
Software Systems
An introduction to Software Systems

and Concurrency in Rust

Vivian Roest
Jonathan Dönszelmann

Delft University of Technology, The Netherlands

November 16, 2024

Today’s Lecture

Course Information
● Course overview
● Staff
● Deadlines and Grading
● Group work

Mutability and Concurrency
● Globals
● Interior Mutability
● Send + Sync
● Concurrency

2 / 82

Software Systems

● Continuation of Software
Fundamentalsa

● Two parts
1 Rust for embedded systems
2 Model based software

development,
aThe homologation course for Electrical Engineers, that

was focused on learning programming (in Rust). If you
haven’t done this course: there are notes available on the
course website and at https://cese.ewi.tudelft.nl https://marabos.nl/atomics/

3 / 82

https://cese.ewi.tudelft.nl
https://marabos.nl/atomics/

Staff

● Part 1:
● Vivian Roest
● George Hellouin de Menibus (Head TA)
● & TAs

● Part 2:
● Rosilde Corvino
● Guohao Lan
● & TAs

4 / 82

Deadlines

● Wednesday Week 3 (27 November)
Assignment 1 about concurrency

● Wednesday Week 4 (4 December)
Assignment 2 about performance

● Wednesday Week 6 (18 December)
Assignment 3 about embedded development

5 / 82

Programs, processes and threads

Question:
What’s the difference between a program, a process and a thread?

Question:
Is multithreading possible on a single core system?

6 / 82

Programs, processes and threads

Question:
What’s the difference between a program, a process and a thread?

Question:
Is multithreading possible on a single core system?

6 / 82

Programs, processes and threads

● Programs: Binaries and Scripts
● Process: An instantiation of a program
● Subprocess: A copy of a process without shared memory
● Thread: Subprocess with shared memory

7 / 82

Concurrency vs Parallelism

Question:
Is multithreading possible on a single core system?

● Parallelism: two things are happening at exactly the same time
● Concurrency: two things happen intertwined.
● Multithreading doesn’t need to be parallel, it can be concurrent

8 / 82

Scheduler

● More threads/processes than cores
● Concurrency: the illusion of parallelism
● Priorities and niceness
● Generally:

● Processes get time slices
● Processes can yield their remaining time
● The scheduler can cooperate with needs of processes

9 / 82

Scheduler

1 std::thread::yield_now();
2
3 // approximately the same as
4 std::thread::sleep(Duration::from_secs(0));
5

● Make sure another thread is temporarily allowed to execute

10 / 82

Blocking

Question:
What does blocking mean in the context of concurrent execution?

11 / 82

Blocking

● When waiting for a lock to unlock
● Another thread is allowed to run
● The blocking thread is restarted when it can make progress again
● More efficient than waiting in an infinite loop

12 / 82

Memory Safety

● Buffer Overflow
● Use After Free
● Double Free
● Race Conditions
● Null Pointer Dereference

Why does Rust work like it does?

13 / 82

Concurrency bugs in C

1 int v = 0;
2
3 void count(int* delta) {
4 for (int i = 0; i < 100000; i++) v += *delta;
5 }
6
7 int main() {
8 thrd_t t1, t2;
9 int d1 = 1, d2 = -1;
10
11 thrd_create(&t1, count, &d1);
12 thrd_create(&t2, count, &d2);
13
14 thrd_join(t1, NULL);
15 thrd_join(t2, NULL);
16
17 printf("%d\n", v);
18 }
19

14 / 82

Aliasing

● One memory location
● Accessed through multiple pointers

fn update(a: &mut u64) {
*a += 1;

}

1 update:
2 push rbp
3 mov rbp,rsp
4 mov eax,DWORD PTR [rip+0x2f18]
5 add eax,0x1
6 mov DWORD PTR [rip+0x2f0f],eax
7 mov eax,0x0
8 pop rbp
9 ret

10

15 / 82

Mutexes

1 int v = 0, n = 100000;
2 mtx_t m;
3
4 void count(int* delta) {
5 for (int i=0; i<n; i++) {
6 mtx_lock(&m);
7 v += *delta;
8 mtx_unlock(&m);
9 }
10 }
11
12 int main() {
13 mtx_init(&m, mtx_plain);
14
15 // spawn and stop threads
16
17 printf("%d\n", v);
18 }
19

