
Software Systems
Lecture 4

Jonathan Dönszelmann

Vivian Roest

Delft University of Technology, The Netherlands

January 24, 2024



Previous Lecture

● Programming without an operating system

● Hardware abstraction

● Unsafe code

2 / 37



Today

● Foreign function interfaces

● Cross compilation

● Sending messages

● Tying up loose ends

The last lecture!

3 / 37



Foreign Function Interfaces

Question:

How can two different programs interoperate?

4 / 37



Foreign Function Interfaces

Question:

How can two different programs interoperate when they are written in a
different language?

5 / 37



Foreign Function Interfaces

Question:

How can two different programs interoperate when they are written in a
different language?

● Network

● File System

● IPC

● Static or Dynamic Linking

6 / 37



Foreign Function Interfaces

Question:

What kind of challenges do we face?

● Network

● File System

● IPC

● Static or Dynamic Linking

7 / 37



Linking together a program

● Static linking

● Compiler creates object files

● Linker creates a binary from many object files

● Symbol: name of item in an object file

● An object file can be ‘Looking’ for a symbol

● Another object file can provide or declare this symbol

8 / 37



Looking for a symbol in C

1 // declare that it exists

2 // don't actually define it

3 extern void do_thing(int);

4

5 int main() {

6 do_thing(42);

7 }

Another C file compiled seperately

1 void do_thing(int a) {

2 printf("%d", a);

3 }

The linker will make sure that do thing is resolved in the other object
file (if defined!)

9 / 37



C to C++

1 // declare that it exists

2 // don't actually define it

3 extern void do_thing(int);

4

5 int main() {

6 do_thing(42);

7 }

A C++ file compiled seperately

1 void do_thing(int a) {

2 stc::cout << a << std::endl;

3 }

C and C++ work similarly, so this is often possible1.

1Is C a subset of C++?

10 / 37



C to C++

Not valid c++

1 void* ptr;

2 int* i = ptr;

11 / 37



C to C++

Not valid c++

1 void example() {

2 goto foo;

3 int i = 1;

4 foo:

5 ;

6 }

12 / 37



C to C++

Not valid c++

1 void example(int* restrict a, int* restrict b) {

2 }

13 / 37



C to Rust

Question:

What kind of problems will we face?

14 / 37



C to Rust

Question:

What kind of problems will we face?

● sizes of integers

● irrepresentable types (enums with values)

● exceptions (panic)

● fat pointers

● incompatible ABI

● generic functions

15 / 37



Impersonating C

1 // declare that it exists

2 // don't actually define it

3 extern void do_thing(int);

4

5 int main() {

6 do_thing(42);

7 }

Define a symbol with the same name in Rust

1 use std::ffi::c_int;

2

3 #[no_mangle]

4 pub extern "C" fn do_thing(a: c_int) {

5 println!("{}", a)

6 }

16 / 37



So what’s going on here?

1 use std::ffi::c_int;

2

3 #[no_mangle]

4 pub extern "C" fn do_thing(a: c_int) {

5 println!("{}", a)

6 }

● #[no mangle]: ask Rust not to change the function name2

● extern "C": ask Rust to make the function callable from C

● c int is an integer of the same size as an int in C.

2https://godbolt.org/z/PaYsv61E5

17 / 37

https://godbolt.org/z/PaYsv61E5


ABI

● extern "C": sets an ABI

● default: extern "rust"

● ABI: Application Binary Interface

● What does a program expect where to work

● example: what register contains the return value?

● Rust’s ABI is pretty unstable

● C’s ABI is pretty stable 3

Remember:

1 #[repr(C)]

2 struct A {b: u64}

3 ish, technically it defines no ABI but loads of programs assume it does and it is pretty constant on a single architecture

18 / 37



C to Python

Question:

What kind of extra problems will we face?

19 / 37



C to Python

Question:

What kind of problems will we face?

