const u8) = 10;
3 }

• But don’t, you don’t usually need it!

Fewer bugs in android: https://security.googleblog.com/2022/12/memory-safe-languages-
in-android-13.html

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 20 / 41

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html

Getting started in Rust
• Anatomy of a program: Items

1 // functions Rust
2 fn example () {}

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 21 / 41

Getting started in Rust
• Anatomy of a program: Items

1 // constants and statics Rust
2 const A: usize = 3;
3 static B: i32 = 5;
4
5 fn example () {}

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 22 / 41

Getting started in Rust
• Anatomy of a program: Items

1 const A: usize = 3; Rust
2 static B: i32 = 5;
3
4 // types
5 struct X {}
6
7 fn example () {}

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 23 / 41

Getting started in Rust
• Anatomy of a program: Items

1 const A: usize = 3; Rust
2 static B: i32 = 5;
3
4 struct Point {
5 // with fields
6 x: f32,
7 y: f32
8 }
9
10 fn example () {}

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 24 / 41

Getting started in Rust
• Anatomy of a program: Items

1 const A: usize = 3; Rust
2 static B: i32 = 5;
3
4 struct Point {
5 x: f32,
6 y: f32
7 }
8
9 fn example () {}
10
11 // a main function
12 fn main() { }

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 25 / 41

Getting started in Rust
• Anatomy of a program: Items

1 const A: usize = 3; Rust
2 static B: i32 = 5;
3
4 // modules
5 mod foo {
6 fn example () {}
7 }
8
9 fn main() {}

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 26 / 41

Getting started in Rust
• Anatomy of a program: Items

1 const A: usize = 3; Rust
2 static B: i32 = 5;
3
4 mod foo {
5 fn example () {}
6 }
7 // imports
8 use foo::example;
9
10 fn main() {}

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 27 / 41

Getting started in Rust
• Anatomy of a program: Items

1 // BUT NOT EXPRESSIONS Rust
2 5 + 5;
3
4 let a = 3;
5
6 fn main() {}

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 28 / 41

Getting started in Rust
• Anatomy of a program: In functions: statements

1 fn main() { Rust
2 let a = 3;
3 }

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 29 / 41

Getting started in Rust
• Anatomy of a program: In functions: statements

1 fn main() { Rust
2 let a: u64 = 3;
3 let b: &str = "hello";
4 }

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 30 / 41

Getting started in Rust
• Anatomy of a program: In functions: expressions

1 fn main() { Rust
2 let a: i32 = 2 + 1;
3 }

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 31 / 41

Getting started in Rust
• Anatomy of a program: In functions: loops

1 fn main() { Rust
2 let mut c: usize = 0;
3 while c < 10 {
4 println!("the counter is {c}");
5 c += 1;
6 }
7 }

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 32 / 41

Getting started in Rust
• Anatomy of a program: In functions: loops

1 fn main() { Rust
2 for c in 0..10 {
3 println!("the counter is {c}");
4 }
5 }

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 33 / 41

Getting started in Rust
• Anatomy of a program: In functions: conditionals

1 fn main() { Rust
2 for c in 0..10 {
3 if c != 3 {
4 println!("the counter is {c}");
5 }
6 }
7 }

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 34 / 41

Getting started in Rust
• Type Inference

1 // look ma, no types Rust
2 let a = 3;
3 // still an error
4 let b = a + "hello";

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 35 / 41

Getting started in Rust
• Return is Implicit

1 fn square(a: i64) -> i64 { Rust
2 a * a
3 }

• Though make sure you don’t put a ; at the end

1 fn square(a: i64) -> i64 { Rust
2 a * a;
3 }

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 36 / 41

Getting started in Rust
• (mostly) automatic memory management

1 // a string always contains a length Rust
2 fn alloc_str(inp: &str) -> String {
3 String::from(inp)
4 }
5
6 fn main() {
7 let x = alloc_str("something");
8 println!("{x}");
9
10 // no free needed!
11 }

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 37 / 41

Getting started in Rust
• Mutability is explicit

1 fn main() { Rust
2 let a = 3;
3 // error
4 a = 5;
5
6 let mut a = 3;
7 // ok
8 a = 5;
9 }

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 38 / 41

Getting started in Rust
• Almost everything is an expression

1 fn main() { Rust
2 let x = if something() {
3 4
4 } else {
5 3
6 };
7
8 let y = loop {
9 break 3;
10 };
11
12 let double = |x| x * 2;
13 }

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 39 / 41

Getting started in Rust
• Almost everything is an expression
• Which means you can do some comical things, yes this is completely ok:

1 fn foo() -> bool { Rust
2 if if if true { false } else { true } { false } else { true } { false } else { true }
3 }

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 40 / 41

Assignment:
• Form pairs
• Go to https://projecteuler.net/archives
• Try one of 1, 5, or 14, or a slightly harder one: 18

Then:

• Go to https://play.rust-lang.org and program it :)
• See how far you get, I’ll walk around.
• If you get stuck somewhere? Also look at: https://doc.rust-lang.org/book/

We’ll discuss after

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 41 / 41

https://projecteuler.net/archives
https://play.rust-lang.org
https://doc.rust-lang.org/book/

	Study Goals
	In simpler terms
	Software Fundamentals
	Hardware Fundamentals
	Part 1
	Part 2

	Staff
	Evaluation
	Resources
	Book Recomendations:
	Software:

	Resources
	Tell me about you
	Drones!
	Programming languages for Embedded Systems
	Programming languages for Embedded Systems
	Programming languages for Embedded Systems
	Programming languages for Embedded Systems
	Programming languages for Embedded Systems
	Programming languages for Embedded Systems
	Programming languages for Embedded Systems
	Programming languages for Embedded Systems
	What is a compiler?
	What is a compiler?
	What is a compiler?
	What is a compiler?
	What is a compiler?
	What is a compiler?
	What is a compiler?
	Problems with low level control and safety
	Problems with low level control and safety
	Problems with low level control and safety
	How far can we go?
	Undefined Behavior
	Undefined Behavior
	The Good Programmer Myth
	The Good Programmer Myth
	We're teaching you Rust
	Getting started in Rust
	Getting started in Rust
	Getting started in Rust
	Getting started in Rust
	Getting started in Rust
	Getting started in Rust
	Getting started in Rust
	Getting started in Rust
	Getting started in Rust
	Getting started in Rust
	Getting started in Rust
	Getting started in Rust
	Getting started in Rust
	Getting started in Rust
	Getting started in Rust
	Getting started in Rust
	Getting started in Rust
	Getting started in Rust
	Getting started in Rust
	Getting started in Rust
	Assignment:

