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Last week
• Data Types

‣ Describing sizes of things in memory
‣ Descrabing the behavior of values
‣ Expressing proofs
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Today
Four slightly different topics:

1. Ownership and references
2. Mutability
3. Slices
4. A sample of Enum types (more next lecture)
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Ownership



Ownership
Over the last week you may have seen this:

1 fn sum(y: Vec<i32>) -> i32 { Rust
2   // ...
3 }
4
5 fn main() {
6   let x = vec![1, 2, 3];
7   let s = sum(x);
8   println!("sum of {x:?} is {s}");
9 }

Question:

Why doesn’t this work?
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Ownership
• vec![1, 2, 3] is a value
• it lives somewhere in memory
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Ownership
• vec![1, 2, 3] is a value
• it lives somewhere in memory

• x is a “binding”.
• x binds a value, like vec![1, 2, 3]

1 let x = vec![1, 2, 3]; Rust
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Ownership
• vec![1, 2, 3] is a value
• it lives somewhere in memory

• x is a “binding”.
• x binds a value, like vec![1, 2, 3]

• a binding has a certain scope
• the scope of x is the main function’s scope

1 fn main() { Rust
2   let x = vec![1, 2, 3];
3 }
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Ownership
• vec![1, 2, 3] is a value
• it lives somewhere in memory

• x is a “binding”.
• x binds a value, like vec![1, 2, 3]

• a binding has a certain scope
• but the scope could be different, like here

1 fn main() { Rust
2   if true {
3     let x = vec![1, 2, 3];
4   }
5   // ...
6 }
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Ownership
The Rules Of Rust:
• Every value (like vec![1, 2, 3])
• at a single point in the program
• has a single binding (read “variable name”)
• in a single scope
• This binding is called the owner

1 fn main() { Rust
2   // x owns vec![1, 2, 3] in the scope of `fn main`
3   let x = vec![1, 2, 3];
4 }
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Ownership
1 fn main() { Rust
2   // x owns vec![1, 2, 3] in the scope of `fn main`
3   let x = vec![1, 2, 3];
4   // the value is moved
5   // y now owns vec![1, 2, 3]
6   let y = x;
7 }

Ownership can move, x no longer is the owner
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Ownership
1 fn other(y: Vec<i32>) { Rust
2     // now y owns the value
3 }
4
5 fn main() {
6   // x owns vec![1, 2, 3] in the scope of `fn main`
7   let x = vec![1, 2, 3];
8   // the value is moved
9   other(x);
10 }

Ownership can move, from function to function
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Ownership
1 fn main() { Rust
2   // x owns vec![1, 2, 3] in the scope of `fn main`
3   let x = vec![1, 2, 3];
4
5   // x goes out of scope
6   // vec![1, 2, 3] is destroyed
7 }

If the owner goes out of scope, the value is destroyed
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Ownership
1 fn other(y: Vec<i32>) { Rust
2   // now y owns it!
3   // and vec![1, 2, 3] is deleted here
4 }
5
6 fn main() {
7   // x owns vec![1, 2, 3] in the scope of `fn main`
8   let x = vec![1, 2, 3];
9   // the value is moved
10   other(x);
11 }

If the owner goes out of scope, the value is destroyed
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Ownership
• Every binding must go out of scope somewhere
• So every value is deleted somewhere*

1 use std::mem; Rust
2
3 fn main() {
4   // x owns vec![1, 2, 3] in the scope of `fn main`
5   let x = vec![1, 2, 3];
6   // x is moved into the forget function
7   // but `forget` promises to never delete the value
8   mem::forget(x);
9 }
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Ownership
But what if we want this?

1 fn sum(y: Vec<i32>) -> i32 { Rust
2   // ...
3 }
4
5 fn main() {
6   let x = vec![1, 2, 3];
7   let s = sum(x);
8   println!("sum of {x:?} is {s}");
9 }
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Ownership
But what if we want this?

• clone takes a value, and duplicates that value

1 // x owns vec![1, 2, 3] Rust
2 let x = vec![1, 2, 3];
3 // y now owns a new duplicated *different* instance of `vec![1, 2, 3]`
4 // x also still owns the original instance
5 let y = x.clone();
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Ownership
But what if we want this?

1 fn sum(y: Vec<i32>) -> i32 { Rust
2   // ...
3 }
4
5 fn main() {
6   let x = vec![1, 2, 3];
7   // so clone here!
8   let s = sum(x.clone());
9   println!("sum of {x:?} is {s}");
10 }
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Ownership
Disadvantages
• Using clone we double the amount of memory needed
• Cloning takes O(n) time for a vector of n elements
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Ownership
Can’t we just, like, not move x into the sum function?

