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Agenda for UML

« Week 6 Lecture:

— Class, Sequence
— Component, Deployment

* Week 6 Lab:
— Modeling with UML diagrams (part 2)
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Class Diagram

 Whatis a class diagram?

» Class Diagram: describes the structure of classes
in the system and the various kinds of static
relationships among them.
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Class Diagram (cont.)

« But what is Class and Object?

— Aclass is a blueprint for an object
— Aclass describes what an object will be, but it is not the object itself.

Properties
Color
Height
Length
Weight

Class
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Functions A l’h >
Sit /% Create instance _ﬁ.&*
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— Object-Orientation “features” in Rust:

Using traits to define shared behavior in an abstract way.
Using struct to achieve the purpose of class:
References: https.//doc.rust-lang.org/book/ch17-02-trait-objects.html

https://jimmco.medium.com/classes-in-rust-cbb72c0f0a4c
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Class Diagram (cont.)

= Discussion:
> What do you see in this diagram?
> What are the elements in this diagram?
> What message(s) this diagram may try to deliver?

Librarian
. ops Member @
Simplified Use Case © Jlibrarianip: String [1]
-memberlD: String [1] ) -Strfn [1]9
Library System -name: String [1] name: 9
 Borrow Book +b utrm "FEB L [f(k Lb 4 ?{k : BB L [f(k :I :BB < [I: lean iﬁi?f; tlBBDDDDkig R}Duncklé : BBGDDDkig } BE‘?DDD{ ]EEaEr:"I
e s retumBndlbook: Boak): Agolean) ) +manageMembershipimembership: membership): Boolean

J /f
— | < ReturnBook
P — —

Librar{,r Mémber‘““x‘

\_\-’}___ h_ __Iz_-k. X
(_SearchBook =
e N EIi @ Book
A " title: String [1]
M Beahioe Librarian = : -
Marfg_e Min R -author: String [0..1]
-numberOfCopies: Int [0..*]
+checkAvailability(): Boolean

Think 2 Pair =2 Share
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Class Diagram (cont.)

 Whatis a class diagram?

» Class Diagram: describes the structure of classes
in the system and the various kinds of static
relationships among them.

— |t visualizes:

* the static properties and operations of classes:
— Attributes, methods, and associations.
— It does not show:

 How the classes are dynamically interacted.
* The implementation details.
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Class Diagram (cont.)

* Diagram of one class:

= Class notation: contains three parts -
class name, attributes, and operations.

 Class name in top of the box
« Attributes should include all fields of the object
« Operations should not include inherited methods

Class name —» @ Book

-title: String [1]
-author: String [0..1]
-numberOfCopies: Int [0..%]

Attributes =—p

Operations —p | +CheckAvailability(): Boolean
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Class Diagram (cont.)

 (Class attributes:

= Syntax:
visibility name : data type

— (1) Visibility:
* + public: accessible to everything
» # protected: accessible to class, package, and subclasses
« - private: accessible to the class only
» ~ package (default): accessible to class and package

Access Right public (+) private (-) protected (#) Package (~)
Members of the same class yes yes yes yes
Members of derived classes yes no yes yes
Members of any other class yes no no in same package
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Class Diagram (cont.)

 (Class attributes:

= Syntax:
visibility name : data type

— (2) Multiplicity:

Multiplicities Meaning

0..1 zero or one Instance. The notation n . . m indicates n to m instances.
|0..* ar * no limit on the number of instances (including none).

1 exactly one instance

1" at least one instance
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Class Diagram (cont.)

 (Class attributes:

=  Syntax:
visibility name : data_type

» Class operations:

=  Syntax:
visibility name (parameter-list) : return-type

— An example:

@ Book

-title: String [1] = "default name of new book"
-author: String [0..1] = "default author"
-numberOfCopies: Int [0..*¥] =0

+checkAvailability(): Boolean
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Class Diagram (cont.)

» Class relationships:

= Simple association:
A solid line connects two classes.
Different types of cardinality.

