
Ownership and References
Jonathan Dönszelmann & Vivian Roest

Delft University of Technology

2024-11-18

Last week
• Data Types

‣ Describing sizes of things in memory
‣ Descrabing the behavior of values
‣ Expressing proofs

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 2 / 70

Today
Four slightly different topics:

1. Ownership and references
2. Mutability
3. Slices
4. A sample of Enum types (more next lecture)

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 3 / 70

Ownership

Ownership
Over the last week you may have seen this:

1 fn sum(y: Vec<i32>) -> i32 { Rust
2 // ...
3 }
4
5 fn main() {
6 let x = vec![1, 2, 3];
7 let s = sum(x);
8 println!("sum of {x:?} is {s}");
9 }

Question:

Why doesn’t this work?

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 5 / 70

Ownership
• vec![1, 2, 3] is a value
• it lives somewhere in memory

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 6 / 70

Ownership
• vec![1, 2, 3] is a value
• it lives somewhere in memory

• x is a “binding”.
• x binds a value, like vec![1, 2, 3]

1 let x = vec![1, 2, 3]; Rust

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 7 / 70

Ownership
• vec![1, 2, 3] is a value
• it lives somewhere in memory

• x is a “binding”.
• x binds a value, like vec![1, 2, 3]

• a binding has a certain scope
• the scope of x is the main function’s scope

1 fn main() { Rust
2 let x = vec![1, 2, 3];
3 }

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 8 / 70

Ownership
• vec![1, 2, 3] is a value
• it lives somewhere in memory

• x is a “binding”.
• x binds a value, like vec![1, 2, 3]

• a binding has a certain scope
• but the scope could be different, like here

1 fn main() { Rust
2 if true {
3 let x = vec![1, 2, 3];
4 }
5 // ...
6 }

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 9 / 70

Ownership
The Rules Of Rust:
• Every value (like vec![1, 2, 3])
• at a single point in the program
• has a single binding (read “variable name”)
• in a single scope
• This binding is called the owner

1 fn main() { Rust
2 // x owns vec![1, 2, 3] in the scope of `fn main`
3 let x = vec![1, 2, 3];
4 }

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 10 / 70

Ownership
1 fn main() { Rust
2 // x owns vec![1, 2, 3] in the scope of `fn main`
3 let x = vec![1, 2, 3];
4 // the value is moved
5 // y now owns vec![1, 2, 3]
6 let y = x;
7 }

Ownership can move, x no longer is the owner

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 11 / 70

Ownership
1 fn other(y: Vec<i32>) { Rust
2 // now y owns the value
3 }
4
5 fn main() {
6 // x owns vec![1, 2, 3] in the scope of `fn main`
7 let x = vec![1, 2, 3];
8 // the value is moved
9 other(x);
10 }

Ownership can move, from function to function

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 12 / 70

Ownership
1 fn main() { Rust
2 // x owns vec![1, 2, 3] in the scope of `fn main`
3 let x = vec![1, 2, 3];
4
5 // x goes out of scope
6 // vec![1, 2, 3] is destroyed
7 }

If the owner goes out of scope, the value is destroyed

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 13 / 70

Ownership
1 fn other(y: Vec<i32>) { Rust
2 // now y owns it!
3 // and vec![1, 2, 3] is deleted here
4 }
5
6 fn main() {
7 // x owns vec![1, 2, 3] in the scope of `fn main`
8 let x = vec![1, 2, 3];
9 // the value is moved
10 other(x);
11 }

If the owner goes out of scope, the value is destroyed

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 14 / 70

Ownership
• Every binding must go out of scope somewhere
• So every value is deleted somewhere*

1 use std::mem; Rust
2
3 fn main() {
4 // x owns vec![1, 2, 3] in the scope of `fn main`
5 let x = vec![1, 2, 3];
6 // x is moved into the forget function
7 // but `forget` promises to never delete the value
8 mem::forget(x);
9 }

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 15 / 70

Ownership
But what if we want this?

1 fn sum(y: Vec<i32>) -> i32 { Rust
2 // ...
3 }
4
5 fn main() {
6 let x = vec![1, 2, 3];
7 let s = sum(x);
8 println!("sum of {x:?} is {s}");
9 }

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 16 / 70

Ownership
But what if we want this?

• clone takes a value, and duplicates that value

1 // x owns vec![1, 2, 3] Rust
2 let x = vec![1, 2, 3];
3 // y now owns a new duplicated *different* instance of `vec![1, 2, 3]`
4 // x also still owns the original instance
5 let y = x.clone();

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 17 / 70

Ownership
But what if we want this?