1 fn sum(y: Vec<i32>) -> i32 { Rust
2   // ...
3 }
4
5 fn main() {
6   let x = vec![1, 2, 3];
7   // avoid moving here?
8   let s = sum(x);
9   println!("sum of {x:?} is {s}");
10 }
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Ownership
Sure! use a reference

1 // add an `&` here Rust
2 fn sum(y: &Vec<i32>) -> i32 {
3   // ...
4 }
5
6 fn main() {
7   let x = vec![1, 2, 3];
8   // use an `&` here
9   let s = sum(&x);
10   println!("sum of {x:?} is {s}");
11 }

• We call this “borrowing”
• y borrows the value vec![1, 2, 3], x still owns it
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Ownership
• y does own something though
• all values have an owner
• y just owns a value that’s a reference, not the real vec![1, 2, 3]
•

1 fn sum(y: &Vec<i32>) -> i32 { Rust
2   // y owns &vec![1, 2, 3]
3   // it goes out of scope here, and the *reference* is deleted
4   // not the original value
5 }
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Ownership
y doesn’t use as much memory as vec![1, 2, 3]

1 fn sum(y: &Vec<i32>) -> i32 { Rust
2   // ...
3 }
4
5 fn main() {
6   let x = vec![1, 2, 3];
7   let s = sum(&x);
8   println!("sum of {x:?} is {s}");
9 }

• it doesn’t store the whole value
• it just stores where we can find the real value, in the stack of main
• this is called a pointer
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Ownership
Watch out though! We can only reference something that still exists.

1 fn example() -> &Vec<i32> { Rust
2   let a = vec![1, 2, 3];
3   return &a;
4   // a goes out of scope here
5 }
6
7 fn main() {
8   // what are we pointing to?
9   let ref_to_a = example();
10 }

So this does not compile!
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=cb10ad88b0a
86480772ee143322156cb
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Ownership
Watch out though! We can only reference something that still exists.

1 fn main() { Rust
2   let x;
3
4   {
5     let y = vec![1, 2, 3];
6     x = &y;
7   }
8
9   println!("{x}")
10 }

“y does not live long enough”
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=5391df9eeaf
4fadd71d0beb0052f868b
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Ownership
References mostly act like owned values

1 let x = 10; Rust
2
3 assert_eq!(x, x);
4 // does not compare locations, compares values
5 assert_eq!(&x, &x);
6
7 // we can just print a reference
8 // just like a value
9 println!("{}", &x);
10
11 // calling methods on values
12 x.ilog10()
13 // is the same as on references
14 (&x).ilog10()
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Ownership
Last we saw types with “methods”, associated functions.

The &self means we get a reference to the value when we call the method.

1 struct A; Rust
2 impl A {
3   // takes a reference to Self
4   fn do_something_with_a(&self) {}
5 }
6
7
8 let x = A;
9 x.do_something_with_a();
10 // x still available
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Ownership
We can also make a method take self “by value”

1 struct A; Rust
2 impl A {
3   // takes ownership of Self
4   fn do_something_with_a(self) {}
5 }
6
7
8 let x = A;
9 x.do_something_with_a();
10 // x no longer available

Often useful when converting values
an operation like “turn A into B” destroys the old A, and we gives a new B
https://doc.rust-lang.org/stable/std/collections/struct.BinaryHeap.html#method.into_vec
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Ownership
• I’ve been using Vec as an example everywhere
• I couldn’t have used numbers
• because numbers are Copy.

1 let a = 3; Rust
2 let b = a;
3
4 // a and b are still valid!

https://doc.rust-lang.org/stable/std/marker/trait.Copy.html
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Ownership
Types that are Copyable are

• Simple to destroy
• Cheap to create more instances of
• Often very simple, like numbers or booleans
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Ownership
References are Copy:

1 let x = vec![1, 2, 3] Rust
2
3 let a = &x;
4 let b = a;
5
6 // all fine!
7 println!("{:?}", a);
8 println!("{:?}", b);
9 println!("{:?}", x);

Once we have one reference, it doesn’t matter how many more we create!
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Ownership
Summary:
• Every value, at a point in the program, has a single binding that owns it
• This makes sure we know precisely when to deallocate memory
• clone duplicates a value explicitly
• Types that are Copy don’t need cloning
• A reference can “borrow” a value, avoiding “move"ing it
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Mutability
A binding is either mutable, or not

1 let x = 3; Rust
2 let mut y = 3;
3
4 x = 4; // illegal
5 y = 5; // ok!

