
An introduction to Rust
Jonathan Dönszelmann & Vivian Roest

Delft University of Technology

2024-11-18



Study Goals
After this course, students will be able to:

• Explain the programming language concepts followed in Rust.
• Design, implement and debug a small software system from scratch in Rust following the

language standard including proper coding style.
• Set up a project and build environment, using the Rust ecosystem.
• Use Git to version and share source code contributions for collaborative development.
• Evaluate and integrate code contributions of other team members.
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In simpler terms
We will teach you about:
• Programming
• Choices in programming languages
• Making safe, reliable and correct programs
• Developing software together
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Software Fundamentals

• Programming
• Choices in programming languages
• Making safe, reliable and correct programs
• Developing software together

Hardware Fundamentals

• Digital Computer Systems
• Discrete Signals and Systems
• Design of Control Systems



Part 1

• Lectures (twice a week)
• Individual assignment
• Labs and Tutorials (twice a week)

Part 2

1. Group project
2. No lectures!
3. Mandatory attendance of

at least one lab a week!



Staff
• Vivian Roest (Head TA)
• Shashwath Suresh
• Cleo Barik
• Felipe Perez
• Andre Herrera Gama
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Evaluation
• Individual Assignment (50%)
• Group Project (50%)
• Git Assignment (pass/fail)
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Resources

Book Recomendations:

• The Rust Programming Language Available Online
by Steve Klabnik; Carol Nichols; The Rust Community,

• Rust for Rustaceans by Jon Gjengset
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Resources

Book Recomendations:

• The Rust Programming Language Available Online
by Steve Klabnik; Carol Nichols; The Rust Community,

• Rust for Rustaceans by Jon Gjengset

Software:

• Linux!!
• Install Rust through rustup, avoid Ubuntu/Debian’s repository!!
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Let’s start!

• Why choosing a programming language matters
• Why do we teach you Rust?
• Some basics of Rust



Tell me about you
Question:

What programming languages have you used in the past? And what for?

• work, hobby, in teams, alone?
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Drones!

Question:

What properties do we care about for the
software of this drone?



Programming languages for Embedded Systems
• We’re teaching about Rust

Question:

What other options are there?
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Programming languages for Embedded Systems
• We’re teaching about Rust
• C
• C++

From the https://osdev.org wiki: people have written kernels in:

Forth, Lisp, C#, Modula-2, Ada, Bliss, Smalltalk, PL/1, Assembly, Zig, D
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Programming languages for Embedded Systems
• We’re teaching about Rust
• C
• C++

From the https://osdev.org wiki: people have written kernels in:

Forth, Lisp, C#, Modula-2, Ada, Bliss, Smalltalk, PL/1, Assembly, Zig, D

Question:

Can you use python on embedded systems?
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Programming languages for Embedded Systems
• We’re teaching about Rust
• C
• C++

From the https://osdev.org wiki: people have written kernels in:

Forth, Lisp, C#, Modula-2, Ada, Bliss, Smalltalk, PL/1, Assembly, Zig, D

Question:

Why shouldn’t you use python on an embedded system?
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Programming languages for Embedded Systems
• We’re teaching about Rust
• C
• C++

From the https://osdev.org wiki: people have written kernels in:

Forth, Lisp, C#, Modula-2, Ada, Bliss, Smalltalk, PL/1, Assembly, Zig, D

So clearly, the features of a programming language matters.
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Programming languages for Embedded Systems
Question:

What properties do we care about when we want to use a programming language for
embedded systems?
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Programming languages for Embedded Systems
Question:

What properties do we care about when we want to use a programming language for
embedded systems?

• Compiled
• Low-level access to locations in memory
• Precise control over all program resources
• Guarantees about correctness
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Programming languages for Embedded Systems
• Compiled
• Low-level access to locations in memory
• Precise control over all program resources
• Guarantees about correctness

Question:

Is there a conflict in these requirements?
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What is a compiler?
Question:

Is gcc a compiler?
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What is a compiler?
Question:

Is python a compiler?
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What is a compiler?
Question:

Is mysql a compiler?
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What is a compiler?
Question:

Is firefox a compiler?
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What is a compiler?
Question:

Is Linux a compiler?
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What is a compiler?
Question:

Is zip a compiler?
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What is a compiler?
Question:

Is your cpu a compiler?
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Problems with low level control and safety
1 int main() { C
2   (int *)(address_of_peripheral) = 10;
3 }
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Problems with low level control and safety
1 int main() { C
2   (int *)(address_of_peripheral) = 10;
3 }

this works for any random address too:

1 int main() { C
2   (int *)(0x12345678) = 10;
3 }
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Problems with low level control and safety
1 #include <...> C
2
3 char *alloc_str(char *src) {
4   size_t len = strlen(src);
5   char *dst = malloc(len);
6   memcpy(dst, src, len);
7   return dst;
8 }
9
10 int main() {
11   char *something = alloc_str("something");
12   printf("%s\n", something);
13   free(something);
14 }

https://godbolt.org/z/aP5cj16cT
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How far can we go?
1 int main() { C
2   char *arr = malloc(10);
3   for (int i = 0; i < 1500; i++) {
4     arr[i] = 5;
5   }
6 }

https://godbolt.org/z/15qqq74oe
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Undefined Behavior
1 int main () { C++
2   while (1) {}
3 }
4
5 int unused() {
6   std::cout << "unused?" << std::endl;
7 }

https://godbolt.org/z/qKMeE9xfb
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Undefined Behavior
1 int main () { C++
2   while (1) {}
3 }
4
5 int unused() {
6   std::cout << "unused?" << std::endl;
7 }

https://godbolt.org/z/qKMeE9xfb
• In some compilers it’s common to not define certain behavior.
• 2′s complement in C
• The compiler is allowed to assume those cases never happen
• The programmer should simply make sure those cases never happen!
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The Good Programmer Myth
• A good programmer knows to avoid undefined behavior
• If someone causes a memory safety bug, they can’t have been a very good programmer

