Software Systems
An introduction to Software Systems
and Concurrency in Rust

Vivian Roest
Jonathan Dénszelmann

Delft University of Technology, The Netherlands

November 16, 2024

%
TUDelft

Today's Lecture

Course Information Mutability and Concurrency
® Course overview ® Globals
o Staff ® Interior Mutability
® Deadlines and Grading e Send + Sync
® Group work e Concurrency

%
TUDelft

Software Systems

OREILLY

e Continuation of Software Rust Atomics
Fundamentals?® and Locks
° TWO parts Low-Level Concurrency in Practice

@ Rust for embedded systems
@® Model based software
development,

Mara Bos

3The homologation course for Electrical Engineers, that
was focused on learning programming (in Rust). If you

haven't done this course: there are notes available on the X
course website and at https://cese.ewi.tudelft.nl https : //marabos . nl/at OmlCS/

https://cese.ewi.tudelft.nl
https://marabos.nl/atomics/

Staff

® Part 1:
® Vivian Roest
® George Hellouin de Menibus (Head TA)
* & TAs

® Part 2:

® Rosilde Corvino
® Guohao Lan
°* & TAs

%
TUDelft

Deadlines

* Wednesday Week 3 (27 November)
Assignment 1 about concurrency

* Wednesday Week 4 (4 December)
Assignment 2 about performance

* Wednesday Week 6 (18 December)
Assignment 3 about embedded development

%
TUDelft

Programs, processes and threads

Question:
What's the difference between a program, a process and a thread?

%
TUDelft

Programs, processes and threads

Question:

What's the difference between a program, a process and a thread?

Question:
Is multithreading possible on a single core system?

%
TUDelft

Programs, processes and threads

® Programs: Binaries and Scripts

® Process: An instantiation of a program

Subprocess: A copy of a process without shared memory

Thread: Subprocess with shared memory

%
TUDelft

Concurrency vs Parallelism

Question:
Is multithreading possible on a single core system?

® Parallelism: two things are happening at exactly the same time
® Concurrency: two things happen intertwined.

® Multithreading doesn't need to be parallel, it can be concurrent

%
TUDelft

Scheduler

More threads/processes than cores
® Concurrency: the illusion of parallelism

® Priorities and niceness

Generally:

® Processes get time slices
® Processes can yield their remaining time
® The scheduler can cooperate with needs of processes

%
TUDelft

Scheduler

std::thread::yield_now();

// approzimately the same as
std: :thread: :sleep(Duration: :from_secs(0));

gD wN e

® Make sure another thread is temporarily allowed to execute

%
TUDelft

Blocking

Question:
What does blocking mean in the context of concurrent execution?

%
TUDelft

Blocking

® When waiting for a lock to unlock

Another thread is allowed to run

The blocking thread is restarted when it can make progress again

More efficient than waiting in an infinite loop

%
TUDelft

Memory Safety

Buffer Overflow
Use After Free
Double Free

Race Conditions

Null Pointer Dereference

Why does Rust work like it does?

%
TUDelft

Concurrency bugs in C

1 int v = 0;

2

3 void count(int* delta) {

4 for (int i = 0; i < 100000; i++) v += *delta;
5 }

6

7 int main() {

8 thrd_t t1, t2;

9 int d1 = 1, d2 = -1;
10
11 thrd_create(&tl, count, &di1);
12 thrd_create(&t2, count, &d2);
13
14 thrd_join(t1l, NULL);
15 thrd_join(t2, NULL);
16
17 printf ("/d\n", v);
18 ¥
19

Aliasing

® One memory location

® Accessed through multiple pointers

fn update(a: &mut u64) {
*a += 1;

}

rbp

rbp,rsp

eax,DWORD PTR [rip+0x2£18]
eax,0x1

DWORD PTR [rip+0x2f0f],eax
eax,0x0

rbp

Mutexes

1 int v = 0, n = 100000;

2 mtx_t m;

&

4 void count(int* delta) {

5 for (int i=0; i<m; i++) {
6 mtx_lock(&m) ;

7 v += *delta;

8 mtx_unlock(&m) ;

9 }

10 }

11

12 int main() {

13 mtx_init(&m, mtx_plain);
14

15 // spawn and stop threads
16

17 printf ("/d\n", v);

