
Software Systems
Lecture 2

Jonathan Dönszelmann

Vivian Roest

Delft University of Technology, The Netherlands

January 24, 2024

Previous Lectures

● Threads

● Spawning and Joining

● Channels

● Threadpools

● Asynchronous programming

2 / 51

Today

How to find and improve the performance of (existing) programs.

3 / 51

Today

How to find and improve the performance of (existing) programs.

Question:

Do you know any techniques already?

4 / 51

Today

How to find and improve the performance of (existing) programs.

1 Running code less

2 Make code that has to run faster

5 / 51

Today

How to find and improve the performance of (existing) programs.

1 Running code less

2 Make code that has to run faster

But first! How do we measure performance?

6 / 51

Measuring performance

1 Benchmarking

2 Profiling

7 / 51

Measuring performance: Benchmarking

time ./some/binary

time cargo run

Warning:

Timing cargo run will also measure compile time. Make sure you
compile first.

1 Very crude way measure performance

2 Not very accurate

3 Very useful to get an estimate!

8 / 51

Measuring performance: Benchmarking

Question:

Why is this not very accurate?

9 / 51

Measuring performance: Benchmarking

Remove influences of things we don’t want to measure

Average results to remove random fluctuations

10 / 51

Measuring performance: Benchmarking

● Rust used to have this built-in

● Now Rust only has the framework1, which extrenal libraries can
take advantage of. e.g. criterion
● criterion will:

● Take samples out of many runs
● Warm up
● Show difference with old runs
● Detect outliers
● Give statistical significance (p-value)

Demo!

1Technically it is still all there, but it’s recommended to use an external library for it

11 / 51

Measuring performance: Profiling

Question:

Did you use profiling in Advanced Computing Systems?

12 / 51

Measuring performance: Profiling

● Measure execution times of different parts of an application
● On Linux: Perf

● Hardware counters (perf stat)
● Sampling

● On Windows: use WSL.

● On MacOS: Use DTrace

https://perf.wiki.kernel.org/index.php/Tutorial

13 / 51

https://perf.wiki.kernel.org/index.php/Tutorial

Measuring performance: Profiling

● Measure execution times of different parts of an application
● On Linux: Perf

● Hardware counters (perf stat)
● Sampling

● On Windows: use WSL. On MacOS: Use DTrace

Demo!

14 / 51

Measuring performance: Profiling

Other useful tools:

● Valgrind

● Cachegrind

● Callgrind

● Dumb but useful: htop

15 / 51

Other kinds of performance

● for example: memory usage

● always a tradeoff

Question:

Can you think of other measures of performance?

16 / 51

Increasing performance

Split into three categories:

● Algorithmic improvement (being smart)

● Making code faster

● Running less code

17 / 51

Memoization

1 fn fibonacci(n: u64) -> u64 {

2 match n {

3 0 => 1,

4 1 => 1,

5 n => fibonacci(n-1) + fibonacci(n-2),

6 }

7 }

● fibonacci(5) needs fibonacci(4) and fibonacci(3)

● fibonacci(4) needs fibonacci(3) and fibonacci(2)

If we added some memory we could “cache” the results of fibonacci

18 / 51

Memoization

1 use memoize::memoize;

2

3 #[memoize]

4 fn fibonacci(n: u64) -> u64 {

5 match n {

6 0 => 1,

7 1 => 1,

8 n => fibonacci(n-1) + fibonacci(n-2),

9 }

10 }

● Adds a mapping from parameters to results

● “caches” the results of fibonacci to reduce calls

19 / 51

Lazy evaluation

● Iterators don’t compute values immediately

● Only when nth is called do we run code

1 vec![1, 2, 3, 4].into_iter().map(|i: i32| i.pow(2)).nth(2)

● Slower in general

● Sometimes faster due to a smart compiler

● May be faster when few items end up needing processing

20 / 51

IO Buffering

● Every time read exact is used, a system call is performed

● Goal: perform fewer system calls

● read as much as we can per system call

1 use std::fs::File;

2 use std::io::Read;

3

4 fn main() {

5 let mut file = File::open("very_large_file.txt").unwrap();

6 let mut buf = [0; 5];

7

8 while file.read_exact(&mut buf).is_ok() {

9 // process the buffer

10 }

11 }

21 / 51

IO Buffering
● Read as much as possible
● Read reads from internal buffer until empty
● When empty: perform another system call

1 use std::io::{BufReader, Read};

2

3 fn main() {

4 let mut file = File::open("very_large_file.txt").unwrap();

5 // only line changed

6 let mut reader = BufReader::new(file);

7

8 let mut buf = [0; 5];

9

10 while reader.read_exact(&mut buf).is_ok() {

11 // process the buffer

12 }

13 }

Note: also works for (network) sockets and other file-like objects
22 / 51

Lock contention

Lock before slow operation

1 let result =

Arc::new(Mutex::new(0));↪

2

3 for i in 0..3 {

4 let r = result.clone();