● Garbage collector

● Interpreted

● Completely different representation of values

20 / 37



Rust to Python

● Just like Rust can simply link to C so can
● C++
● Python
● Java (ish)
● Pretty much every other language

● So we can use C’s ABI to talk to other languages

● PyO3 to talk to Python for example: docs.rs/pyo3

21 / 37

docs.rs/pyo3


Making interaction easier

● cc automatically compiles and links C files through cargo

● build.rs files can run rust code at compile time to do extra tasks

● cbindgen can generate C headers from Rust types

Demo!

22 / 37



Foreign Function Interfaces

Question:

How can two different programs interoperate when they are written in a
different language?

● Network

● File System

● IPC

● Static or Dynamic Linking

23 / 37



Sending and Receiving messages

Communication happens over some kind of channel

● Network

● File System

● IPC

● Static or Dynamic Linking

Question:

What kind of data can we send over these channels?

24 / 37



Sending and Receiving messages

● Sending bytes or characters
● We can convert more complex data into bytes that represent them

● u32 to 4 bytes
● f64 to 8 bytes
● structs to the concatenated bytes of their contents
● etc

● This is called serialization, the reverse is called deserialization

● Goal: receiver deserializes to the same information as the sender
sent

Question:

How can we serialize references?

25 / 37



Sending and Receiving messages
● Serialization can quickly become hard
● Can we automate this?
● Two steps:

1 inspecting types (struct/enums/etc)
2 outputting serialized data

● Serde does part 1: generate code at compile time so they are
inspectable at runtime

1 use serde::{Serialize, Deserialize};

2

3 #[derive(Serialize, Deserialize, PartialEq)]

4 struct Ping {

5 // Some data fields for the ping message

6 timestamp: u64,

7 payload: Vec<u8>,

8 }

26 / 37



Sending and Receiving messages
Now we can use an external library like postcard to convert instances
of this struct to bytes

1 use postcard::{to_vec, from_bytes};

2

3 #[derive(Serialize, Deserialize, PartialEq)]

4 struct Ping { ... }

5

6 let original = Ping {

7 timestamp: 0x123456789abcdef,

8 payload: vec![0, 1, 2, 3, 4, 5, 6, 7, 8],

9 };

10

11 // ser is just a Vec<u8> representing the original message

12 let ser = to_vec(&original);

13

14 // can fail when our bytes are not a valid Ping message

15 let de: Ping = from_bytes(ser.deref()).unwrap();

16

17 assert_eq!(original, de);

27 / 37



Sending and Receiving messages

● Different backends for different output formats

● postcard for small binary representations

● serde json to convert types to and from json

● Lots of others: https://serde.rs/

28 / 37

https://serde.rs/


Wire protocols

Question

After we serialized, can we just send our messages over a wire (like
UART)?

29 / 37



Wire protocols

Question

After we serialized, can we just send our messages over a wire (like
UART)?

● Where do messages start?

● Start and end markers

● What if that marker occurs in the data we want to send?

● Escaping / byte stuffing

● Prefixing lengths

30 / 37



Networking

31 / 37



Networking

32 / 37



Data integrity

Question

What happens if a byte is lost or changed while we send it?

33 / 37



Data integrity

Question

What happens if a byte is lost or changed while we send it?

● Checksums

● Like a hash function

● Sent along with the message

● if the receiver finds they don’t match, reject the message or ask for
retransmission

● commonly used: CRC

34 / 37



Cross compilation

● Compiling on one system, for another system

● The other system could have a different OS, different architecture
etc.

● The compiling system must know the details of the target system
to know what code to generate

● Target triples: <arch>-<vendor>-<system>-<ABI>
● example:

● x86 64-pc-windows-gnu
● x86 64-pc-windows-msvc
● x86 64-unknown-linux-gnu
● riscv32i-unknown-none-elf

Question:

Why do we need cross compilation?

35 / 37



Cross compilation

Question:

Why do we need cross compilation?

● Some target systems don’t have an operating system, how can we
run compilers on them?

● Sometimes it’s just easier to compile on a different system: better
hardware?

Demo! https:
//doc.rust-lang.org/nightly/rustc/platform-support.html

36 / 37

https://doc.rust-lang.org/nightly/rustc/platform-support.html
https://doc.rust-lang.org/nightly/rustc/platform-support.html


End of part 1

This is the end of our part of this course, we hope you enjoyed it!

37 / 37