1 fn sum(y: Vec<i32>) -> i32 { Rust
2 // ...
3 }
4
5 fn main() {
6 let x = vec![1, 2, 3];
7 // so clone here!
8 let s = sum(x.clone());
9 println!("sum of {x:?} is {s}");
10 }

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 18 / 70

Ownership
Disadvantages
• Using clone we double the amount of memory needed
• Cloning takes O(n) time for a vector of n elements

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 19 / 70

Ownership
Can’t we just, like, not move x into the sum function?

1 fn sum(y: Vec<i32>) -> i32 { Rust
2 // ...
3 }
4
5 fn main() {
6 let x = vec![1, 2, 3];
7 // avoid moving here?
8 let s = sum(x);
9 println!("sum of {x:?} is {s}");
10 }

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 20 / 70

Ownership
Sure! use a reference

1 // add an `&` here Rust
2 fn sum(y: &Vec<i32>) -> i32 {
3 // ...
4 }
5
6 fn main() {
7 let x = vec![1, 2, 3];
8 // use an `&` here
9 let s = sum(&x);
10 println!("sum of {x:?} is {s}");
11 }

• We call this “borrowing”
• y borrows the value vec![1, 2, 3], x still owns it

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 21 / 70

Ownership
• y does own something though
• all values have an owner
• y just owns a value that’s a reference, not the real vec![1, 2, 3]
•

1 fn sum(y: &Vec<i32>) -> i32 { Rust
2 // y owns &vec![1, 2, 3]
3 // it goes out of scope here, and the *reference* is deleted
4 // not the original value
5 }

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 22 / 70

Ownership
y doesn’t use as much memory as vec![1, 2, 3]

1 fn sum(y: &Vec<i32>) -> i32 { Rust
2 // ...
3 }
4
5 fn main() {
6 let x = vec![1, 2, 3];
7 let s = sum(&x);
8 println!("sum of {x:?} is {s}");
9 }

• it doesn’t store the whole value
• it just stores where we can find the real value, in the stack of main
• this is called a pointer

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 23 / 70

Ownership
Watch out though! We can only reference something that still exists.

1 fn example() -> &Vec<i32> { Rust
2 let a = vec![1, 2, 3];
3 return &a;
4 // a goes out of scope here
5 }
6
7 fn main() {
8 // what are we pointing to?
9 let ref_to_a = example();
10 }

So this does not compile!
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=cb10ad88b0a
86480772ee143322156cb

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 24 / 70

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=cb10ad88b0a86480772ee143322156cb
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=cb10ad88b0a86480772ee143322156cb

Ownership
Watch out though! We can only reference something that still exists.

1 fn main() { Rust
2 let x;
3
4 {
5 let y = vec![1, 2, 3];
6 x = &y;
7 }
8
9 println!("{x}")
10 }

“y does not live long enough”
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=5391df9eeaf
4fadd71d0beb0052f868b

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 25 / 70

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=5391df9eeaf4fadd71d0beb0052f868b
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=5391df9eeaf4fadd71d0beb0052f868b

Ownership
References mostly act like owned values

1 let x = 10; Rust
2
3 assert_eq!(x, x);
4 // does not compare locations, compares values
5 assert_eq!(&x, &x);
6
7 // we can just print a reference
8 // just like a value
9 println!("{}", &x);
10
11 // calling methods on values
12 x.ilog10()
13 // is the same as on references
14 (&x).ilog10()

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 26 / 70

Ownership
Last we saw types with “methods”, associated functions.

The &self means we get a reference to the value when we call the method.

1 struct A; Rust
2 impl A {
3 // takes a reference to Self
4 fn do_something_with_a(&self) {}
5 }
6
7
8 let x = A;
9 x.do_something_with_a();
10 // x still available

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 27 / 70

Ownership
We can also make a method take self “by value”

1 struct A; Rust
2 impl A {
3 // takes ownership of Self
4 fn do_something_with_a(self) {}
5 }
6
7
8 let x = A;
9 x.do_something_with_a();
10 // x no longer available

Often useful when converting values
an operation like “turn A into B” destroys the old A, and we gives a new B
https://doc.rust-lang.org/stable/std/collections/struct.BinaryHeap.html#method.into_vec

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 28 / 70

https://doc.rust-lang.org/stable/std/collections/struct.BinaryHeap.html#method.into_vec

Ownership
• I’ve been using Vec as an example everywhere
• I couldn’t have used numbers
• because numbers are Copy.