5 spawn(move || {

6 let mut guard = r.lock();

7

8 *guard += slow(i);

9 });

10 }

Lock after slow operation

1 let result =

Arc::new(Mutex::new(0));↪

2

3 for i in 0..3 {

4 let r = result.clone();

5 spawn(move || {

6 let answer = slow(i);

7

8 *r.lock() += answer;

9 });

10 }

● Try to make critical sections smaller

● Hint: use scope blocks to be explicit about critical sections

23 / 51

Moving code outside of a loop

1 fn example(a: usize, b: u64) {

2 for _ in 0..a {

3 some_other_function(b + 3)

4 }

5 }

Compute b + 3 first:

1 fn example(a: usize, b: u64) {

2 let c = b + 3;

3 for _ in 0..a {

4 some_other_function(c)

5 }

6 }

Compilers are good at this: https://godbolt.org/z/n58GjhsP5

24 / 51

https://godbolt.org/z/n58GjhsP5

Memory allocation

● Memory allocation and deallocation takes time. For example:
● Vec::new(), HashMap::new(), String::new()
● Resizing any of the above
● Box::new()
● Cloning any of the above
● Arc::new(), Rc::new()
● Dropping any of the above

● Time depends on allocator you use (this can be changed!)

Question:

What can we do to reduce allocation?

25 / 51

Memory allocation

● Static allocation

● Preallocating to the right size

● Moving allocations outside an inner loop
● Arena allocation:

● Small special-purpose allocator
● (usually) no individual freeing supported
● free all at once

26 / 51

Memory Allocation

1 struct Doggo {

2 cuteness: u64,

3 scritches_required: bool,

4 }

5

6 // Create a new arena to allocate into.

7 let bump = Bump::new();

8

9 // Allocate values into the arena.

10 let scooter = bump.alloc(Doggo {

11 cuteness: u64::MAX_VALUE,

12 scritches_required: true,

13 });

14

15 // Mutable references to the just-allocated value are returned.

16 assert!(scooter.scritches_required);

17 scooter.cuteness += 1;

From: https://docs.rs/bumpalo/latest/bumpalo/#example

27 / 51

https://docs.rs/bumpalo/latest/bumpalo/#example

Memory Allocation

Question:

How is this different to a Vec?

28 / 51

Making code faster

Question:

Do you know any techniques already to create faster code?

29 / 51

Making code faster

Question:

Do you know any techniques already to create faster code?

30 / 51

Inlining

1 // compiler may

2 // ignore this

3 #[inline]

4 fn example_1() {

5 ...

6 }

7

8 // not this

9 #[inline(always)]

10 fn example_2() {

11 ...

12 }

13

14 fn main() {

15 example_1();

16 example_2();

17 }

● Calling functions works with call
instructions

● This represents some overhead

● What if we pasted the body of a
function at the callsite?

● Larger code size, (sometimes) faster
code

31 / 51

Compiler Options

● The compiler has multiple optimization levels

● 0, 1, 2 and 3 for “speed”

● ‘s’ and ‘z’ for “size” (code size)

● The default is very low Ð→ fast(er) compile times

● To select better options: cargo run --release

32 / 51

Changing Compiler Options

Cargo.toml

1 [package]

2 ...

3

4 [dependencies]

5 ...

6

7 # for cargo run

8 [profile.dev]

9 opt-level = 1

10

11 # for cargo run --release

12 [profile.release]

13 opt-level = 3

● opt-level can be 0-3,‘s’,‘z’

● 3 not always the best:
experiment!

● Optimization levels are a
tradeoff, 3 may be fast but the
code size could be huge

● https://godbolt.org/z/

nTnef7888

33 / 51

https://godbolt.org/z/nTnef7888
https://godbolt.org/z/nTnef7888

Link-Time optimization

Cargo.toml

1 [package]

2 ...

3

4 [dependencies]

5 ...

6

7 # for cargo run

8 [profile.release]

9 opt-level = 3

10 lto = true

● Each crate compiled separately

● No optimiziation between crates

● With lto there is

34 / 51

Target CPU

1 Modern CPUs sometimes have specialized hardware

2 Not every CPU has the same hardware

3 Programs cannot assume they can use this hardware

4 With target-cpu you choose a specific cpu

Compile time:

RUSTFLAGS="-C target-cpu=native" cargo run

35 / 51

Target CPU (runtime)

1 #[inline(always)]

2 fn foo_impl() { ... }

3

4 // This generates a stub for CPUs that support SSE4:

5 #[target_feature(enable = "sse4")]

6 unsafe fn foo_sse4() {

7 // inlining here will recompile

8 // foo_impl for sse4

9 foo_impl()

10 }

11

12 // This generates a stub for CPUs that support AVX:

13 #[target_feature(enable = "avx")]

14 unsafe fn foo_avx() {

15 foo_impl()

16 }

36 / 51

Branch prediction

1 if a > b {

2 do_x();

3 } else {

4 do_y();

5 }

● Condition only available late due to
pipelining

● Predict the outcome of the condition

● Start executing most-likely branch

● Wrong prediction Ð→ performance
penalty

37 / 51

Cold paths

1 #[cold]

2 fn rarely_executed_function() { }

● Mark rarely used functions

● Generated code will favor optimizing other paths

38 / 51

Better branch prediction?