Question:

Why do we have to mark mutability?
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Mutability
• Lots of languages have this distinction (var vs const for example)
• Mutability is sometimes seen as a bit of an antipattern

When a variable is mutable, it could be changed anywhere

1 let mut res = 0; Rust
2 while res < 10 {
3   if x > 4 { res = 2; }
4   if y < 2 && res < 4 {
5     res = 8; x = 8;
6   } else {
7     res += 1;
8   }
9 }

Hard to know with what values x and y this code even terminates
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Mutability
• Lots of languages have this distinction (var vs const for example)
• Mutability is sometimes seen as a bit of an antipattern
• You don’t need mutable variables that often

1 fn even_sum(numbers: &Vec<i32>) -> i32 { Rust
2   let mut result = 0;
3   for i in numbers {
4     if i % 2 == 0 {result += i};
5   }
6   result
7 }
8 // vs
9 fn even_sum(numbers: &Vec<i32>) -> i32 {
10   numbers.iter().filter(|i| i%2==0).sum()
11 }
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Mutability
Mutability applies to a single binding

1 let x = vec![1, 2, 3]; Rust
2 // x.push(4) doesn't work
3
4 // move to a mutable binding
5 let mut y = x;
6 // works just fine
7 y.push(4)

Question:

Why is it ok to add mutability to a value later on?
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Mutability
A borrow cannot mutate

1 fn add_four(y: &Vec<i32>) { Rust
2   // error!
3   y.push(4);
4 }
5
6 fn main() {
7   let x = vec![1, 2, 3];
8   add_four(&x);
9 }

Question:

Why not?
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Mutability
What if we want to change a value in a function?
we could use moving:

1 // move the vector to this function Rust
2 fn add_four(mut y: Vec<i32>) -> Vec<i32> {
3   y.push(4);
4   // and move back again
5   y
6 }
7
8 fn main() {
9   let mut x = vec![1, 2, 3];
10   // x must now be mutable for us to update it here
11   x = add_four(x);
12 }
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Mutability
What if we want to change a value in a function?
Or we use a mutable reference

1 fn add_four(y: &mut Vec<i32>) { Rust
2   y.push(4);
3 }
4
5 fn main() {
6   let mut x = vec![1, 2, 3];
7   // &mut x only possible if x is mutable
8   add_four(&mut x);
9 }
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Mutability
Mutable references aren’t like normal references
• You can’t copy them:

1 let mut x = vec![1, 2, 3]; Rust
2
3 let a = &mut x;
4 let b = a; // a moved into b, not copied
5
6 // so a is not valid anymore here
7 a.push(4);
8 b.push(5);
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Mutability
Mutable references aren’t like normal references
• You can’t copy them
• You can’t have two at the same time at all!

1 let mut x = vec![1, 2, 3]; Rust
2
3 let a = &mut x;
4 let b = &mut x; // second reference to x
5
6 a.push(4);
7 b.push(5);

Error: cannot borrow x as mutable more than once at a time

(which is why copying is not allowed)
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Mutability
Mutable references aren’t like normal references
• You can’t copy them
• You can’t have two at the same time
• Nor can you have a mutable and normal reference at the same time!

1 let mut x = vec![1, 2, 3]; Rust
2
3 let a = &mut x;
4 let b = &x; // *immutable* reference to x
5
6 a.push(4);
7 println!("{:?}", b);

Error: cannot borrow x as immutable because it is also borrowed as mutable

(which is why copying is not allowed)
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Mutability
Mutable references aren’t like normal references
• You can’t copy them
• You can’t have any other reference at the same time!

A better name for a “mutable reference” is an “exclusive reference”

Question:

But why?
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Mutability
Example 1: growing vectors

push takes &mut self: https://doc.rust-lang.org/stable/std/vec/struct.Vec.html#method.push

1 let mut x = vec![1, 2, 3] Rust
2
3 // first reference, to an element
4 let first_elem = &x[0];
5 // second reference, mutable this time
6 // pushing might mean growing the vector, which might
7 // change the location of the elements
8 x.push(4);
9
10 // the vector's data might have changed location!
11 // no clue if this reference is still valid
12 println!("{}", first_elem);
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Mutability
Example 2: copying elements:

1 fn fill_vector_with_ref(src: &u32, dst: &mut Vec<u32>) { Rust
2   for i in 0..src.len() { dst[i] = *src; }
3 }
4
5 fn fill_vector_with_ref(src: &u32, dst: &mut Vec<u32>) {
6   let value = *src;
7   for i in 0..src.len() { dst[i] = value; }
8 }

Question:

Are these functions the same?
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Mutability
Example 2: copying elements:
What if src is an element in dst?

1 fn fill_vector_with_ref(src: &u32, dst: &mut Vec<u32>) { Rust
2   for i in 0..src.len() { dst[i] = *src; }
3 }
4
5 fn fill_vector_with_ref(src: &u32, dst: &mut Vec<u32>) {
6   let value = *src;
7   for i in 0..src.len() { dst[i] = value; }
8 }
9
10 let mut x = vec![1, 2, 3];
11 fill_vector_with_ref(&x[1], &mut x);
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Mutability
But Rust would reject this program.

