Software Systems
Lecture 2

Jonathan Donszelmann
Vivian Roest

Delft University of Technology, The Netherlands

January 24, 2024

3
TUDelft

Previous Lectures

Threads

® Spawning and Joining

Channels

Threadpools
® Asynchronous programming

3
TUDelft

Today

How to find and improve the performance of (existing) programs.

3
TUDelft

Today

How to find and improve the performance of (existing) programs.

Question:
Do you know any techniques already?

<3
TUDelft

Today

How to find and improve the performance of (existing) programs.

@ Running code less
® Make code that has to run faster

3
TUDelft

Today

How to find and improve the performance of (existing) programs.

@® Running code less
® Make code that has to run faster

But first! How do we measure performance?

<3
TUDelft

Measuring performance

@ Benchmarking
@® Profiling

3
TUDelft

Measuring performance: Benchmarking

time ./some/binary
time cargo run

Warning:
Timing cargo run will also measure compile time. Make sure you
compile first.

@ Very crude way measure performance
® Not very accurate

© Very useful to get an estimate!

<3
TUDelft

Measuring performance: Benchmarking

Question:
Why is this not very accurate?

3
TUDelft

Measuring performance: Benchmarking

Remove influences of things we don't want to measure

Average results to remove random fluctuations

3
TUDelft

Measuring performance: Benchmarking

® Rust used to have this built-in

* Now Rust only has the framework®, which extrenal libraries can
take advantage of. e.g. criterion
® criterion will:

® Take samples out of many runs

* Warm up

® Show difference with old runs

® Detect outliers

* Give statistical significance (p-value)

Demo!

1Te:chnically it is still all there, but it's recommended to use an external library for it

<3
TUDelft

Measuring performance: Profiling

Question:
Did you use profiling in Advanced Computing Systems?

3
TUDelft

Measuring performance: Profiling

® Measure execution times of different parts of an application
On Linux: Perf

® Hardware counters (perf stat)
® Sampling

On Windows: use WSL.
On MacOS: Use DTrace

https://perf.wiki.kernel.org/index.php/Tutorial

<3
TUDelft

https://perf.wiki.kernel.org/index.php/Tutorial

Measuring performance: Profiling

® Measure execution times of different parts of an application
® On Linux: Perf

® Hardware counters (perf stat)
® Sampling

® On Windows: use WSL. On MacOS: Use DTrace

Demo!

<3
TUDelft

Measuring performance: Profiling

Other useful tools:

Valgrind

Cachegrind

Callgrind

Dumb but useful: htop

3
TUDelft

Other kinds of performance

e for example: memory usage

® always a tradeoff

Question:
Can you think of other measures of performance?

<3
TUDelft

Increasing performance

Split into three categories:

® Algorithmic improvement (being smart)
® Making code faster

® Running less code

3
TUDelft

Memoization

fn fibonacci(n: u64) -> u64d {
match n {
0 =>1,
1=>1,
n => fibonacci(n-1) + fibonacci(n-2),

N o WwN

e fibonacci(5) needs fibonacci(4) and fibonacci(3)

e fibonacci(4) needs fibonacci(3) and fibonacci(2)

If we added some memory we could “cache” the results of fibonacci

<3
TUDelft

Memoization

1 use memoize: :memoize;

2

3 #[memoize]

4 fn fibonacci(n: u64) -> u64d {

5 match n {

6 0=>1,

7 1=>1,

8 n => fibonacci(n-1) + fibonacci(n-2),
9 }

10 }

® Adds a mapping from parameters to results

® “caches” the results of fibonacci to reduce calls

Lazy evaluation

® |terators don't compute values immediately

® Only when nth is called do we run code

1 vec![1, 2, 3, 4].into_iter().map(li: i32| i.pow(2)).nth(2)

e Slower in general
® Sometimes faster due to a smart compiler

® May be faster when few items end up needing processing

<3
TUDelft

|O Buffering

® Every time read_exact is used, a system call is performed
® Goal: perform fewer system calls

® read as much as we can per system call

1 use std::fs::File;

2 use std::io::Read;

3

4 fn main() {

5 let mut file = File::open("very_large_file.txt").unwrap();
6 let mut buf = [0; 5];

7

8 while file.read_exact(&mut buf).is_ok() {
9 // process the buffer

10 }

11 }

<3
TUDelft

|O Buffering

® Read as much as possible
® Read reads from internal buffer until empty
® When empty: perform another system call

1 use std::io::{BufReader, Read};

2

3 fn main() {

4 let mut file = File::open("very_large_file.txt").unwrap();
5 // only line changed

6 let mut reader = BufReader::new(file);

7

8 let mut buf = [0; 5];