@Librarian| 1 Manage |@Enuk| Borrow 1 |@Member

| 1% | | 1.#* |
Multiplicities Meaning
0..1 zero or one instance. The notation . . m indicates » to m instances.
0.* or *  |no limit on the number of instances (including none).
1 lexactly one instance
| at least one instance
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Class Relationship (cont.)

» Class relationships:

= Discussion:

> (1) In the diagram below, you can see solid lines with a hollow
arrowhead that points from one class to another class:

@Enansnr
@A[[Elemmeter @Gymscupe @TemperaturESEnsur

Attributes and operations of the classes are omitted

> what relationship could this arrowed line indicate?
> What is the relationship between Sensor and Accelerometer?
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Class Relationship (cont.)

* Class relationships:

= Generalization: an inheritance relationship
Represents an “is-a” relationship

A solid line with a hollow arrowhead that points from the child to
the parent class

©Sensur
@Accemmmeter @Gyr&scupe @TemperaturESEnsur
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Class Relationship (cont.)

* Class relationships:

= Generalization: an inheritance relationship
Represents an “is-a” relationship

A solid line with a hollow arrowhead that points from the child to
the parent class

@ User

-userlD: String [1]
-name: String [1]

+borrowBookibook: Book): Boolean
+returnBook{book: Book): Boolean
+searchBook{book: Book): Boolean

/N

@ Library Member

-userlD: String [1]
-name: String [1]

@ Librarian

-userlD: String [1]
-name: String [1]
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+borrowBookibook: Book): Boolean
+returnBook{book: Book): Boolean
+searchBook({book: Book): Boolean
+payMembershipFee(): Boolean

+hborrowBookibook: Book): Boolean
+returnBook{book: Book): Boolean
+searchBook(book: Book): Boolean
+updateBook(book: Book): Boolean
+searchMembership(): Member
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Class Relationship (cont.)

= Discussion:

> (2) In the diagram below, you can see solid lines with an unfilled
diamond that points from one class to the other classes:

> What relationship could this type of line indicate?
> What is the relationship between Car and Engine?
> What is the relationship between Car and Wheel?
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Class Relationship (cont.)

* Class relationships:

= Aggregation: represents a “is part of” relationship

A solid line with an unfilled diamond at the association end
connected to the class of composite.

Objects of Class A and Class B have separate lifetimes
(independent).
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Class Relationship (cont.)

= Discussion:

> (3) In the diagram below, you can see a solid line with a filled
diamond that points from one class to the other:

(c)Building

]

I..
‘@ Flcmri

> What relationship could this type of line indicate?
> What is the relationship between Building and Floor?
> Why couldn’t we use the aggregation relationship?
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Class Relationship (cont.)

* Class relationships:

= Composition: represents a “is entirely made of” relationship

A solid line with a filled diamond at the association end
connected to the class of composite.

Objects of Class A and Class B have the same lifetime.
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Class Relationship (cont.)

» Putting all together:

= Exercise #1:

> You are designing the payment module of a shopping system. You
need design two payment methods, i.e., credit card and debit card
payment, that may have some overleaps in features.

> What do you think could be the relationships among the three classes
below?

!@ PaymentMethod

@CreditCardPayment @DebitCar[ﬂPayment
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Class Relationship (cont.)

» Putting all together:

= Exercise #2:

> You are modeling the relationship between university, faculty, and
departments. What do you think could be the relationships among the
three classes below?

‘@ Department
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Class Diagram

* Short summary:

» Class Diagram: describes the structure of classes
in the system and the various kinds of static
relationships among them.

— When to use:

« Describes the structure of a system by showing its classes (operations
and attributes) and the relationships among them.

« Useful in conceptual modeling of the structure of the system, and
helpful in translating the models into programming code.

