
Unified Modeling Language:

An Introduction

Guohao Lan

Embedded Systems Group

December 12th 2023

CESE4015 Software Systems

2CESE4015 Software Systems

• At the end of the course, you should be able to:

– Understand:

• The purpose of UML (unified modeling language)

• Three categories of UML diagrams:

– Structural, behavioral, and interactional.

– When and how to apply basic UML diagrams to model software

systems.

• Assessment:

– Modeling assignments using UML diagrams. [Group of two]

– Reflection document on UML-based modeling. [Individual]

Learning objectives

3CESE4015 Software Systems

• Week 5 Lecture:
– Background of UML

– Use Case

• Week 5 Lab:
– Modeling with UML diagrams (part 1)

• Week 6 Lecture:
– Component, Deployment

– Class, Sequence

• Week 6 Lab:
– Modeling with UML diagrams (part 2)

Agenda for UML

4CESE4015 Software Systems

• Slides materials are built from different sources:
– Slides created by Marty Stepp, CSE403 @ UWashington.

– UML Distilled, 3rd edition by Martin Fowler.

– The Unified Modeling Language Reference Manual, 2nd edition by James

Rumbaugh, Ivar Jacobson, and Grady Booch.

– Practical UML: A Hands-On Introduction for Developers by Randy Miller.

– IBM Rational Software Architect Documentation:

https://www.ibm.com/docs/en/rational-soft-arch/9.5

• Lab platform:
– PlantUML: https://plantuml.com/

– A tutorial will be given during the lab sessions.

Acknowledgements

https://www.ibm.com/docs/en/rational-soft-arch/9.5
https://plantuml.com/

5CESE4015 Software Systems

• Week 5 Lecture:
– Background of UML

– Use Case

• Week 5 Lab:
– Modeling with UML diagrams (part 1)

• Week 6 Lecture:
– Component, Deployment

– Class, Sequence

• Week 6 Lab:
– Modeling with UML diagrams (part 2)

Agenda for UML

6CESE4015 Software Systems

• What is the UML?

– It is a graphical design notation:

• More clear than natural language and code.

• Simplifies system design process and avoid a lot of details.

– Help communicating ideas about a system design.

– It is language and technology independent.

Background

◼ UML: A family of standardized graphical notations that
helps in describing and designing software systems at a
high level of abstraction.

7CESE4015 Software Systems

• Driving force:

– Programming languages do not provide a high enough level of abstraction to

facilitate the design.

• UML is based on many earlier software design approaches:

– Evolving since 1990s:

• The Booch method by Grady Booch

• The Object-modeling Technique (OMT) by James Rumbaugh

• The Object-oriented Software Engineering (OOSE) by Ivar Jacobson

Each of these methods had its only notation and approach!

A brief overview of its history

8CESE4015 Software Systems

• Formation of UML:

– The “three amigos” combined their ideas to create a unified modeling language:

A brief overview of its history (cont.)

9CESE4015 Software Systems

• Adoption by OMG and evolution:

A brief overview of its history (cont.)

UML was adopted as a standard by the

Object Management Group (OMG)

Accepted by IOS as a standard and been

periodically revised.

10CESE4015 Software Systems

Why bother with the UML?

From the view of building construction:

 A unified standard that can be understood by architects and builders.

• Clarity: bring clarity to complex design.

• Communication: a universal language for diverse teams to understand.

• Documentation: a valuable way for future reference.

11CESE4015 Software Systems

Overview of UML Diagrams

Diagram

Structure Diagram

Class Diagram

Component Diagram

Composite Structure Diagram

Deployment Diagram

Object Diagram

Package Diagram

Behavior Diagram

Activity Diagram

Use Case Diagram

State Machine Diagram

Interaction

Diagram

Sequence Diagram

Communication Diagram

Interaction Overview Diagram

Timing Diagram

13 official diagram types

12CESE4015 Software Systems

Overview of UML Diagrams (cont.)

• Three types of diagrams:

– Structural diagrams:

• Emphasizes the static structure of the system and the things that must be

presented in the system, including objects, attributes, operations, components,

and relationships.

• Used extensively in documenting the architecture of the software systems.

Structure Diagram

Class Diagram

Component Diagram

Composite Structure Diagram

Deployment Diagram

Object Diagram

Package Diagram

13CESE4015 Software Systems

Overview of UML Diagrams (cont.)

– Behavioral diagrams:

• Focuses on the dynamic behavior of the systems and changes to the

internal states of objects.

– Behavior: how data moves; how does the system change in time;

how system behaves with different events.

• Interaction diagrams:

– Interaction: emphasize the flow of control, showing collaborations

among objects; how objects communicate;

Behavior Diagram

Activity Diagram

Use Case Diagram

State Machine Diagram

Interaction

Diagram

Sequence Diagram

Communication Diagram

Interaction Overview Diagram

Timing Diagram

14CESE4015 Software Systems

Overview of UML Diagrams (cont.)

Diagram

Structure Diagram

Class Diagram

Component Diagram

Composite Structure Diagram

Deployment Diagram

Object Diagram

Package Diagram

Behavior Diagram

Activity Diagram

Use Case Diagram

State Machine Diagram

Interaction

Diagram

Sequence Diagram

Communication Diagram

Interaction Overview Diagram

Timing Diagram

What will be covered:

15CESE4015 Software Systems

Use Case Diagram

Diagram

Structure Diagram

Class Diagram

Component Diagram

Composite Structure Diagram

Deployment Diagram

Object Diagram

Package Diagram

Behavior Diagram

Activity Diagram

Use Case Diagram

State Machine Diagram

Interaction

Diagram

Sequence Diagram

Communication Diagram

Interaction Overview Diagram

Timing Diagram

16CESE4015 Software Systems

Use Case Diagram (cont.)