16 / 82

Atomics

1 #include<stdatomic.h>
2
3 _Atomic int v = 0;
4 int n = 100000;
5
6 void count(int* delta) {
7 for (int i=0; i<n; i++) {
8 atomic_fetch_add_explicit(
9 &v,
10 *(int *)delta,
11 memory_order_relaxed
12);
13 }
14 }
15
16 int main() {
17 // spawn and stop threads
18 printf("%d\n", v);
19 }
20

17 / 82

Ordering

Atomics require ordering1

1 pub enum Ordering {
2 Relaxed,
3 Release,
4 Acquire,
5 AcqRel,
6 SeqCst, // Always correct
7 }
8

1More info: https://marabos.nl/atomics/memory-ordering.html

18 / 82

https://marabos.nl/atomics/memory-ordering.html

Concurrency

1 use std::thread::spawn;
2 static v: i32 = 0;
3
4 fn count(delta: i32) {
5 for _ in 0..100_000 {
6 v += delta;
7 }
8 }
9
10 fn main() {
11 let t1 = spawn(|| count(1));
12 let t2 = spawn(|| count(-1));
13
14 t1.join().unwrap();
15 t2.join().unwrap();
16
17 println!("{}", v);
18 }

19 / 82

Concurrency

1 use std::thread::spawn;
2 static mut v: i32 = 0;
3
4 fn count(delta: i32) {
5 for _ in 0..100_000 {
6 v += delta;
7 }
8 }
9
10 fn main() {
11 let t1 = spawn(|| count(1));
12 let t2 = spawn(|| count(-1));
13
14 t1.join().unwrap();
15 t2.join().unwrap();
16
17 println!("{}", v);
18 }

20 / 82

Concurrency

error[E0133]: use of mutable static is unsafe and requires unsafe
function or block↪

--> src/main.rs:7:9
|

7 | v += delta;
| ^^^^^^^^^^ use of mutable static
|
= note: mutable statics can be mutated by multiple threads:
aliasing violations or data races will cause undefined behaviour

21 / 82

Intermezzo: Unsafe

● Relaxes some of Rust’s strict guarantees
● Puts the programmer in charge of creating sound programs.
● More in Lecture 3.

22 / 82

Concurrency

1 static mut v: i32 = 0;
2
3 fn count(delta: i32) {
4 for _ in 0..100_000 {
5 unsafe{v += delta};
6 }
7 }
8
9 fn main() {
10 let t1 = thread::spawn(|| count(1));
11 let t2 = thread::spawn(|| count(-1));
12
13 t1.join().unwrap();
14 t2.join().unwrap();
15
16 println!("{}", unsafe{v});
17 }

Rust Playground
23 / 82

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=bd91300166e27b54226a408194772c8a

Data Sharing Rules

● Sharing data immutably is okay
● Moving values to other threads is okay
● Sharing data mutably is not okay.

Notice that these rules are the same as those enforced by the borrow
checker!

24 / 82

Mutex as a Monad

1 int v = 0, n = 100000;
2 mtx_t m;
3
4 void count(int* delta) {
5 for (int i=0; i<n; i++) {
6 mtx_lock(&m);
7 v += *delta;
8 mtx_unlock(&m);
9 }
10 }
11
12 int main() {
13 mtx_init(&m, mtx_plain);
14
15 // spawn and stop threads
16
17 printf("%d\n", v);
18 }
19

25 / 82

Mutex as a Monad

Mutexes work like options, they wrap the value. Providing added
context to the data, guarding it.

1 static v: Mutex<i32> = Mutex::new(0);
2
3 fn count(delta: i32) {
4 for _ in 0..100_000 {
5 *v.lock() += delta;
6 }
7 }

26 / 82

Mutex as a Monad

What does a Mutex look like?

pub struct Mutex<T: ?Sized> {
inner: sys::MovableMutex,
poison: poison::Flag,
data: UnsafeCell<T>,

}

● UnsafeCell: Interior mutability
● Allows mutations even when

not mutable
● Unsafe to use, like mutable

statics
● Mutex has OS help

27 / 82

Removing globals
What would happen if we made the value a local variable:

1 fn count(delta: i32, v: &Mutex<i32>) {
2 for i in 0..100_000 {
3 *v.lock() += delta
4 }
5 }
6
7 fn main() {
8 let v = Mutex::new(0);
9
10 let t1 = thread::spawn(|| count(1, &v));
11 let t2 = thread::spawn(|| count(-1, &v));
12
13 t1.join().unwrap();
14 t2.join().unwrap();
15
16 println!("{}", v.lock());
17 }