18 ¥

19

Atomics

#include<stdatomic.h>

_Atomic int v = O;
int n = 100000;

void count(int* delta) {
for (int i=0; i<m; i++) {
atomic_fetch_add_explicit(
&v,
*#(int *)delta,
memory_order_relaxed

)8
T
int main() {

// spawn and stop threads
printf ("/%d\n", v);

Ordering

Atomics require ordering®

SeqCst, // Always correct

1 pub enum Ordering {
2 Relaxed,

3 Release,

4 Acquire,

5 AcqRel,

6

7

8

1 More info: https://marabos.nl/atomics/memory-ordering.html

Ift

https://marabos.nl/atomics/memory-ordering.html

Concurrency

1 use std::thread::spawn;

2 static v: i32 = 0;

3

4 fn count(delta: i32) {

5 for _ in 0..100_000 {

6 v += delta;

7 T

8 }

9

10 fn main() {

11 let t1 = spawn(|| count(1));
12 let t2 = spawn(|| count(-1));
13

14 t1.join() .unwrap();

15 t2.join() .unwrap() ;

16

17 println! ("{}", v);

18 }

Concurrency

1 use std::thread::spawn;

2 static mut v: i32 = 0;

3

4 fn count(delta: i32) {

5 for _ in 0..100_000 {

6 v += delta;

7 ¥

8 }

9

10 fn main() {

11 let t1 = spawn(|| count(1));
12 let t2 = spawn(|| count(-1));
13

14 t1.join() .unwrap();

15 t2.join() .unwrap() ;

16

17 println! ("{}", v);

18 }

Concurrency

error[E0133]: use of mutable static is unsafe and requires unsafe
- function or block
--> src/main.rs:7:9

|
| use of mutable static

|

= note: mutable statics can be mutated by multiple threads:
aliasing violations or data races will cause undefined behaviour

Intermezzo: Unsafe

® Relaxes some of Rust's strict guarantees
® Puts the programmer in charge of creating sound programs.

® More in Lecture 3.

%
TUDelft

Concurrency

1 static mut v: i32 = 0;

2

3 fn count(delta: i32) {

4 for _ in 0..100_000 {

5 unsafe{v += delta};

6 ¥

7 }

8

9 fn main() {

10 let t1 = thread::spawn(|| count(1));
11 let t2 = thread::spawn(|| count(-1));
12

13 t1.join() .unwrap();

14 t2.join() .unwrap() ;

15

16 println! ("{}", unsafe{v});

17 }

Rust Playground

%
TUDelft

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=bd91300166e27b54226a408194772c8a

Data Sharing Rules

® Sharing data immutably is okay
® Moving values to other threads is okay

® Sharing data mutably is not okay.

Notice that these rules are the same as those enforced by the borrow
checker!

%
TUDelft

Mutex as a Monad

1 int v = 0, n = 100000;

2 mtx_t m;

&

4 void count(int* delta) {

5 for (int i=0; i<m; i++) {
6 mtx_lock(&m) ;

7 v += *delta;

8 mtx_unlock(&m) ;

9 }

10 }

11

12 int main() {

13 mtx_init(&m, mtx_plain);
14

15 // spawn and stop threads
16

17 printf ("/d\n", v);

18 ¥

19

Mutex as a Monad

Mutexes work like options, they wrap the value. Providing added
context to the data, guarding it.

static v: Mutex<i32> = Mutex::new(0);

fn count(delta: i32) {
for _ in 0..100_000 {
*v.lock() += delta;
T

~NOoO O WN

%
TUDelft

Mutex as a Monad

What does a Mutex look like?

UnsafeCell: Interior mutability

pub struct Mutex<T: 7Sized> { Allows mutations even when

inner: sys::MovableMutex, t tabl
poison: poison::Flag, not mutable
) U S U S, * Unsafe to use, like mutable
statics

Mutex has OS help

%
TUDelft

Removing globals
What would happen if we made the value a local variable:

1 fn count(delta: i32, v: &Mutex<i32>) {

2 for i in 0..100_000 {

3 *v.lock() += delta

4 ¥

5 }

6

7 fn main() {

8 let v = Mutex::new(0);

9

10 let t1 = thread::spawn(|| count(1l, &v));
11 let t2 = thread::spawn(|| count(-1, &v));
12

13 t1.join() .unwrap() ;