1 let a = 3; Rust
2 let b = a;
3
4 // a and b are still valid!

https://doc.rust-lang.org/stable/std/marker/trait.Copy.html

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 29 / 70

https://doc.rust-lang.org/stable/std/marker/trait.Copy.html
https://doc.rust-lang.org/stable/std/marker/trait.Copy.html

Ownership
Types that are Copyable are

• Simple to destroy
• Cheap to create more instances of
• Often very simple, like numbers or booleans

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 30 / 70

Ownership
References are Copy:

1 let x = vec![1, 2, 3] Rust
2
3 let a = &x;
4 let b = a;
5
6 // all fine!
7 println!("{:?}", a);
8 println!("{:?}", b);
9 println!("{:?}", x);

Once we have one reference, it doesn’t matter how many more we create!

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 31 / 70

Ownership
Summary:
• Every value, at a point in the program, has a single binding that owns it
• This makes sure we know precisely when to deallocate memory
• clone duplicates a value explicitly
• Types that are Copy don’t need cloning
• A reference can “borrow” a value, avoiding “move"ing it

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 32 / 70

Mutability

Mutability
A binding is either mutable, or not

1 let x = 3; Rust
2 let mut y = 3;
3
4 x = 4; // illegal
5 y = 5; // ok!

Question:

Why do we have to mark mutability?

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 34 / 70

Mutability
• Lots of languages have this distinction (var vs const for example)
• Mutability is sometimes seen as a bit of an antipattern

When a variable is mutable, it could be changed anywhere

1 let mut res = 0; Rust
2 while res < 10 {
3 if x > 4 { res = 2; }
4 if y < 2 && res < 4 {
5 res = 8; x = 8;
6 } else {
7 res += 1;
8 }
9 }

Hard to know with what values x and y this code even terminates

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 35 / 70

Mutability
• Lots of languages have this distinction (var vs const for example)
• Mutability is sometimes seen as a bit of an antipattern
• You don’t need mutable variables that often

1 fn even_sum(numbers: &Vec<i32>) -> i32 { Rust
2 let mut result = 0;
3 for i in numbers {
4 if i % 2 == 0 {result += i};
5 }
6 result
7 }
8 // vs
9 fn even_sum(numbers: &Vec<i32>) -> i32 {
10 numbers.iter().filter(|i| i%2==0).sum()
11 }

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 36 / 70

Mutability
Mutability applies to a single binding

1 let x = vec![1, 2, 3]; Rust
2 // x.push(4) doesn't work
3
4 // move to a mutable binding
5 let mut y = x;
6 // works just fine
7 y.push(4)

Question:

Why is it ok to add mutability to a value later on?

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 37 / 70

Mutability
A borrow cannot mutate

1 fn add_four(y: &Vec<i32>) { Rust
2 // error!
3 y.push(4);
4 }
5
6 fn main() {
7 let x = vec![1, 2, 3];
8 add_four(&x);
9 }

Question:

Why not?

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 38 / 70

Mutability
What if we want to change a value in a function?
we could use moving:

1 // move the vector to this function Rust
2 fn add_four(mut y: Vec<i32>) -> Vec<i32> {
3 y.push(4);
4 // and move back again
5 y
6 }
7
8 fn main() {
9 let mut x = vec![1, 2, 3];
10 // x must now be mutable for us to update it here
11 x = add_four(x);
12 }

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 39 / 70

Mutability
What if we want to change a value in a function?
Or we use a mutable reference

1 fn add_four(y: &mut Vec<i32>) { Rust
2 y.push(4);
3 }
4
5 fn main() {
6 let mut x = vec![1, 2, 3];
7 // &mut x only possible if x is mutable
8 add_four(&mut x);
9 }

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 40 / 70

Mutability
Mutable references aren’t like normal references
• You can’t copy them:

1 let mut x = vec![1, 2, 3]; Rust
2
3 let a = &mut x;
4 let b = a; // a moved into b, not copied
5
6 // so a is not valid anymore here
7 a.push(4);
8 b.push(5);

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 41 / 70

Mutability
Mutable references aren’t like normal references
• You can’t copy them
• You can’t have two at the same time at all!

1 let mut x = vec![1, 2, 3]; Rust
2
3 let a = &mut x;
4 let b = &mut x; // second reference to x
5
6 a.push(4);
7 b.push(5);

Error: cannot borrow x as mutable more than once at a time

(which is why copying is not allowed)

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 42 / 70

Mutability
Mutable references aren’t like normal references
• You can’t copy them
• You can’t have two at the same time
• Nor can you have a mutable and normal reference at the same time!