28 / 82

Removing globals

error[E0373]: closure may outlive the current function, but it
borrows `v`, which is owned by the current function↪

--> src/main.rs:14:28
|

14 | let t1 = thread::spawn(|| count(1, &v));
| ^^ - `v` is borrowed here
| |
| may outlive borrowed value `v`
|

note: function requires argument type to outlive `'static`
--> src/main.rs:14:14
|

14 | let t1 = thread::spawn(|| count(1, &v));
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

29 / 82

Removing globals

● The spawned threads could run for longer than the main thread
● v is deallocated at the end of main
● the threads may need v for longer

30 / 82

Removing globals

● The spawned threads could run for longer than the main thread
● v is deallocated at the end of main
● the threads may need v for longer
● Solution: Throw v on the heap so it could live longer!

31 / 82

Boxing it up

1 fn count(delta: i32, v: Box<Mutex<i32>>) {
2 for i in 0..100_000 {
3 *v.lock() += delta
4 }
5 }
6
7 fn main() {
8 let v = Box::new(Mutex::new(0));
9
10 let t1 = thread::spawn(|| count(1, v));
11 let t2 = thread::spawn(|| count(-1, v));
12
13 t1.join().unwrap();
14 t2.join().unwrap();
15
16 println!("{}", v.lock());
17 }
18

32 / 82

Boxing it up
We try to access the same Box at different locations.

error[E0382]: use of moved value: `v`
12 | let v = Box::new(Mutex::new(0));

| - move occurs because `v` has type `Box<_>`,
| which does not implement the `Copy` trait

13 |
14 | let t1 = thread::spawn(|| count(1, v));

| -- - variable moved
| | due to use in closure
| |
| value moved into closure here
|

15 | let t2 = thread::spawn(|| count(-1, v));
| ^^ - use occurs
| | due to use in closure
| |
| value used here after move

So when do we deallocate?

33 / 82

Reference Counting

● Keep track of the number of owners
● When it reaches 0 → deallocate
● When we clone the reference, increment the reference count
● Rc doesn’t implement Copy like other references, because Copying

them is not trivial
● Like C++ std::shared_ptr

34 / 82

Reference Counting

1 fn create_vectors() -> (Rc<Vec<i32>>, Rc<Vec<i32>>) {
2 // one vector on the heap. rc=1
3 let a = Rc::new(vec![1, 2, 3]);
4
5 // two *extra* references to it. rc=3
6 let ref_1 = a.clone(); // doesn't clone the vec! only the ref!
7 let ref_2 = a.clone(); // doesn't clone the vec! only the ref!
8
9 (ref_1, ref_2) // return both. rc=2
10 }
11
12 fn main() {
13 let (a, b) = create_vectors(); // Both are the same vector
14 println!("{}", a);
15 println!("{}", b);
16 // rc finally drops to 0
17 }

Rc is clonable even if the internal value is not.
35 / 82

Reference Counting

error[E0277]: `Rc<Mutex<i32>>` cannot be shared between threads safely
--> src/main.rs:15:14
|

15 | let t1 = thread::spawn(|| count(1, v.clone()));
| ^^^^^^^^^^^^^ `Rc<Mutex<i32>>` cannot be shared
| between threads safely
|
= help: the trait `Sync` is not implemented for `Rc<Mutex<i32>>`
= note: required because of the requirements on the

impl of `Send` for `&Rc<Mutex<i32>>`

1 pub fn spawn<F, T>(f: F) -> JoinHandle<T>
2 where
3 F: (FnOnce() -> T) + Send + 'static,
4 T: Send + 'static {}
5

36 / 82

Sharing and Reference Counting

Question:
Why can’t we share an Rc between two threads?

37 / 82

Sharing and Reference Counting

Question:
Why can’t we share an Rc between two threads?

● Keeping track of ownership means updating the reference count
● Updating the reference count needs mutability (on clone and drop)
● Within one thread that’s safe

So apparently, it is not safe to send or share some types between
threads.