14 t2.join() .unwrap() ;

15

16 println! ("{}", v.lock());

17 }

%
TUDelft

Removing globals

error [E0373]: closure may outlive the current function, but it
- Dborrows “v', which is owned by the current function
--> src/main.rs:14:28
|
14 | let t1 = thread::spawn(|| count(1l, &v));

- v’ is borrowed here

|
| may outlive borrowed value “v
|

note: function requires argument type to outlive ~'static~
--> src/main.rs:14:14
[
14 | let t1 = thread::spawn(|| count(1, &v));

%
TUDelft

Removing globals

® The spawned threads could run for longer than the main thread
® v is deallocated at the end of main

® the threads may need v for longer

%
TUDelft

Removing globals

The spawned threads could run for longer than the main thread

v is deallocated at the end of main

the threads may need v for longer

Solution: Throw v on the heap so it could live longer!

%
TUDelft

Boxing it up

1 fn count(delta: i32, v: Box<Mutex<i32>>) {
2 for i in 0..100_000 {

3 *v.lock() += delta

4 }

5 }

6

7 fn main() {

8 let v = Box::new(Mutex::new(0));

9

10 let t1 = thread::spawn(|| count(1l, v));
11 let t2 = thread::spawn(|| count(-1, v));
12

13 t1.join() .unwrap();

14 t2.join() .unwrap();

15

16 println! ("{}", v.lock());

17 }

18

%
TUDelft

Boxing it up

We try to access the same Box at different locations.

error [E0382] : use of moved value: v
12 | let v = Box::new(Mutex::new(0));
| - move occurs because “v° has type “Box<_>7,
which does not implement the “Copy” trait

- use occurs
| due to use in closure
|

value used here after move

|
13 |
14 | let t1 = thread::spawn(|| count(1, v));
| == - variable moved
| | due to use in closure
| |
| value moved into closure here
|
15 | let t2 = thread::spawn(|| count(-1, v));
|
|
|
|

So when do we deallocate?

Reference Counting

e Keep track of the number of owners

When it reaches 0 — deallocate

When we clone the reference, increment the reference count

® Rc doesn’'t implement Copy like other references, because Copying
them is not trivial

Like C++ std: :shared_ptr

%
TUDelft

Reference Counting

<3
T

© 00N U WN -

(==
= O

12
13
14
15
16
17

fn create_vectors() -> (Rc<Vec<i32>>, Rc<Vec<i32>>) {
// one vector on the heap. rc=1
let a = Rc::new(vec![1, 2, 31);

// two *extra* references to it. rc=3
let ref_1 = a.clone(); // doesn't clone the vec! only the ref!
let ref_2 = a.clone(); // doesn't clone the vec! only the ref!

(ref_1, ref_2) // return both. rc=2
}

fn main() {
let (a, b) = create_vectors(); // Both are the same wvector
println! ("{}", a);
println! ("{}", b);
// rc finally drops to 0

Rc is clonable even if the internal value is not.

Ift

Reference Counting

error [E0277]: “Rc<Mutex<i32>>" cannot be shared between threads safely
--> src/main.rs:15:14
|
15 | let t1 = thread::spawn(|| count(1, v.clone()));
- TTrhmhnmenets "Rc<Mutex<i32>>" cannot be shared
| between threads safely
|
= help: the trait “Sync” is not implemented for “Rc<Mutex<i32>>"
= note: required because of the requirements on the
impl of “Send” for “&Rc<Mutex<i32>>"
1 pub fn spawn<F, T>(f: F) -> JoinHandle<T>
2 where
3 F: (FnOnce() -> T) + Send + 'static,
4 T: Send + 'static {}
5

Sharing and Reference Counting

Question:
Why can't we share an Rc between two threads?

%
TUDelft

Sharing and Reference Counting

Question:
Why can't we share an Rc between two threads?

e Keeping track of ownership means updating the reference count
* Updating the reference count needs mutability (on clone and drop)
® Within one thread that's safe

So apparently, it is not safe to send or share some types between
threads.