9

10 while reader.read_exact(&mut buf).is_ok() {
11 // process the buffer

12 }

13 }

Note: also works for (network) sockets and other file-like objects

Lock contention

Lock before slow operation Lock after slow operation
1 let result = 1 let result =
— Arc::new(Mutex::new(0)); — Arc::new(Mutex::new(0));
2 2
3 for i in 0..3 { 3 for i in 0..3 {
4 let r = result.clone(); 4 let r = result.clone();
5 spawn(move || { 5 spawn(move || {
6 let mut guard = r.lock(); 6 let answer = slow(i);
7 7
8 *guard += slow(i); 8 *r.lock() += answer;
9 B; 9 B
10 } 10 }

® Try to make critical sections smaller

® Hint: use scope blocks to be explicit about critical sections

Moving code outside of a loop

fn example(a: usize, b: u64) {
for _ in 0..a {

some_other_function(b + 3)

¥

g WwN e

Compute b + 3 first:

fn example(a: usize, b: u64) {
let ¢ = b + 3;
for _ in 0..a {
some_other_function(c)
}
}

o G W N

Compilers are good at this: https://godbolt.org/z/n58GjhsP5

<3
TUDelft

https://godbolt.org/z/n58GjhsP5

Memory allocation

® Memory allocation and deallocation takes time. For example:
® Vec::new(), HashMap: :new(), String: :new()

Resizing any of the above

Box: :new()

Cloning any of the above

Arc::new(), Rc::new()

Dropping any of the above

® Time depends on allocator you use (this can be changed!)

Question:
What can we do to reduce allocation?

5
TUDelft

Memory allocation

Static allocation

Preallocating to the right size

Moving allocations outside an inner loop

Arena allocation:

® Small special-purpose allocator
® (usually) no individual freeing supported
® free all at once

<3
TUDelft

Memory Allocation

1 struct Doggo {

2 cuteness: u64,

3 scritches_required: bool,

4 }

5

6 // Create a new arena to allocate into.
7 let bump = Bump::new();

8

9 // Allocate values into the arena.

10 let scooter = bump.alloc(Doggo {

11 cuteness: u64::MAX_VALUE,

12 scritches_required: true,

13 1);

14

15 // Mutable references to the just-allocated value are returned.
16 assert!(scooter.scritches_required);

17 scooter.cuteness += 1;

From: https://docs.rs/bumpalo/latest/bumpalo/#example

<3
TUDelft

https://docs.rs/bumpalo/latest/bumpalo/#example

Memory Allocation

Question:
How is this different to a Vec?

3
TUDelft

Making code faster

Question:
Do you know any techniques already to create faster code?

3
TUDelft

Making code faster

Question:
Do you know any techniques already to create faster code?

3
TUDelft

Inlining

// compiler may
// ignore this
#[inline]

fn example_1() {

}

O ~NO O WN

// not this
9 #[inline (always)]
10 fn example_2() {

12}

13

14 fn main() {

15 example_1();
16 example_2();
17 }

Calling functions works with call
instructions
This represents some overhead

What if we pasted the body of a
function at the callsite?

Larger code size, (sometimes) faster
code

<3
TUDelft

Compiler Options

The compiler has multiple optimization levels
0, 1, 2 and 3 for “speed”

‘s’ and 'z’ for “size” (code size)

The default is very low — fast(er) compile times

To select better options: cargo run --release

<3
TUDelft

Changing Compiler Options

Cargo.toml
; [package] ® opt-level can be 0-3,'s','Z’
s ® 3 not always the best:
g [dependencies] experiment!
6 e Optimization levels are a
7 # for cargo Tun
8 [profile.dev] tradeoff, 3 may be fast but the
9 opt-level = 1 code size could be huge
10
11 # for cargo run --release ° httpSZ//gOdbOlt . OI‘g/Z/
12 [profile.release] nTnef7888

13 opt-level = 3

<3
TUDelft

https://godbolt.org/z/nTnef7888
https://godbolt.org/z/nTnef7888

Link-Time optimization

Cargo.toml

[package]

. .
[dependencies] Each crate compiled separately

® No optimiziation between crates

for cargo Tun ® With 1to there is
[profile.release]
opt-level = 3
lto = true

<3
TUDelft

Target CPU

® Modern CPUs sometimes have specialized hardware
® Not every CPU has the same hardware

© Programs cannot assume they can use this hardware
O With target-cpu you choose a specific cpu

Compile time:

RUSTFLAGS="-C target-cpu=native" cargo run

<3
TUDelft

Target CPU (runtime)

#[inline (always)]
fn foo_impl() { ... }

// This generates a stub for CPUs that support SSE4:
#[target_feature(enable = "ssed")]
unsafe fn foo_ssed4() {

// inlining here will recompile

// foo_impl for ssei

foo_impl()

© 00 N O WN =

=y
o

}

=y
[N

12 // This generates a stub for CPUs that support AVX:
13 #[target_feature(enable = "avx")]

14 unsafe fn foo_avx() {

15 foo_impl ()

16 }

3
TUDelft

Branch prediction

Condition only available late due to
pipelining

1 if a > b {

2 do_xQ); ¢ Predict the outcome of the condition
3 } else { . .