38 / 82

T: Send + Sync

Send: It is safe to send T to another thread
Sync: It is safe to share a T with another thread (T is Sync iff &T
is Send)

39 / 82

Reference Counting, Send and Sync

error[E0277]: `Rc<Mutex<i32>>` cannot be shared between threads safely
--> src/main.rs:15:14
|

15 | let t1 = thread::spawn(|| count(1, v.clone()));
| ^^^^^^^^^^^^^ `Rc<Mutex<i32>>` cannot be shared
| between threads safely
|
= help: the trait `Sync` is not implemented for `Rc<Mutex<i32>>`
= note: required because of the requirements on the

impl of `Send` for `&Rc<Mutex<i32>>`

1 pub fn spawn<F, T>(f: F) -> JoinHandle<T>
2 where
3 F: (FnOnce() -> T) + Send + 'static,
4 T: Send + 'static {}
5

40 / 82

Reference Counting, Send and Sync

1 impl<T: ?Sized> !Send for Rc<T> {}
2 impl<T: ?Sized> !Sync for Rc<T> {}

41 / 82

Atomic Reference Counter (Arc)

● We could use a Mutex again
● Atomics
● Arc<T>: Send + Sync
● So we can use it to share references between threads

42 / 82

Fixing the code with Arcs

1 fn count(delta: i32, v: Arc<Mutex<i32>>) {
2 for i in 0..100_000 {
3 *v.lock() += delta
4 }
5 }
6
7 fn main() {
8 let v = Arc::new(Mutex::new(0));
9 let (v1, v2) = (v.clone(), v.clone());
10
11 let t1 = thread::spawn(|| count(1, v1));
12 let t2 = thread::spawn(|| count(-1, v2));
13
14 t1.join().unwrap();
15 t2.join().unwrap();
16
17 println!("{}", v.lock());
18 }

43 / 82

Concurrency in other languages

● Python: Doesn’t really have it
● Java: Every object has a “thin lock”
● C or C++: You’re responsible
● Go: You’re responsible
● Haskell: No mutability
● JavaScript/TypeScript: relies on async/await
● Rust: The Compiler is responsible

44 / 82

Break

● See you back in 15 minutes
● Crash course concurrent programming.

45 / 82

Communicating between threads

1 Communicate by sharing memory
● Make memory mutable from multiple threads
● Needs locking to avoid data races
● Can be quite slow when there is lots of communication
● Useful for exchanging large amounts of data
● More complex logic

46 / 82

Communicating between threads

1 Communicate by sharing memory
● Make memory mutable from multiple threads
● Needs locking to avoid data races
● Can be quite slow when there is lots of communication
● Useful for exchanging large amounts of data
● More complex logic

2 Communicating by sending messages
● No need for explicit locking
● Easy to reason about
● Safe by design: No mutability problems

47 / 82

Communicating between threads

Thread A

Thread B

sharedWrite/
Send

Read/
Receive

Thread A

Thread B

shared

48 / 82

Channels

● Like a queue, first in, first out
● One end in one thread, other end in another thread
● Lock-free insertion (magic / atomics depending on who you ask)
● Receivers block and wait when there are no messages

Message queue
First in, First out

Send

Thread A Thread Z

Receive

49 / 82

Channels
A simple example

1 use std::sync::mpsc::channel;
2
3 fn main() {
4 // tx: Sender<i32>, rx: Receiver<i32>
5 let (tx, rx) = channel();
6
7 spawn(move || {
8 while let Ok(i) = rx.recv() {
9 println!("hello, {i}")
10 }
11 });
12
13 tx.send(1).unwrap();
14 tx.send(2).unwrap();
15 tx.send(3).unwrap();
16 }

50 / 82

Channels: mpsc

● Multi Producer Single Consumer
● Senders can be cloned, receivers can not

Multiple Producers

Message queue
First in, First out

Send

Thread A

Send

Thread B

Thread Z

Receive

Cloning
Sender Receiver

Sender

Receiver

Sender

Clone

51 / 82

Channels: Cloning Senders

1 fn main() {
2 let (tx, rx) = channel();
3
4 spawn(move || {
5 while let Ok(i) = rx.recv() {
6 println!("hello, {i}")
7 }
8 });
9
10 // clone senders
11 let tx1 = tx.clone();
12 let tx2 = tx.clone();
13
14 spawn(move || for i in 0..5 {tx1.send(i).unwrap()});
15 spawn(move || for i in 5..10 {tx2.send(i).unwrap()});
16 }