%
TUDelft

T: Send + Sync

Send: It is safe to send T to another thread

Sync: It is safe to share a T with another thread (T is Sync iff &T
is Send)

%
TUDelft

Reference Counting, Send and Sync

error [E0277]: “Rc<Mutex<i32>>" cannot be shared between threads safely
--> src/main.rs:15:14
|
15 | let t1 = thread::spawn(|| count(1, v.clone()));
- TTrhmhnmenets "Rc<Mutex<i32>>" cannot be shared
| between threads safely
|
= help: the trait “Sync” is not implemented for “Rc<Mutex<i32>>"
= note: required because of the requirements on the
impl of “Send” for “&Rc<Mutex<i32>>"
1 pub fn spawn<F, T>(f: F) -> JoinHandle<T>
2 where
3 F: (FnOnce() -> T) + Send + 'static,
4 T: Send + 'static {}
5

Reference Counting, Send and Sync

1 impl<T: 7Sized> !Send for Rc<T> {}
2 impl<T: ?Sized> !Sync for Re<T> {}

%
TUDelft

Atomic Reference Counter (Arc)

We could use a Mutex again
* Atomics

Arc<T>: Send + Sync

e So we can use it to share references between threads

%
TUDelft

Fixing the code with Arcs

1 fn count(delta: i32, v: Arc<Mutex<i32>>) {
2 for i in 0..100_000 {

3 *v.lock() += delta

4 }

5 }

6

7 fn main() {

8 let v = Arc::new(Mutex::new(0));

9 let (v1, v2) = (v.clone(), v.clone());
10

11 let t1 = thread::spawn(|| count(1l, v1));
12 let t2 = thread::spawn(|| count(-1, v2));
13

14 t1.join() .unwrap();

15 t2.join() .unwrap(;

16

17 println! ("{}", v.lock());

18 }

%
TUDelft

Concurrency in other languages

Python: Doesn't really have it

Java: Every object has a “thin lock”

C or C++: You're responsible
® Go: You're responsible
Haskell: No mutability

JavaScript/TypeScript: relies on async/await

Rust: The Compiler is responsible

%
TUDelft

Break

® See you back in 15 minutes

® Crash course concurrent programming.

%
TUDelft

Communicating between threads

@ Communicate by sharing memory

Make memory mutable from multiple threads

Needs locking to avoid data races

Can be quite slow when there is lots of communication
Useful for exchanging large amounts of data

More complex logic

%
TUDelft

Communicating between threads

@ Communicate by sharing memory

Make memory mutable from multiple threads

Needs locking to avoid data races

Can be quite slow when there is lots of communication
Useful for exchanging large amounts of data

More complex logic

® Communicating by sending messages

® No need for explicit locking
® Easy to reason about
® Safe by design: No mutability problems

%
TUDelft

Communicating between threads

Thread A < Thread A <
Thread B > Thread B
o Write/ Read/ o - P
”] Send | Receive e A

%
TUDelft

Channels

Like a queue, first in, first out

One end in one thread, other end in another thread

Lock-free insertion (magic / atomics depending on who you ask)

Receivers block and wait when there are no messages

Thread A Thread Z

Send Receive

Message queue
First in, First out

%
TUDelft

Channels

A simple example

1 use std::sync::mpsc::channel;

2

3 fn main() {

4 // tx: Sender<i32>, rxz: Receiver<i32>
5 let (tx, rx) = channel();

6

7 spawn(move || {

8 while let 0k(i) = rx.recv() {
9 println! ("hello, {i}")

10 }

11 B

12

13 tx.send(1) .unwrap();

14 tx.send(2) .unwrap() ;

15 tx.send(3) .unwrap() ;

16 }

%
TUDelft

Channels: mpsc

® Multi Producer Single Consumer
® Senders can be cloned, receivers can not

Multiple Producers Cloning
Sender Receiver
Thread A Thread Z
and Receive Clone
Message queue
First in, First out
Sender
Sjnd o
Thread B Sender

%
TUDelft

Channels: Cloning Senders

1 fn main(Q) {

2 let (tx, rx) = channel();

3

4 spawn(move || {

5 while let Ok(i) = rx.recv() {

6 println! ("hello, {i}")

7 }

8 b;

9

10 // clone senders

11 let tx1 = tx.clone();

12 let tx2 = tx.clone();

13

14 spawn(move || for i in 0..5 {txl.send(i).unwrap(});
15 spawn(move || for i in 5..10 {tx2.send(i).unwrap()});
16 }

%
TUDelft

Channels: multiple receivers?
What are the semantics?