— |t does not show:
e How the classes are interacted.
* The implementation details.
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Component and Deployment Diagrams

Class Diagram

Component Diagram

Composite Structure Diagram

Structure Diagram [« _
Deployment Diagram

Object Diagram
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Activity Diagram

Use Case Diagram

Behavior Diagram ¢ State Machine Diagram

Sequence Diagram

Interaction Communication Diagram

Diagram Interaction Overview Diagram

Timing Diagram
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Component Diagram

* What is the Component Diagram?

= Component Diagram: divides a complex system into multiple components
and shows the inter-relationships between the components.

= The term ‘component’: a module of classes that represents independent
system or subsystem with the ability to interface with the rest of a more
complex system.

— Component diagram is useful to:
* Show the system’s physical structure (organization of the system!).
* Show the system’s static components and their relations.
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Component Diagram (cont.)

« Common elements in the diagram:

= Component: represents a modular part of a system that encapsulates its contents.
It can be represented by different ways:

A rectangle with the stereotype <<component>> and/or icon.
A rectangle with the component icon.
A rectangle with the name of the component.

i

«component» second Component

First Component

i ‘

‘ Thrid Component
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Component Diagram (cont.)

« Common elements in the Component Diagram:

= Dependency:

Indicates that the functioning of one element depends on the existence of
another element. (Thinking about the #include statement)

Dependency

7O\

g 1| searchin g 1| use
Student Database ™~ -~~~ 77 Student Profile Finder -0

2 ]
Study Report Generator
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Component Diagram (cont.)

« Common elements in the Component Diagram:

= Assembly:

Provided interface: symbols with a complete circle at the end represent an
interface

Required interface: symbols with a half circle at the end represent an interface
that the component requires.

/ Required interface

= P =
L Study Report Generator

Provided Interface

-\

SN -
Master Student Database | o Student Profile Finder L
b ]

Student ID J udent Profite

EI 2
Bachelor Student Database ot

Student ID
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Component Diagram (cont.)

= Discussion:
> In the following two diagrams, what could be the difference?

Dependency

£ 1| searchin g 1| use
Student Database ™~ -~~~ 77 Student Profile Finder -0

g ]
Study Report Generator

Assembly

E I E P E
Master Student Database - Student Profile Finder th)_' Study Report Generator

Student ID ft student Profile
|

Bachelor Student Database :

" Student 1D

Dependency between two components on the classifier level expresses a potential
assembly relationship between the two corresponding instances in system run-time.

They are modeling the system at different abstraction

CESE4015 Software Systems 58



Component Diagram (cont.)

« Common elements in the Component Diagram:

= Group and package:

Student Management Euhsystem\

g2 1| use
Study Report Generator ~ 7 7“1 Student Profile Fmder

S L7/E‘:nt Iﬂtuder}*\

Student Datahase

g ]
Master Student Database

Bachelor Student Database
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Deployment Diagram

* What is the Deployment Diagram?

= Deployment Diagram: a type of structural diagram that
shows a system’s physical layout, revealing which pieces
of software run on what pieces of hardware.

— It shows the physical deployment of the software elements.
— ltillustrates the runtime processing for hardware.
— It provides the topology of the hardware system.

CESE4015 Software Systems 60



Deployment Diagram (cont.)

 Modeling a wireless sensing system:

Cable ADC

«hardware» «hardware» «hardware»
Power Source Micro-controller Sensor
Node N
«software» «hardware» ANIES «software»
Wireless Driver Wireless Transceiver Cloud Server
Connection
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Deployment Diagram (cont.)

* Another example:

Node

N

sdevices»
A Computer

Buyer Client

House Information Search Engine

Purchase Handler

£]

Dependency \

«devices» )
Bank Server [
]
] I 4
Mortgage Application Handler —Q
7 0 Application 1D
F .Y
K B
| use * use
",
s
[ I W
. (_:_ustu mer Data basig_ | I _ﬂurtgage Databagn_ﬁ_,_.

