Software Systems
Lecture 3

Jonathan Donszelmann
Vivian Roest

Delft University of Technology, The Netherlands

January 24, 2024

3
TUDelft

Previous Lecture

® Profiling
® Benchmarking

® Optimizing programs for speed

3
TUDelft

Today

Writing Code without an Operating System or Standard Library (std)

3
TUDelft

Operating System Services

Question:
What services does an operating system provide to a program?

3
TUDelft

Operating System Services

Filesystem

Threads and Subprocesses
An Allocator

Peripherals

Graphics
Standard in/output

* Program startup routine (crt0/1)

® .. and more.

<3
TUDelft

Program Startup

1 extern crate std;
2 extern crate alloc;
3 extern crate core;
4

5 use std::prelude: :*;
6

7 fn __start() {

8 startup() ;

9 main();

10 teardown() ;

11 }

12

13 // rest of code

https://github.com/runtimejs/musl-1libc/blob/master/crt/
x86_64/crtl.s https://github.com/runtimejs/musl-1libc/
blob/0al11d7cb13e243782da36e2e5747b8b151933cca/src/env/__
libc_start_main.c#L58

5
TUDelft

https://github.com/runtimejs/musl-libc/blob/master/crt/x86_64/crt1.s
https://github.com/runtimejs/musl-libc/blob/master/crt/x86_64/crt1.s
https://github.com/runtimejs/musl-libc/blob/0a11d7cb13e243782da36e2e5747b8b151933cca/src/env/__libc_start_main.c#L58
https://github.com/runtimejs/musl-libc/blob/0a11d7cb13e243782da36e2e5747b8b151933cca/src/env/__libc_start_main.c#L58
https://github.com/runtimejs/musl-libc/blob/0a11d7cb13e243782da36e2e5747b8b151933cca/src/env/__libc_start_main.c#L58

no_std

Opt-out of using Rust’s standard library by writing:

main.rs

1 #![no_std]
2
3 // rest of main

<3
TUDelft

core and alloc

® core: set of functions that do not rely on an Operating System
® alloc: set of functions that rely on the presence of an Allocator
® e.g. Box, Vec, Rc

® std: set of functions that do require an Operating System

<3
TUDelft

core and alloc

® core: set of functions that do not rely on an Operating System
® alloc: set of functions that rely on the presence of an Allocator
® e.g. Box, Vec, Rc

® std: set of functions that do require an Operating System

Question:
Can we use no_std with an operating system?

5
TUDelft

no_std

Question:
What do we do if we don't have an operating system?

® How does the program start? Remember the NES.
* What do we do once it did start?

<3
TUDelft

Don't panic!

Question:
What (should) happen if a bare-metal® program crashes?

Le. running without an operating system

<3
TUDelft

Don't panic!

There are only a few things we can do
® Reboot
® Shut down completely
* Halt / Infinite Loop

* Report error using semihosting?

#[panic_handler]
fn panic(info: &PanicInfo) -> ! {
loop {} //infinte loop

SNV SR

}

2Only sometimes available: e.g. when using a debugger or virtualization

<3
TUDelft

Allocating memory

Question:
How do we manage memory without an operating system?

3
TUDelft

Specifying an allocator

1 #![no_std]

2

3 // enable the alloc crate. Only works if an allocator is provided.
4 extern crate alloc;

5

6 // import some allocator

7 use some_allocator: :SomeAllocator;

8

9 // define global allocator

10 #[global_allocator]

11 static ALLOCATOR: SomeAllocator = SomeAllocator::new();
12

13

14 // This function is called when an allocation fatils.

15 #[alloc_error_handler]

16 fn alloc_error(layout: Layout) -> ! {

17 panic!("Alloc error! {layout:?}");

18 }

<3
TUDelft

Hardware Abstraction

Many bare-metal programs have similar components
® Booting up
® Interrupt Handlers
e Common Portocols

12C

CAN

SPI

Traditionally, manufacturers also provide C code to support
programming for that device.

The Rust ecosystem has two kind of things that can help
* Platform Abstraction Crates (PACs)
* Hardware Abstraction Layers (HALs)

5
TUDelft

Aside: Memory Mapped 1/0 (MMIO)

Special memory addresses that don't store data but talk to a
peripheral device

Useful to provide a (somewhat) standardized way to talk to
peripherals

® However, a lot of "magic” constants to define and use correctly
® Can we make this easier?

Those that followed Software Fundamentals might recognise this from
the NES joypad.

5
TUDelft

Peripheral Access Crates

The datasheet table for the nRF51 temperature sensor

Table 181: Instances

Base address Peripheral Instance Description
0x4000C000 TEMP TEMP Temperature Sensor
Table 182: Register Overview

Register Offset Description

Tasks

START 0x000 Start temperature measurement

SToP 0x004 Stop temperature measurement

Events

DATARDY 0x100 Temperature measurement complete, data ready
Registers

INTEN 0x300 Enable or disable interrupt

INTENSET 0x304 Enable interrupt

INTENCLR 0x308 Disable interrupt

TEMP 0x508 Temperature in °C

Peripheral Access Crates

The Rust struct for the nRF51 temperature sensor from nrf51-pac?