◼ Use Case Diagram: a collection of actors, use cases, and
their associations that describes what a system does from the
standpoint of an external observer.

• What is the Use Case Diagram?

17CESE4015 Software Systems

Use Case Diagram (cont.)

◼ Discussion:
➢ What do you see in this diagram?

➢ What are the elements in this diagram?

➢ What message(s) this diagram may try
to deliver?

Clinic management system

Think/write → Pair → Share

• What is the Use Case Diagram?

18CESE4015 Software Systems

Use Case Diagram (cont.)

• A Use Case Diagram:

– Presents the users of the system and

their interactions with the system.

– Shows high-level overview of

relationship between use cases, actors,

and the system.

– Does not provide a lot of details.

Clinic management system

19CESE4015 Software Systems

Use Case Diagram (cont.)

• Elements in the Use Case Diagram:

◼ Actor: represents a role played by a user or any
other system that interacts with the system being
modeled.

❖ Focus: who will use (interact with) the system?

❖ Represented by stick figures.

❖ Actors must be external entities that produce or
consume data (interact with the system).

❖ Actor is different from the concept of user – a user
can act as different actors.

Actor

20CESE4015 Software Systems

Use Case Diagram (cont.)

• Common elements in the Use Case Diagram:

◼ Use case: is a summary of scenarios that
describes the typical interaction between the
actors of a system and the system itself.

❖ Represented by horizontally shaped ovals

❖ Typically represent system function from
a user’s point of view.

❖ Focus on what, not how!
❖ A simple and descriptive way to

show what the system does from the
user’s perspective.

Use case

21CESE4015 Software Systems

Use Case Diagram (cont.)

• Common elements in the Use Case Diagram:

◼ System boundary: a rectangle that separates
the system from the external actors.

❖ It defines the scope of the system.

❖ All use cases outside the boundary box are
outside the scope of the system.

❖ For large and complex systems, each
module may be the system boundary.

System boundary

22CESE4015 Software Systems

Use Case Diagram (cont.)

• Common elements in the Use Case Diagram:

◼ Association: illustrates the relationship
between an actor and a use case.

❖ A solid line between actor and user case.
[No arrow!]

❖ Shows an actor can initiate or interact with
the process defined in the use case.

❖ No flow of control. No sequence or timing.

Association

23CESE4015 Software Systems

Exercise

Imagine a Library System that has two main types of users: library members

and librarians. Library Members can use the system to borrow books to take

home and return books when they have finished reading. They can also

search their book of interest. On the other side, librarians are responsible for

updating the catalogue and managing memberships. Both library members

and librarians can search books.

Think/draw → Pair → Share

• Draw a use case diagram for the scenario described below:

24CESE4015 Software Systems

Exercise (cont.)

Imagine a Library System that has two main types of users: Library Members

and Librarians. Library Members can use the system to borrow books to take

home and return books when they have finished reading. They can also

search their book of interest. On the other side, librarians are responsible for

updating the catalogue and managing memberships. Both library members

and librarians can search books.

25CESE4015 Software Systems

• Use Case Relationship:

Use Case Diagram (cont.)

◼ Generalization:
❖ Indicate one use case is a special kind of the other.
❖ Represented by a directed arrow with a triangle arrowhead.
❖ Generalization is used when we find two or more use cases that have

commonalities in behavior, structure, or purpose.

26CESE4015 Software Systems

Use Case Diagram (cont.)

◼ Include:
❖ Indicates one use case (the base use case) is using the functionality of another use case

(the inclusion use case).
❖ Represented by a directed arrow with dotted line.
❖ The stereotype “<<include>>” identifies the include relationship, where the base use case

includes the functionality of the inclusion use case.
❖ Include relation is used to support the reuse of functionality.

27CESE4015 Software Systems

Use Case Diagram (cont.)

◼ Extend: specify that one use case (extension) extends the behavior of another use
case (base).
❖ Represented by a directed arrow with dotted line. The stereotype “<<extend>>”

identifies the extend relationship.
❖ We use extend relationship to show:

❖ A use case is an optional system behavior.
❖ A use case is executed only under certain conditions.

28CESE4015 Software Systems

• An overall example:

Use Case Diagram (cont.)

29CESE4015 Software Systems

Use Case Diagram (cont.)

• When to use the Use Case Diagram?

– To represent the system-user interactions.

– To define and organize the functional requirements of a system.

– Is typically used in the early phase in system design.

30CESE4015 Software Systems

Closing remarks

• In the Lab session:

– Download and install PlantUML.

– Go over the tutorial for the use case diagrams:

• URL: https://cese.pages.ewi.tudelft.nl/software-systems/part-

2/tutorials/uml/use-case.html

• Get familiar with the system mentioned in the modeling

assignments;

https://cese.pages.ewi.tudelft.nl/software-systems/part-2/tutorials/uml/use-case.html
https://cese.pages.ewi.tudelft.nl/software-systems/part-2/tutorials/uml/use-case.html

	Introduction
	Slide 1
	Slide 2
	Slide 3
	Slide 4

	Motivation&Background
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

	Use Case
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