Question:

How do we know what to inline and what to mark as cold?

39 / 51

PGO: better branch prediction

● Manually figuring out what to inline / mark as cold is hard

● Profiling can help! Ð→ “Profile-Guided Optimization”

● See lecture notes how to do this2

1 Build special ‘Instrumented’ binary

2 Gather statistics while running

3 Build a better program

Note:

If the actual workload is substantially different from the instrumented
run then the program could perform worse!

2https://cese.pages.ewi.tudelft.nl/software-systems/part-1/lecture-notes/lecture-2.html

40 / 51

https://cese.pages.ewi.tudelft.nl/software-systems/part-1/lecture-notes/lecture-2.html

Caching

CPU Core 1

Registers

CPU Core 2

Registers

L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache

Main Memory (RAM)

● Closer caches are smaller and faster

● Smaller code and smaller data may
mean more of it fits in cache

● Consecutive data is usually better

● Optimized code may be larger

● Benchmark! (cachegrind)

41 / 51

Rust: Zero cost abstractions

Rust provides abstractions:

● Iterators

● Traits & Generics

● Built-in collections

● Closures (lambda functions)

Question:

Does this mean Rust is slower than C?

42 / 51

Rust: Zero cost abstractions

Question:

Does this mean Rust is slower than C?

● Not necessarily!

● Abstractions have no cost if you don’t use them (unlike Python)

● If you do use them, they are close to what you could manually make

● The compiler is very smart!

43 / 51

Rust: Static dispatch

1 struct A; struct B;

2 trait X {

3 fn something(&self);

4 }

5 impl X for A {

6 fn something(&self) { ... }

7 }

8 impl X for B {

9 fn something(&self) { ... }

10 }

11

12 fn run_something<T: X>(x: T) {

13 x.something();

14 }

15

16 run_something(A);

17 run_something(B);

● Static Dispatch

● Covered in Software
Fundamentals (Lecture 5)

● Code is duplicated for
different types

44 / 51

Rust: Dynamic dispatch

1 struct A; struct B;

2 trait X {

3 fn something(&self);

4 }

5 impl X for A {

6 fn something(&self) { ... }

7 }

8 impl X for B {

9 fn something(&self) { ... }

10 }

11

12 fn run_something(x: &dyn X) {

13 x.something();

14 }

15

16 run_something(&A);

17 run_something(&B);

● Dynamic Dispatch

● Only one version of
code

● Vtables!

45 / 51

Rust: Dynamic dispatch

data pointer

vtable pointer

x

struct A

fn drop()

size: usize

alignment: usize

fn something()

Vtable: A description of a type

46 / 51

Rust: Struct layout

1 struct A {

2 a: u8;

3 b: u32;

4 }

5

6 #[repr(packed)]

7 struct A {

8 a: u8;

9 b: u32;

10 }

11

12 #[repr(C, align(2))]

13 struct A {

14 a: u8;

15 b: u32;

16 }

● By default, structs have
padding

● Packed makes structs
smaller

● Alignment can make
accessing fields slower

47 / 51

Rust: Memory management

1 bitflags! {

2 struct Flags: u8 {

3 const A = 0b00000001;

4 const B = 0b00000010;

5 const C = 0b00000100;

6 const D = 0b00001000;

7 const E = 0b00010000;

8 const F = 0b00100000;

9 const G = 0b01000000;

10 const H = 0b10000000;

11 }

12 }

● A boolean is a byte

● Sometimes, packing
tighter helps
performance too

48 / 51

Rust: Zero copy design

● Cloning takes time
● If we could keep our data in one place:

● An arena
● A buffer (for example: packets from network)

● Don’t pass around data, pass around offsets and lengths: slices

● Serde: Serializing and Deserializing (https://docs.rs/serde)

49 / 51

https://docs.rs/serde

Much more!

● No silver bullet: Everything is a tradeoff

● Benchmark & Profile to know for sure!
● Lots of other ways:

● Algorithmic improvements
● Better/different hash functions
● Hardware specific optimizations
● Using dedicated hardware (ASIC, GPU, etc.)
● Probabilistic datastructures
● Operating system configuration

50 / 51

Assignment 2: Performance

● Raytracing

● Deliberately slow

● Apply techniques
from lecture

51 / 51