Tasks
#[repr(C)] START 0x000
pub struct RegisterBlock { STOP 0x004
pub tasks_start: TASKS_START, Events
pub tasks_stop: TASKS_STOP, DATARDY 0x100
pub events_datardy: EVENTS_DATARDY, Registers
pub intenset: INTENSET, INTEN 0x300
pub intenclr: INTENCLR, INTENSET 0x304
I;T’ semp! TE’f“’id Cror aliomment) 1/ INTENCLR 0x308
) private fields (for alignmen TEMP 0x508

notice how it matches the datasheet 1:17

3https ://docs.rs/nrfb1-pac/latest/nrf51_pac/temp/struct.RegisterBlock.html

<3
TUDelft

https://docs.rs/nrf51-pac/latest/nrf51_pac/temp/struct.RegisterBlock.html

Peripheral Access Crates: working with peripherals

let mut p = nrfbl_hal::pac::Peripherals::take() .unwrap();

// take reference since peripheral %s owner
let t = &mut p.TEMP;

// write the bits 101 to this register
t.tasks_start.write(|w| unsafe {w.bits(5)})

00 ~NOoO O WwN -

9 // reset the value (safe)
10 t.tasks_start.write(|w| w.reset_value())

12 // read the temperature (safe)
13 t.temp.read(|r| r.bits())

® writing is unsafe

® resetting and reading is safe

<3
TUDelft

Peripheral Access Crates: data validation

® Some registers can only contain certain values
® Writing other values is unsafe

® Using the type system for data validation

let mut p = nrf51_hal::pac::Peripherals::take() .unwrap();

// take reference since peripheral %s owner
let u = &mut p.UART;

// safel
u.write(|w| w.baudrate().baud1200Q));

~NOoO O WN

® Using baudrate, we can only write “valid” values

<3
TUDelft

Hardware abstraction layers

¢ Built on top of PACs
® Higher level
® Usually much better documented

e “Create your own operating system”

use nrf_hal::temp: :Temp;
let mut p = nrf51_hal::pac::Peripherals::take() .unwrap();
let mut t = Temp::new(p.TEMP);

// don't bother with the individual registers
let temperature = t.measure();

0 ~N O U WwN -

<3
TUDelft

Hardware abstraction layers

Some examples:

® abstract over device: nrf_usbd
® abstract over chip: nrf51 _hal

® abstract over whole architecture: cortex.m

3
TUDelft

Cortex.m

e Abstracts details of ARM Cortex M processors

® CPU registers, interrupts, standard peripherals
® extensions:

® alloc_cortex.m: an allocator

® cortexm rt: a startup runtime

® cortex.m_interrupt: easy interrupt setup

* cortex.m_semihosting: communication with hypervisor*

With HALs and PACs, embedded development starts to feel like
programming with an operating system

“or even hardware debugger

5
TUDelft

Unsafe code

Definition
Safe: Rust can check it
Sound: Rust can't check it but it does work!

® Soundness may depend on assumptions

® A pointer is not NULL
® An index is in bounds

e |f assumptions are checked, unsafe operations may be always sound

// unsound when a is null
unsafe fn dereference(a: *mut usize) -> usize {
*a

= w N

}

5
TUDelft

Unsafe code
Definition
Safe: Rust can check it
Sound: Rust can't check it but it does work!

e Safety does not mean ‘can’t crash’
e Safety means no undefined behavior

1 // unsound when a is null

2 unsafe fn dereference(a: *mut usize) -> usize {
3 *a

4 %

5

6 // is this the only assumption?

7 fn safe_dereference(a: *mut usize) -> usize {
8 assert_ne! (a as usize, 0);

9 dereference(a)

10 }

<3
TUDelft

Safe abstractions

® Some things are safe to do but the compiler won't allow us

e Certain things are only safe if certain conditions are met

A safe abstraction is a way to do traditionally unsafe things through an
always-safe interface.

Check our assumptions if we cannot guarantee them!

Question:

Have we seen any safe abstractions in this course?

5
TUDelft

Safe abstractions

Rust is built on unsafe abstractions

® Box abstracts memory management

® Mutex abstracts shared mutability

® Vec abstracts growing and shrinking memory
® println! and File abstracts system calls

® std::io::Error abstracts errno

® Channel abstracts communication

... the list goes on

Important

Document why unsafe code is safe!l Write down your assumptions!

5
TUDelft

Safe abstractions

Safe abstractions often rely on certain assumptions about a system

Question:
Can you think of operations that are safe on some systems and unsafe
on others?

<3
TUDelft

Safe abstractions: A Mutex for a single core machine

® Only one core: no locking required!
® Orisit?

3
TUDelft

Safe abstractions: A Mutex for a single core machine

® Only one core: no locking required!
e Orisit?

Pseudocode:

struct OurMutex<T>(UnsafeCell<T>);

impl<T> OurMutex<T> {
fn update(v: impl FnOnce(&mut T)) {
// turn off interrupts
v(self.0.get())
// turn interrupts back on if they were on before

© 00 N O U WN =

Turning off interrupts makes shared mutability safe on single core
machines! But check (and comment) if we can make such assumptions!

<3
TUDelft

Assignment

® Design and create a UART driver (from template)

® Design a protocol to communicate with the microcontroller
* Serializing and Deserializing messages

® Detect transmission errors

® Drive a simulated step counter

All in an emulator

<3
TUDelft

Advent of Code

1st of December until 25th of December

Starting Friday!

Every day a programming puzzle

A bit harder every day

First to solve — most points
Leaderboard: adventofcode.com 356604-2d88ced0®

5also on the course website

<3
TUDelft

adventofcode.com