52 / 82

Channels: multiple receivers?
What are the semantics?
● Send messages to all receivers
● Send messages to one receiver
● Various libraries implement both

Message queue
First in, First out

Send

Thread A Thread Z

Receive

Send

Thread B Thread Y

Receive

53 / 82

Bounded Channels

● By default, channels are unbounded
● Problem: senders can get ahead of

receivers
● Solution: Buffer with a certain size:

Bounded channel / sync channel
● Senders can block

Send

Thread A Thread Z

Receive

pos 0

Send

Thread B

pos 1 pos 2

54 / 82

Bounded Channels Example

1 fn main() {
2 let (tx, rx) = sync_channel(3);
3
4 spawn(move || {
5 while let Ok(i) = rx.recv() {
6 println!("hello, {i}")
7 }
8 });
9
10 // clone senders 40 times
11 for i in 0..40 {
12 let tx_clone = tx.clone();
13 spawn(move || for j in (i*10)..(i*10+10) {
14 tx_clone.send(j).unwrap()
15 });
16 }
17 }

55 / 82

Bounded Channels: 0 size

Question:
What happens when the size is 0?

56 / 82

Bounded Channels: 0 size
● Sender blocks until a receiver is ready

1 fn main() {
2 let (tx, rx) = sync_channel(0);
3
4 spawn(move || {
5 while let Ok(recv_msg) = rx.recv() {
6 println!("hello, {i}")
7 }
8 });
9
10 // clone senders 40 times
11 for thread_count in 0..40 {
12 let tx_clone = tx.clone();
13 spawn(move || for i in

(thread_count*10)..(thread_count*10+10) {↪

14 tx_clone.send(i).unwrap()
15 });
16 }
17 }

57 / 82

Thread Management

The lifecycle of a thread:

1 let handle = spawn(|| {...});
2
3 ...
4
5 handle.join();
6

58 / 82

Thread Management
The lifecycle of multiple threads:

1 let mut handles = Vec::new();
2
3 for ... {
4 handles.push(spawn(|| {...}));
5 }
6
7 ...
8
9 for handle in handles {
10 handle.join();
11 }
12

Question:
How many threads should we spawn?

59 / 82

Thread Management
The lifecycle of multiple threads:

1 let mut handles = Vec::new();
2
3 for ... {
4 handles.push(spawn(|| {...}));
5 }
6
7 ...
8
9 for handle in handles {
10 handle.join();
11 }
12

Insight
It is not always trivial to determine the amount of threads to spawn.

60 / 82

Thread Management

1 fn task_runner(rx: Receiver<Task>) {
2 while let Some(task) = rx.recv() { task() }
3 }
4
5 let mut txs = Vec::new();
6 for _ in num_cores {
7 let (rx, tx) = channel();
8 spawn(|| task_runner(rx));
9 txs.push(tx);
10 }
11
12 // Execute task(s) on a random thread
13 txs.choose(thread_rng()).send(some_task)
14

Note: Task could for example be a function pointer

61 / 82

Thread Management

1 fn task_runner(rx: Receiver<Task>) {
2 while let Some(task) = rx.recv() { task() }
3 }
4
5 let mut txs = Vec::new();
6 for _ in num_cores {
7 let (rx, tx) = channel();
8 spawn(|| task_runner(rx));
9 txs.push(tx);
10 }
11
12 // Execute task(s) on a random thread
13 txs.choose(thread_rng()).send(some_task);
14

Question:
Does this ensure an equal distribution of work?

62 / 82

Thread Management: work stealing

Global Queue

Thread 1 Queue

Thread 2 Queue

Thread 3 Queue

Thread 1 queue and global queue empty? Steal from another thread!

63 / 82

Thread Management: Work Stealing

1 use rayon::ParallelIterator;
2
3 let tasks: [Task; 3] = [taska, taskb, taskc];
4 tasks
5 .into_par_iter()
6 .for_each(|x| x())

64 / 82

Waiting for IO

Situation:
1 A webserver is handling many connections.
2 Each connection has an associated TCP socket
3 Every time we receive a packet, we have to process it for 0.1ms
4 Every time we send a packet, it takes about 10 seconds to get a

response

Question:
How many threads do we need for maximum utilization?

65 / 82

Waiting for IO

But the model of ‘tasks’ is really useful!