® Send messages to all receivers

e Send messages to one receiver

® Various libraries implement both

Thread A Thread Z

Send Receive

Message queue
First in, First out

Send Receive

Thread B Thread Y

%
TUDelft

Bounded Channels

® By default, channels are unbounded

® Problem: senders can get ahead of
receivers

® Solution: Buffer with a certain size:
Bounded channel / sync channel

e Senders can block

%
TUDelft

Thread A

Send

Thread Z

Receive

pos 0

pos 1 pos 2

Send

Thread B

Bounded Channels Example

1 fn main() {

2 let (tx, rx) = sync_channel(3);
3

4 spawn (move || {

5 while let 0k(i) = rx.recv() {
6 println!("hello, {i}")

7 }

8 s

9

10 // clone senders 40 times

11 for i in 0..40 {

12 let tx_clone = tx.clone();

13 spawn(move || for j in (i*10)..(i*10+10) {
14 tx_clone.send(j) .unwrap()
15 g

16 ¥

17 }

%
TUDelft

Bounded Channels: 0 size

Question:
What happens when the size is 07

%
TUDelft

Bounded Channels: 0 size
® Sender blocks until a receiver is ready

1 fn main() {
2 let (tx, rx) = sync_channel(0);
3
4 spawn(move || {
5 while let Ok(recv_msg) = rx.recv() {
6 println! ("hello, {i}")
7 }
8 B
9
10 // clone senders 40 times
11 for thread_count in 0..40 {
12 let tx_clone = tx.clone();
13 spawn(move || for i in
— (thread_count#*10) .. (thread_count*10+10) {
14 tx_clone.send (i) .unwrap()
15 b;
16 T
17 }

%
TUDelft

Thread Management

The lifecycle of a thread:

let handle = spawn(|| {...});

handle.join();

OO WN

%
TUDelft

Thread Management
The lifecycle of multiple threads:

1 let mut handles = Vec::new();
2
3 for ... {
4 handles.push(spawn(|| {...}));
5 }
6
7
8
9 for handle in handles {
10 handle. join();
11 }
12
Question:

How many threads should we spawn?

%
TUDelft

Thread Management
The lifecycle of multiple threads:

1 let mut handles = Vec::new();
2
3 for ... {
4 handles.push(spawn(|| {...}));
5 }
6
7
8
9 for handle in handles {
10 handle. join();
11 }
12
Insight

It is not always trivial to determine the amount of threads to spawn.

%
TUDelft

Thread Management

1 fn task_runner(rx: Receiver<Task>) {
2 while let Some(task) = rx.recv() { task() }
3 }

4

5 let mut txs = Vec::new();

6 for _ in num_cores {

7 let (rx, tx) = channel();

8 spawn (|| task_runner(rx));

9 txs.push(tx);

10 }

11

12 // Ezecute task(s) on a random thread
13 txs.choose(thread_rng()) .send(some_task)

Note: Task could for example be a function pointer

%
TUDelft

Thread Management

1 fn task_runner(rx: Receiver<Task>) {
2 while let Some(task) = rx.recv() { task() }
3 }

4

5 let mut txs = Vec::new();

6 for _ in num_cores {

7 let (rx, tx) = channel();

8 spawn(| | task_runner(rx));

9 txs.push(tx);

10 }

11

12 // Ezecute task(s) on a random thread
13 txs.choose(thread_rng()) .send(some_task) ;

Question:
Does this ensure an equal distribution of work?

Thread Management: work stealing

— Thread 1 Queue

Global Queue ‘ Thread 2 Queue

| Thread 3 Queue

Thread 1 queue and global queue empty? Steal from another thread!

%
TUDelft

Thread Management: Work Stealing

use rayon::Parallellterator;

let tasks: [Task; 3] = [taska, taskb, taskc];
tasks

.into_par_iter()

.for_each(|x| x())

OO WN

%
TUDelft

Waiting for 10

Situation:
@ A webserver is handling many connections.
® Each connection has an associated TCP socket
© Every time we receive a packet, we have to process it for 0.1ms

O Every time we send a packet, it takes about 10 seconds to get a
response

Question:
How many threads do we need for maximum utilization?

%
TUDelft

Waiting for 10

But the model of ‘tasks’ is really useful!