‣ Look in the manual! It clearly states that this is undefined behavior!
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The Good Programmer Myth
• Large projects with supposedly fine programmers still see many memory safety bugs:

https://www.chromium.org/Home/chromium-security/memory-safety/
• Bugs aren’t always local
• Code review misses bugs (Khoshnoud, Fatemeh, et al.)

https://steveklabnik.com/writing/memory-safety-is-a-red-herring
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We're teaching you Rust
• By default, Rust does not contain any undefined behavior
• If you do want control, you can ask for it:

1 unsafe { Rust
2   *(0x1234_5678usize as *const u8) = 10;
3 }

• But don’t, you don’t usually need it!

Fewer bugs in android: https://security.googleblog.com/2022/12/memory-safe-languages-
in-android-13.html
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Getting started in Rust
• Anatomy of a program: Items

1 // functions Rust
2 fn example () {}
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Getting started in Rust
• Anatomy of a program: Items

1 // constants and statics Rust
2 const A: usize = 3;
3 static B: i32 = 5;
4
5 fn example () {}
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Getting started in Rust
• Anatomy of a program: Items

1 const A: usize = 3; Rust
2 static B: i32 = 5;
3
4 // types
5 struct X {}
6
7 fn example () {}
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Getting started in Rust
• Anatomy of a program: Items

1 const A: usize = 3; Rust
2 static B: i32 = 5;
3
4 struct Point {
5   // with fields
6   x: f32,
7   y: f32
8 }
9
10 fn example () {}
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Getting started in Rust
• Anatomy of a program: Items

1 const A: usize = 3; Rust
2 static B: i32 = 5;
3
4 struct Point {
5   x: f32,
6   y: f32
7 }
8
9 fn example () {}
10
11 // a main function
12 fn main() { }
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Getting started in Rust
• Anatomy of a program: Items

1 const A: usize = 3; Rust
2 static B: i32 = 5;
3
4 // modules
5 mod foo {
6   fn example () {}
7 }
8
9 fn main() {}
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Getting started in Rust
• Anatomy of a program: Items

1 const A: usize = 3; Rust
2 static B: i32 = 5;
3
4 mod foo {
5   fn example () {}
6 }
7 // imports
8 use foo::example;
9
10 fn main() {}
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Getting started in Rust
• Anatomy of a program: Items

1 // BUT NOT EXPRESSIONS Rust
2 5 + 5;
3
4 let a = 3;
5
6 fn main() {}
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Getting started in Rust
• Anatomy of a program: In functions: statements

1 fn main() { Rust
2   let a = 3;
3 }
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Getting started in Rust
• Anatomy of a program: In functions: statements

1 fn main() { Rust
2   let a: u64 = 3;
3   let b: &str = "hello";
4 }
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Getting started in Rust
• Anatomy of a program: In functions: expressions

1 fn main() { Rust
2   let a: i32 = 2 + 1;
3 }
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Getting started in Rust
• Anatomy of a program: In functions: loops

1 fn main() { Rust
2   let mut c: usize = 0;
3   while c < 10 {
4     println!("the counter is {c}");
5     c += 1;
6   }
7 }
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Getting started in Rust
• Anatomy of a program: In functions: loops

1 fn main() { Rust
2   for c in 0..10 {
3     println!("the counter is {c}");
4   }
5 }
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Getting started in Rust
• Anatomy of a program: In functions: conditionals

1 fn main() { Rust
2   for c in 0..10 {
3     if c != 3 {
4       println!("the counter is {c}");
5     }
6   }
7 }
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Getting started in Rust
• Type Inference

1 // look ma, no types Rust
2 let a = 3;
3 // still an error
4 let b = a + "hello";

Jonathan Dönszelmann & Vivian Roest Lecture 1: An introduction to Rust 2024-11-18 35 / 41



Getting started in Rust
• Return is Implicit

1 fn square(a: i64) -> i64 { Rust
2    a * a
3 }

• Though make sure you don’t put a ; at the end

1 fn square(a: i64) -> i64 { Rust
2    a * a;
3 }
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Getting started in Rust
• (mostly) automatic memory management

1 // a string always contains a length Rust
2 fn alloc_str(inp: &str) -> String {
3     String::from(inp)
4 }
5
6 fn main() {
7     let x = alloc_str("something");
8     println!("{x}");
9
10     // no free needed!
11 }
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Getting started in Rust
• Mutability is explicit

1 fn main() { Rust
2   let a = 3;
3   // error
4   a = 5;
5
6   let mut a = 3;
7   // ok
8   a = 5;
9 }
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Getting started in Rust
• Almost everything is an expression

1 fn main() { Rust
2   let x = if something() {
3     4
4   } else {
5     3
6   };
7
8   let y = loop {
9     break 3;
10   };
11
12   let double = |x| x * 2;
13 }
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Getting started in Rust
• Almost everything is an expression
• Which means you can do some comical things, yes this is completely ok:

1 fn foo() -> bool { Rust
2   if if if true { false } else { true } { false } else { true } { false } else { true }
3 }
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Assignment:
• Form pairs
• Go to https://projecteuler.net/archives
• Try one of 1, 5, or 14, or a slightly harder one: 18

Then:

• Go to https://play.rust-lang.org and program it :)
• See how far you get, I’ll walk around.
• If you get stuck somewhere? Also look at: https://doc.rust-lang.org/book/

We’ll discuss after
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