1 fn task() {
2 let conn = start_connection();
3 while let Some(packet) = conn.recv() {
4 conn.send(process(packet));
5 }
6 }
7
8 for i in 0..=many {
9 spawn(task);
10 }
11

66 / 82

Take scheduling into our own hands!

Don’t let the OS schedule threads
● Make our own lightweight ‘task’
● Make our own scheduler
● Tasks tell the scheduler what event they’re waiting for
● The scheduler wakes up a task when the OS says the event has

happened
Examples:
● Java, Elixir: Green Threads
● Go: Goroutines
● Python, Javascript, C++, Rust: Async/IO

67 / 82

Take scheduling into our own hands!

Problem:
How do we preempt a task?

● ‘Easy’ for interpreted languages
● Go inserts extra runtime checks

68 / 82

Take scheduling into our own hands!
Find the places where we could start doing something else.
Modelling I/O as a state machine.

1 let conn = start_connection();
2 while let Some(packet) = conn.recv() {
3 conn.send(process(packet));
4 }

States:
● Initial
● ConnectionStarted{conn}
● AwaitingReceive{conn}
● AwaitingSend{conn, packet}
● Done

69 / 82

Take scheduling into our own hands!

Initial

ConnectionStarted

AwaitingReceive

AwaitingSend

Done

70 / 82

Reading a file

1 fn read_file(file: &Path) -> Vec<u8> {
2 let f = File::open(path);
3 let buffer = Vec::new();
4
5 loop {
6 let mut read_buffer = [0; 2048];
7 let num_read = f.read(&mut read_buffer);
8
9 if num_read == 0 { break; }
10 buffer.extend(&read_buffer[0..num_read]);
11 }
12 buffer
13 }

Question:
What are the states?

71 / 82

Reading a file

Initial DoneReading

72 / 82

Reading two files simultaneously

Task 1

Initial DoneReading

Task 2

Initial DoneReading

Try to make progress in both: Polling
73 / 82

Asynchronous IO

● https://man7.org/linux/man-pages/man7/aio.7.html
● aio_read like read, but returns immediately
● aio_error see the status (error, ok, or in progress) of a read

request
● aio_return get the return value of read, how many bytes were

read?
Note: this is one option under linux. There is also io_uring for Linux,
and similar APIs on Windows and MacOS.

74 / 82

https://man7.org/linux/man-pages/man7/aio.7.html

Asynchronous IO

1 pub async fn read_file(path: &Path) -> Result<Vec<u8>, io::Error> {
2 let mut file = File::open(path).await?;
3 let mut buffer = Vec::new();
4
5 loop {
6 let mut read_buffer = Vec::new();
7 let num_bytes = file.read(&mut read_buffer).await?;
8 if num_bytes == 0 {
9 break;
10 }
11
12 buffer.extend(&read_buffer[0..num_bytes]);
13 }
14
15 Ok(buffer)
16 }

75 / 82

Asynchronous IO

In Rust .await
● Sets up an (asynchronous) request to the operating system
● Goes to the next state in the state machine
● Yields to poll another state machine
● When we get back to polling this state machine:

● ask the OS if we made progress
● continue executing code

76 / 82

Summary

● Achieving fearless concurrency in Rust
● Using channels to your advantage
● Be conscious of your thread count
● Not all cases call for threads
● Async I/O internals and its state machines

77 / 82

Rounding up

● First lab next thursday
● First assignment online today:

● creating a concurrent grep clone

78 / 82

Lifetimes

● Every value has a lifetime
● After the end of a lifetime, a value is dropped
● Some types have a lifetime associated with them

79 / 82

Lifetimes
In functions, you can be explicit about lifetimes

1 fn print_ref<'a>(x: &'a i32) {
2 println!("print_ref: x is {}", x);
3 }
4

In structs, you have to be explicit about lifetimes

1 struct Example<'a> {
2 field: &'a i32,
3 }
4

80 / 82

Lifetimes

Sometimes, logic requires two lifetimes to be the same

1 fn longest(a: &str, b: &str) -> &str {
2 if a.len() > b.len() {
3 a
4 } else {
5 b
6 }
7 }
8

81 / 82

Lifetimes

Sometimes, logic requires two lifetimes to be the same

1 fn longest<'a>(a: &'a str, b: &'a str) -> &'a str {
2 if a.len() > b.len() {
3 a
4 } else {
5 b
6 }
7 }
8

82 / 82

