
Software Systems
Lecture 3

Jonathan Dönszelmann

Vivian Roest

Delft University of Technology, The Netherlands

January 24, 2024

Previous Lecture

● Profiling

● Benchmarking

● Optimizing programs for speed

2 / 32

Today

Writing Code without an Operating System or Standard Library (std)

3 / 32

Operating System Services

Question:

What services does an operating system provide to a program?

4 / 32

Operating System Services

● Filesystem

● Threads and Subprocesses

● An Allocator

● Peripherals

● Graphics

● Standard in/output

● Program startup routine (crt0/1)

● ... and more.

5 / 32

Program Startup

1 extern crate std;

2 extern crate alloc;

3 extern crate core;

4

5 use std::prelude::*;

6

7 fn __start() {

8 startup();

9 main();

10 teardown();

11 }

12

13 // rest of code

https://github.com/runtimejs/musl-libc/blob/master/crt/

x86_64/crt1.s https://github.com/runtimejs/musl-libc/

blob/0a11d7cb13e243782da36e2e5747b8b151933cca/src/env/__

libc_start_main.c#L58

6 / 32

https://github.com/runtimejs/musl-libc/blob/master/crt/x86_64/crt1.s
https://github.com/runtimejs/musl-libc/blob/master/crt/x86_64/crt1.s
https://github.com/runtimejs/musl-libc/blob/0a11d7cb13e243782da36e2e5747b8b151933cca/src/env/__libc_start_main.c#L58
https://github.com/runtimejs/musl-libc/blob/0a11d7cb13e243782da36e2e5747b8b151933cca/src/env/__libc_start_main.c#L58
https://github.com/runtimejs/musl-libc/blob/0a11d7cb13e243782da36e2e5747b8b151933cca/src/env/__libc_start_main.c#L58

no std

Opt-out of using Rust’s standard library by writing:

main.rs

1 #![no_std]

2

3 // rest of main

7 / 32

core and alloc

● core: set of functions that do not rely on an Operating System
● alloc: set of functions that rely on the presence of an Allocator

● e.g. Box, Vec, Rc

● std: set of functions that do require an Operating System

8 / 32

core and alloc

● core: set of functions that do not rely on an Operating System
● alloc: set of functions that rely on the presence of an Allocator

● e.g. Box, Vec, Rc

● std: set of functions that do require an Operating System

Question:

Can we use no std with an operating system?

9 / 32

no std

Question:

What do we do if we don’t have an operating system?

● How does the program start? Remember the NES.

● What do we do once it did start?

10 / 32

Don’t panic!

Question:

What (should) happen if a bare-metal1 program crashes?

1 i.e. running without an operating system

11 / 32

Don’t panic!

There are only a few things we can do

● Reboot

● Shut down completely

● Halt / Infinite Loop

● Report error using semihosting2

1 #[panic_handler]

2 fn panic(info: &PanicInfo) -> ! {

3 loop {} //infinte loop

4 }

2Only sometimes available: e.g. when using a debugger or virtualization

12 / 32

Allocating memory

Question:

How do we manage memory without an operating system?

13 / 32

Specifying an allocator

1 #![no_std]

2

3 // enable the alloc crate. Only works if an allocator is provided.

4 extern crate alloc;

5

6 // import some allocator

7 use some_allocator::SomeAllocator;

8

9 // define global allocator

10 #[global_allocator]

11 static ALLOCATOR: SomeAllocator = SomeAllocator::new();

12

13

14 // This function is called when an allocation fails.

15 #[alloc_error_handler]

16 fn alloc_error(layout: Layout) -> ! {

17 panic!("Alloc error! {layout:?}");

18 }

14 / 32

Hardware Abstraction

Many bare-metal programs have similar components

● Booting up

● Interrupt Handlers
● Common Portocols

● I2C
● CAN
● SPI
● ...

Traditionally, manufacturers also provide C code to support
programming for that device.

The Rust ecosystem has two kind of things that can help

● Platform Abstraction Crates (PACs)

● Hardware Abstraction Layers (HALs)

15 / 32

Aside: Memory Mapped I/O (MMIO)

● Special memory addresses that don’t store data but talk to a
peripheral device

● Useful to provide a (somewhat) standardized way to talk to
peripherals

● However, a lot of ”magic” constants to define and use correctly

● Can we make this easier?

Those that followed Software Fundamentals might recognise this from
the NES joypad.

16 / 32

Peripheral Access Crates

The datasheet table for the nRF51 temperature sensor

17 / 32

Peripheral Access Crates

The Rust struct for the nRF51 temperature sensor from nrf51-pac3

#[repr(C)]

pub struct RegisterBlock {

pub tasks_start: TASKS_START,

pub tasks_stop: TASKS_STOP,

pub events_datardy: EVENTS_DATARDY,

pub intenset: INTENSET,

pub intenclr: INTENCLR,

pub temp: TEMP,

/* private fields (for alignment) */

}

notice how it matches the datasheet 1:1?