4 do_yO; e Start executing most-likely branch

5)

Wrong prediction — performance
penalty

to t1I t2 t3 t4 5 t6

Instruction1 | IF | ID | OF | IE | OS |

Instructionzé IF ID | OF | IE | OS |

Instruction3 | | IF { D |OF | IE | OS]

<3
TUDelft

Cold paths

1 #[cold]
2 fn rarely_executed_function() { }

® Mark rarely used functions
® Generated code will favor optimizing other paths

<3
TUDelft

Better branch prediction?

Question:
How do we know what to inline and what to mark as cold?

3
TUDelft

PGO: better branch prediction

* Manually figuring out what to inline / mark as cold is hard
® Profiling can help! — "Profile-Guided Optimization”

e See lecture notes how to do this?

@ Build special ‘Instrumented’ binary
® Gather statistics while running

© Build a better program

Note:

If the actual workload is substantially different from the instrumented
run then the program could perform worse!

2https ://cese.pages.ewi.tudelft.nl/software-systems/part-1/lecture-notes/lecture-2.html

5
TUDelft

https://cese.pages.ewi.tudelft.nl/software-systems/part-1/lecture-notes/lecture-2.html

Caching

CPU Core 1 CPU Core 2
Registers Registers
i i ® Closer caches are smaller and faster
L1 Cache L1 Cache ® Smaller code and smaller data may
3 3 mean more of it fits in cache
L2 Cache L2 Cache ® Consecutive data is usually better
¢ ¢ ® Optimized code may be larger
L3 Cach .
e * Benchmark! (cachegrind)
¢
Main Memory (RAM)

<3
TUDelft

Rust: Zero cost abstractions

Rust provides abstractions:
® |terators
e Traits & Generics
¢ Built-in collections

® Closures (lambda functions)

Question:
Does this mean Rust is slower than C?

<3
TUDelft

Rust: Zero cost abstractions

Question:
Does this mean Rust is slower than C?

® Not necessarily!

Abstractions have no cost if you don't use them (unlike Python)

If you do use them, they are close to what you could manually make

The compiler is very smart!

<3
TUDelft

Rust: Static dispatch

1 struct A; struct B;
2 trait X {
3 fn something(&self);
4 }
5 impl X for A { . .
6 fn something(&self) { ... } * Static DlspatCh
7} :
°
8 impl X for B { Covered in Software
9 fn something(&self) { ... } Fundamentals (Lecture 5)
10 T . .
11 ® Code is duplicated for
12 fn run_something<T: X>(x: T) { different types
13 x.something();
14 ¥
15
16 run_something(A);
17 run_something(B) ;

<3
TUDelft

Rust: Dynamic dispatch

1 struct A; struct B;

2 trait X {

3 fn something(&self);

4 }

5 impl X for A {

6 fn something(&self) { ... }
7 }

8 impl X for B {

9 fn something(&self) { ... }
10 }

11

12 fn run_something(x: &dyn X) {
13 x.something();

14 }

15

16 run_something(&A) ;

17 run_something(&B) ;

® Dynamic Dispatch

¢ Only one version of
code

® Vtables!

<3
TUDelft

Rust:

Dynamic dispatch

data pointer

vtable pointer

struct A

Vtable: A description of a type

<3
TUDelft

fn drop()
size: usize

alignment: usize

fn something()

Rust: Struct layout

1 struct A {

2 a: u8;

3 b: u32;

4

s g ® By default, structs have
6 #[repr(packed)] padding

7 struct A {

8 28 6k ® Packed makes structs
9 b: u32; smaller

10 })

11 ® Alignment can make
12 #[repr(C, align(2))] accessing fields slower
13 struct A {

14 a: u8;

15 b: u32;

16 }

<3
TUDelft

Rust: Memory management

-
1 bitflags! {

2 struct Flags: u8 {

& const A = 0b00000001;

4 const B = 0b00000010; e A boolean is a byte
5 const C = 0b00000100; i X

6 const D = 0b00001000; ® Sometimes, packing
7 const E = 0b00010000; tighter helps

8 const F = 0b00100000;

9 const G = 0b01000000; performance too

10 const H = 0b10000000;

11 }

12 }

<3
TUDelft

Rust: Zero copy design

Cloning takes time

If we could keep our data in one place:

® An arena
* A buffer (for example: packets from network)

® Don't pass around data, pass around offsets and lengths: slices

Serde: Serializing and Deserializing (https://docs.rs/serde)

<3
TUDelft

https://docs.rs/serde

Much more!

® No silver bullet: Everything is a tradeoff
® Benchmark & Profile to know for sure!

® Lots of other ways:

® Algorithmic improvements

Better/different hash functions

Hardware specific optimizations

Using dedicated hardware (ASIC, GPU, etc.)
Probabilistic datastructures

Operating system configuration

<3
TUDelft

ignment 2: Performance

® Raytracing
¢ Deliberately slow

® Apply techniques
from lecture

i3
TUDelft