1 let mut x = vec![1, 2, 3]; Rust
2 // obviously wrong
3 // mutable *and* immutable reference at the same time
4 fill_vector_with_ref(&x[1], &mut x);
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Mutability
Things get even worse when multiple threads are involved
Can they both mutate the same value? → Data races

In fact, some people start with explaining that this rule exists because of threading.

Read more on this:

• https://smallcultfollowing.com/babysteps/blog/2013/06/11/on-the-connection-between-
memory-management-and-data-race-freedom/

• https://manishearth.github.io/blog/2015/05/17/the-problem-with-shared-mutability/

quote in that blogpost from kmc:

“My intuition is that code far away from my code might as well be in another thread, for all
I can reason about what it will do to shared mutable state.”
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Ownership
Summary:
• Bindings are mutable or not
• References are mutable or not
• Whenever something is mutably references, no other reference can exist
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Mutability
Want to practice with this?

Weblab: Assignments - Week 1 - Types - All about Vecs

We’ll discuss in the lab tomorrow
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Slices
Sometimes you want to reference more than one thing at a time:

1 let x = vec![1, 2, 3, 4]; Rust
2
3 // index 0, and 1 (excluding 2)
4 let a: &[u32] = &x[0..2]
5 // all elements at indexes starting from 2
6 let b = &x[2..]
7
8 // you can iterate over a slice
9 for i in b {
10   println!("{i}");
11 }
12
13 // or get its length
14 println!("{}", a.len());
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Slices
Slices can be mutable:

1 let mut x = vec![1, 2, 3, 4]; Rust
2
3 // index 0, and 1 (excluding 2)
4 let a: &mut [u32] = &mut x[0..2]
5 for i in a {
6   *i += 3;
7 }
8
9 // prints 4, 5, 3, 4
10 println!("{:?}", x);
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Slices
Some things coerce to slices:

1 // input is a slice Rust
2 fn sum(res: &[u32]) -> u32 {
3   // ...
4 }
5
6 // but we can call it with a vector!
7 let x = vec![1, 2, 3];
8 sum(&x);
9 // or a bit of a vector
10 sum(&x[1..]);
11 // or an array
12 sum(&[1, 2, 3]);

So writing sum like this is more flexible
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Slices
This gives us a fun way to write sum:

1 fn sum(input: &[u32]) -> u32 { Rust
2   if input.is_empty() {
3     0
4   } else {
5     // add element 0 to everything after element 0
6     input[0] + sum(&input[1..])
7   }
8 }

Works for anything that looks like a sequence of u32, like vectors
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Enums



Enums
• Last lecture: all about types
• Next lecture: all about enum types

But here are the basics, so you can get started using them
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Enums
Question:

How many possible values does a bool have?
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Enums
Question:

How many possible values does a u8 have?
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Enums
Question:

How many possible values does a u32 have?
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Enums
Question:

How many possible values does this type have?

1 struct X { Rust
2   a: bool,
3   b: bool,
4 }
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Enums
• We call a struct a “product type”.
• If type A has n possible values
• If type B has m possible values
• Then a struct with A and B in it has 𝑛 ×𝑚 possible values
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Enums
Sometimes, you know that not all values are possible.

1 // NOTE: only 1-7 are valid Rust
2 type WeekDay = u8;
3
4
5 // ???
6 let x: WeekDay = 8;
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Enums
Sometimes, you know that not all values are possible.

1 // Only has 7 possible values Rust
2 enum WeekDay {
3   Monday,
4   Tuesday,
5   Wednesday,
6   Thursday,
7   Friday,
8   Saturday,
9   Sunday,
10 }
11
12 // we can only choose one of the valid values!
13 let x: WeekDay = WeekDay::Monday;
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Enums
Unlike in many other programming languages, enums can have values

1 enum IpAddress { Rust
2   Ipv4([u8; 4]),
3   Ipv6([u8; 16]),
4 }
5
6 let x: IpAddress = IpAddress::Ipv4([127, 0, 0, 1]);
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Enums
How many possible values?

1 enum IpAddress { Rust
2   Ipv4([u8; 4]), // 2^32 ~= 4 billion
3   Ipv6([u8; 16]), // 2^128 ~= a lot
4 }

In total: 232 + 2128
Enums are sometimes called “sum types”
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Enums
Another example: Option<T>

1 enum Option<T> { Rust
2   Some(T),
3   None
4 }
5
6 // 257 possible values
7 // 256 if Some, or one more: None
8 let x: Option<u8> = Some(3);
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Assignment: 5 minutes

• Create an enum for a JSON value called Value
• a JSON value is either:

‣ a floating point number
‣ a string
‣ true
‣ false
‣ null
‣ a list of other JSON values
‣ a json object, std::collections::HashMap<String, Value>

JSON spec

https://www.json.org/json-en.html

https://www.json.org/json-en.html
https://www.json.org/json-en.html
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