3https://docs.rs/nrf51-pac/latest/nrf51_pac/temp/struct.RegisterBlock.html

18 / 32

https://docs.rs/nrf51-pac/latest/nrf51_pac/temp/struct.RegisterBlock.html

Peripheral Access Crates: working with peripherals

1 let mut p = nrf51_hal::pac::Peripherals::take().unwrap();

2

3 // take reference since peripheral is owner

4 let t = &mut p.TEMP;

5

6 // write the bits 101 to this register

7 t.tasks_start.write(|w| unsafe {w.bits(5)})

8

9 // reset the value (safe)

10 t.tasks_start.write(|w| w.reset_value())

11

12 // read the temperature (safe)

13 t.temp.read(|r| r.bits())

● writing is unsafe

● resetting and reading is safe

19 / 32

Peripheral Access Crates: data validation

● Some registers can only contain certain values

● Writing other values is unsafe

● Using the type system for data validation

1 let mut p = nrf51_hal::pac::Peripherals::take().unwrap();

2

3 // take reference since peripheral is owner

4 let u = &mut p.UART;

5

6 // safe!

7 u.write(|w| w.baudrate().baud1200());

● Using baudrate, we can only write “valid” values

20 / 32

Hardware abstraction layers

● Built on top of PACs

● Higher level

● Usually much better documented

● “Create your own operating system”

1 use nrf_hal::temp::Temp;

2

3 let mut p = nrf51_hal::pac::Peripherals::take().unwrap();

4

5 let mut t = Temp::new(p.TEMP);

6

7 // don't bother with the individual registers

8 let temperature = t.measure();

21 / 32

Hardware abstraction layers

Some examples:

● abstract over device: nrf usbd

● abstract over chip: nrf51 hal

● abstract over whole architecture: cortex m

22 / 32

Cortex m

● Abstracts details of ARM Cortex M processors

● CPU registers, interrupts, standard peripherals
● extensions:

● alloc cortex m: an allocator
● cortex m rt: a startup runtime
● cortex m interrupt: easy interrupt setup
● cortex m semihosting: communication with hypervisor4

With HALs and PACs, embedded development starts to feel like
programming with an operating system

4or even hardware debugger

23 / 32

Unsafe code

Definition

Safe: Rust can check it
Sound: Rust can’t check it but it does work!

● Soundness may depend on assumptions
● A pointer is not NULL
● An index is in bounds

● If assumptions are checked, unsafe operations may be always sound

1 // unsound when a is null

2 unsafe fn dereference(a: *mut usize) -> usize {

3 *a

4 }

24 / 32

Unsafe code

Definition

Safe: Rust can check it
Sound: Rust can’t check it but it does work!

● Safety does not mean ‘can’t crash’
● Safety means no undefined behavior

1 // unsound when a is null

2 unsafe fn dereference(a: *mut usize) -> usize {

3 *a

4 }

5

6 // is this the only assumption?

7 fn safe_dereference(a: *mut usize) -> usize {

8 assert_ne!(a as usize, 0);

9 dereference(a)

10 }

25 / 32

Safe abstractions

● Some things are safe to do but the compiler won’t allow us

● Certain things are only safe if certain conditions are met

A safe abstraction is a way to do traditionally unsafe things through an
always-safe interface.

Check our assumptions if we cannot guarantee them!

Question:

Have we seen any safe abstractions in this course?

26 / 32

Safe abstractions

Rust is built on unsafe abstractions

● Box abstracts memory management

● Mutex abstracts shared mutability

● Vec abstracts growing and shrinking memory

● println! and File abstracts system calls

● std::io::Error abstracts errno

● Channel abstracts communication

● ... the list goes on

Important

Document why unsafe code is safe! Write down your assumptions!

27 / 32

Safe abstractions

Safe abstractions often rely on certain assumptions about a system

Question:

Can you think of operations that are safe on some systems and unsafe
on others?

28 / 32

Safe abstractions: A Mutex for a single core machine

● Only one core: no locking required!

● Or is it?

29 / 32

Safe abstractions: A Mutex for a single core machine

● Only one core: no locking required!

● Or is it?

Pseudocode:

1 struct OurMutex<T>(UnsafeCell<T>);

2

3 impl<T> OurMutex<T> {

4 fn update(v: impl FnOnce(&mut T)) {

5 // turn off interrupts

6 v(self.0.get())

7 // turn interrupts back on if they were on before

8 }

9 }

Turning off interrupts makes shared mutability safe on single core
machines! But check (and comment) if we can make such assumptions!

30 / 32

Assignment

● Design and create a UART driver (from template)

● Design a protocol to communicate with the microcontroller

● Serializing and Deserializing messages

● Detect transmission errors

● Drive a simulated step counter

All in an emulator

31 / 32

Advent of Code

● 1st of December until 25th of December

● Starting Friday!

● Every day a programming puzzle

● A bit harder every day

● First to solve Ð→ most points

● Leaderboard: adventofcode.com 356604-2d88ced05

5also on the course website

32 / 32

adventofcode.com