1 let mut x = vec![1, 2, 3]; Rust
2
3 let a = &mut x;
4 let b = &x; // *immutable* reference to x
5
6 a.push(4);
7 println!("{:?}", b);

Error: cannot borrow x as immutable because it is also borrowed as mutable

(which is why copying is not allowed)

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 43 / 70

Mutability
Mutable references aren’t like normal references
• You can’t copy them
• You can’t have any other reference at the same time!

A better name for a “mutable reference” is an “exclusive reference”

Question:

But why?

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 44 / 70

Mutability
Example 1: growing vectors

push takes &mut self: https://doc.rust-lang.org/stable/std/vec/struct.Vec.html#method.push

1 let mut x = vec![1, 2, 3] Rust
2
3 // first reference, to an element
4 let first_elem = &x[0];
5 // second reference, mutable this time
6 // pushing might mean growing the vector, which might
7 // change the location of the elements
8 x.push(4);
9
10 // the vector's data might have changed location!
11 // no clue if this reference is still valid
12 println!("{}", first_elem);

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 45 / 70

https://doc.rust-lang.org/stable/std/vec/struct.Vec.html#method.push

Mutability
Example 2: copying elements:

1 fn fill_vector_with_ref(src: &u32, dst: &mut Vec<u32>) { Rust
2 for i in 0..src.len() { dst[i] = *src; }
3 }
4
5 fn fill_vector_with_ref(src: &u32, dst: &mut Vec<u32>) {
6 let value = *src;
7 for i in 0..src.len() { dst[i] = value; }
8 }

Question:

Are these functions the same?

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 46 / 70

Mutability
Example 2: copying elements:
What if src is an element in dst?

1 fn fill_vector_with_ref(src: &u32, dst: &mut Vec<u32>) { Rust
2 for i in 0..src.len() { dst[i] = *src; }
3 }
4
5 fn fill_vector_with_ref(src: &u32, dst: &mut Vec<u32>) {
6 let value = *src;
7 for i in 0..src.len() { dst[i] = value; }
8 }
9
10 let mut x = vec![1, 2, 3];
11 fill_vector_with_ref(&x[1], &mut x);

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 47 / 70

Mutability
But Rust would reject this program.

1 let mut x = vec![1, 2, 3]; Rust
2 // obviously wrong
3 // mutable *and* immutable reference at the same time
4 fill_vector_with_ref(&x[1], &mut x);

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 48 / 70

Mutability
Things get even worse when multiple threads are involved
Can they both mutate the same value? → Data races

In fact, some people start with explaining that this rule exists because of threading.

Read more on this:

• https://smallcultfollowing.com/babysteps/blog/2013/06/11/on-the-connection-between-
memory-management-and-data-race-freedom/

• https://manishearth.github.io/blog/2015/05/17/the-problem-with-shared-mutability/

quote in that blogpost from kmc:

“My intuition is that code far away from my code might as well be in another thread, for all
I can reason about what it will do to shared mutable state.”

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 49 / 70

https://smallcultfollowing.com/babysteps/blog/2013/06/11/on-the-connection-between-memory-management-and-data-race-freedom/
https://smallcultfollowing.com/babysteps/blog/2013/06/11/on-the-connection-between-memory-management-and-data-race-freedom/
https://smallcultfollowing.com/babysteps/blog/2013/06/11/on-the-connection-between-memory-management-and-data-race-freedom/
https://manishearth.github.io/blog/2015/05/17/the-problem-with-shared-mutability/
https://manishearth.github.io/blog/2015/05/17/the-problem-with-shared-mutability/

Ownership
Summary:
• Bindings are mutable or not
• References are mutable or not
• Whenever something is mutably references, no other reference can exist

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 50 / 70

Mutability
Want to practice with this?

Weblab: Assignments - Week 1 - Types - All about Vecs

We’ll discuss in the lab tomorrow

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 51 / 70

Slices

Slices
Sometimes you want to reference more than one thing at a time:

1 let x = vec![1, 2, 3, 4]; Rust
2
3 // index 0, and 1 (excluding 2)
4 let a: &[u32] = &x[0..2]
5 // all elements at indexes starting from 2
6 let b = &x[2..]
7
8 // you can iterate over a slice
9 for i in b {
10 println!("{i}");
11 }
12
13 // or get its length
14 println!("{}", a.len());

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 53 / 70

Slices
Slices can be mutable:

1 let mut x = vec![1, 2, 3, 4]; Rust
2
3 // index 0, and 1 (excluding 2)
4 let a: &mut [u32] = &mut x[0..2]
5 for i in a {
6 *i += 3;
7 }
8
9 // prints 4, 5, 3, 4
10 println!("{:?}", x);

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 54 / 70

Slices
Some things coerce to slices:

1 // input is a slice Rust
2 fn sum(res: &[u32]) -> u32 {
3 // ...
4 }
5
6 // but we can call it with a vector!
7 let x = vec![1, 2, 3];
8 sum(&x);
9 // or a bit of a vector
10 sum(&x[1..]);
11 // or an array
12 sum(&[1, 2, 3]);

So writing sum like this is more flexible

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 55 / 70

Slices
This gives us a fun way to write sum:

1 fn sum(input: &[u32]) -> u32 { Rust
2 if input.is_empty() {
3 0
4 } else {
5 // add element 0 to everything after element 0
6 input[0] + sum(&input[1..])
7 }
8 }

Works for anything that looks like a sequence of u32, like vectors

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 56 / 70

Enums

Enums
• Last lecture: all about types
• Next lecture: all about enum types

But here are the basics, so you can get started using them

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 58 / 70

Enums
Question:

How many possible values does a bool have?

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 59 / 70

Enums
Question:

How many possible values does a u8 have?

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 60 / 70

Enums
Question:

How many possible values does a u32 have?

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 61 / 70

Enums
Question:

How many possible values does this type have?

1 struct X { Rust
2 a: bool,
3 b: bool,
4 }

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 62 / 70

Enums
• We call a struct a “product type”.
• If type A has n possible values
• If type B has m possible values
• Then a struct with A and B in it has 𝑛 ×𝑚 possible values

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 63 / 70

Enums
Sometimes, you know that not all values are possible.

1 // NOTE: only 1-7 are valid Rust
2 type WeekDay = u8;
3
4
5 // ???
6 let x: WeekDay = 8;

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 64 / 70

Enums
Sometimes, you know that not all values are possible.

1 // Only has 7 possible values Rust
2 enum WeekDay {
3 Monday,
4 Tuesday,
5 Wednesday,
6 Thursday,
7 Friday,
8 Saturday,
9 Sunday,
10 }
11
12 // we can only choose one of the valid values!
13 let x: WeekDay = WeekDay::Monday;

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 65 / 70

Enums
1 // Only has 7 possible values Rust
2 enum WeekDay {
3 Monday,
4 Tuesday,
5 Wednesday,
6 Thursday,
7 Friday,
8 Saturday,
9 Sunday,
10 }
11
12 // we can only choose one of the valid values!
13 let x: WeekDay = WeekDay::Monday;

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 66 / 70

Enums
Unlike in many other programming languages, enums can have values

1 enum IpAddress { Rust
2 Ipv4([u8; 4]),
3 Ipv6([u8; 16]),
4 }
5
6 let x: IpAddress = IpAddress::Ipv4([127, 0, 0, 1]);

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 67 / 70

Enums
How many possible values?

1 enum IpAddress { Rust
2 Ipv4([u8; 4]), // 2^32 ~= 4 billion
3 Ipv6([u8; 16]), // 2^128 ~= a lot
4 }

In total: 232 + 2128
Enums are sometimes called “sum types”

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 68 / 70

Enums
Another example: Option<T>

1 enum Option<T> { Rust
2 Some(T),
3 None
4 }
5
6 // 257 possible values
7 // 256 if Some, or one more: None
8 let x: Option<u8> = Some(3);

Jonathan Dönszelmann & Vivian Roest Lecture 3: Ownership and References 2024-11-18 69 / 70

Assignment: 5 minutes

• Create an enum for a JSON value called Value
• a JSON value is either:

‣ a floating point number
‣ a string
‣ true
‣ false
‣ null
‣ a list of other JSON values
‣ a json object, std::collections::HashMap<String, Value>

JSON spec

https://www.json.org/json-en.html

https://www.json.org/json-en.html
https://www.json.org/json-en.html

	Last week
	Today
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Ownership
	Mutability
	Mutability
	Mutability
	Mutability
	Mutability
	Mutability
	Mutability
	Mutability
	Mutability
	Mutability
	Mutability
	Mutability
	Mutability
	Mutability
	Mutability
	Mutability
	Ownership
	Mutability
	Slices
	Slices
	Slices
	Slices
	Enums
	Enums
	Enums
	Enums
	Enums
	Enums
	Enums
	Enums
	Enums
	Enums
	Enums
	Enums
	Assignment: 5 minutes