1 fn task() {

2 let conn = start_connection();
3 while let Some(packet) = conn.recv() {
4 conn.send(process (packet)) ;
5 ¥

6 }

7

8 for i in 0..=many {

9 spawn (task) ;

10)

11

%
TUDelft

Take scheduling into our own hands!

Don't let the OS schedule threads
® Make our own lightweight ‘task’
® Make our own scheduler
® Tasks tell the scheduler what event they're waiting for
® The scheduler wakes up a task when the OS says the event has
happened
Examples:
® Java, Elixir: Green Threads
® Go: Goroutines
® Python, Javascript, C++, Rust: Async/IO

%
TUDelft

Take scheduling into our own hands!

Problem:
How do we preempt a task?

e ‘Easy’ for interpreted languages

® Go inserts extra runtime checks

%
TUDelft

Take scheduling into our own hands!

Find the places where we could start doing something else.
Modelling 1/0 as a state machine.

let conn = start_connection();
while let Some(packet) = comn.recv() {
conn.send(process (packet)) ;

= w N -

}

States:
® Tnitial
® ConnectionStarted{conn}
* AwaitingReceive{conn}
* AwaitingSend{conn, packet}

® Done

%
TUDelft

Take scheduling into our own hands!

eive

Awa

%
TUDelft

Reading a file

1 fn read_file(file: &Path) -> Vec<u8> {

2 let f = File::open(path);

3 let buffer = Vec::new();

4

5 loop {

6 let mut read_buffer = [0; 2048];

7 let num_read = f.read(&mut read_buffer);
8

9 if num_read == 0 { break; }

10 buffer.extend(&read_buffer[0..num_read]);
11 }

12 buffer

13 }
Question:

What are the states?

%
TUDelft

Reading a file

Initial »Readin, :@

%
TUDelft

Reading two files simultaneously

Task 1

» Done

Task 2

Try to make progress in both: Polling

3
TUDelft

Asynchronous |0

® https://man7.org/linux/man-pages/man7/aio.7.html
® aio_read like read, but returns immediately

® aio_error see the status (error, ok, or in progress) of a read
request

® ajo_return get the return value of read, how many bytes were
read?

Note: this is one option under linux. There is also io_uring for Linux,
and similar APIs on Windows and MacOS.

%
TUDelft

https://man7.org/linux/man-pages/man7/aio.7.html

Asynchronous |0

1 pub async fn read_file(path: &Path) -> Result<Vec<u8>, io::Error> {
2 let mut file = File::open(path).await?;

3 let mut buffer = Vec::new();

4

5 loop {

6 let mut read_buffer = Vec::new();

7 let num_bytes = file.read(&mut read_buffer).await?;
8 if num_bytes == 0 {

© break;
10 }
11
12 buffer.extend(&read_buffer[0..num_bytes]);
13 ¥
14
15 Ok (buffer)
16 }

Asynchronous |0

In Rust .await
® Sets up an (asynchronous) request to the operating system
® Goes to the next state in the state machine
® Yields to poll another state machine

When we get back to polling this state machine:

® ask the OS if we made progress
® continue executing code

%
TUDelft

Summary

Achieving fearless concurrency in Rust

Using channels to your advantage

® Be conscious of your thread count

Not all cases call for threads

Async |/O internals and its state machines

%
TUDelft

Rounding up

® First lab next thursday
® First assignment online today:
® creating a concurrent grep clone

%
TUDelft

Lifetimes

® Every value has a lifetime

e After the end of a lifetime, a value is dropped

® Some types have a lifetime associated with them

t borrowl

println! ("bo

2
TUDelft

Lifetimes

In functions, you can be explicit about lifetimes

fn print_ref<'a>(x: &'a i32) {
println! ("print_ref: x is {}", x);

In structs, you have to be explicit about lifetimes

struct Example<'a> {
field: &'a i32,

%
TUDelft

Lifetimes

Sometimes, logic requires two lifetimes to be the same

1 fn longest(a: &str, b: &str) -> &str {
2 if a.len() > b.len() {

3 a

4 } else {

5 b

6 }

7

8

%
TUDelft

Lifetimes

Sometimes, logic requires two lifetimes to be the same

1 fn longest<'a>(a: &'a str, b: &'a str) -> &'a str {
2 if a.len() > b.len() {

3 a

4 } else {

5 b

6 T

7

8

%
TUDelft