Communication

«protocols TCP/IP

adevices»
Real Estate Server

House Information Search Engine

£
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Sequence Diagram

Class Diagram

Component Diagram

Composite Structure Diagram

Structure Diagram [«

Deployment Diagram

Object Diagram

Package Diagram

Diagram [+

Activity Diagram

Use Case Diagram

Behavior Diagram ¢ State Machine Diagram

Sequence Diagram

Communication Diagram

Interaction
Diagram Interaction Overview Diagram

Timing Diagram
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Sequence Diagram (cont.)

 What is the Sequence Diagram?

» Sequence Diagram: an “interaction diagram” that

models a single scenario in the system.
shows how example objects interact wit

The diagram

N each other

and the messages that are passed between them.
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Sequence Diagram (cont.)

= Discussion:
> What do you see in this diagram?
> What are the elements in this diagram?
> What message(s) this diagram may try to deliver?

‘ Customer ‘ l Cashier ‘

veltern |
g >

calculateCost

< |

regquestPayment

‘ Customer | ‘ Cashier ‘

Think 2 Pair 2 Share
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Sequence Diagram (cont.)

* What is the Sequence Diagram?

» Sequence Diagram: an “interaction diagram” that
models a single scenario in the system. The diagram
shows how example objects interact with each other
and the messages that are passed between them.

— Itis a behavioral diagram that shows:
« Lifelines of participants
 Messages shared
 How objects are activated
« Which object is controlling the flow

— Does not provide a lot of implementation details.
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Sequence Diagram (cont.)

« Common elements in a sequence diagram:

= Participant: object that acts in the diagram.
= Squares with object type, optionally preceded by “hame:”

Name syntax: <objectname>:<classname>

= Object can be specified (with a name) or general (without a name to
represent any object in that class).

Object with
jec Wl 4 name Anonymous object

‘ Alice:Customer ‘ ‘ ‘Cashier |

giveltem .

-
‘ ‘ calculateCost
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Sequence Diagram (cont.)

« Common elements in a sequence diagram:

= Participant: object that acts in the diagram.
= Squares with object type, optionally preceded by “hame:”

= Lifeline: represents the time that an object exists.
= Represented by dashed vertical line.

Alice;Customer ‘ ‘ :Cashier ‘

giveltern }: — Object lifeline

calculateCost
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Sequence Diagram (cont.)

« Common elements in a sequence diagram:

= Activation: a thin rectangle on the lifeline that represents the period
during which a participant is performing an operatlon/actlon (e.q.,
running its code or waiting for another participant’s method to flnlsh)

‘ Customer ‘ ‘ Cashier ‘

Iveltern :
g e

Activated period of calculateCost

the Customer \ :|

requestPayment
< q Y

----------------------------- ik \ Two activated periods

payCash J:| / of the Cashier

returnChange

Customer ‘ | Cashier |
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Sequence Diagram (cont.)

Difference between activation and lifeline?

Activation: a thin rectangle on the lifeline that represents the period
during which a participant is performing an operatlon/act|on (e.q.,
running its code or waiting for another participant’s method to finish).

Lifeline: represents the time that an object (participant) exists.

‘ Customer ‘ ‘ Cashier ‘

- —
giveltem -
————————— =

culatecoct — Cashier exists but is not
CalCulatel.os
D performing any operation

reguestPayment
< d Y

Cashier is performing
|, retumnChange ‘ “ an operation

‘ Customer | ‘ Cashier |
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Sequence Diagram (cont.)

« Common elements in a sequence diagram:

= Message (method call): communication between participants.
= Synchronous message and return.

= If the caller sends a synchronous message, it must wait until it receives
a response (message return) from the target.

‘ Customer ‘ ‘ Cashier ‘

Il giveltermn }:_
L
/ calculateCost
Synchronous message <]
requestPayment

o S i
payCash -
Synchronous message return >
ﬁ_fetu_rnchar]gg_ i

‘ Customer | ‘ Cashier ‘
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Sequence Diagram (cont.)

« Common elements in a sequence diagram:

= Discussion:

> In the following diagram, you can see a type of messages that is
different from the synchronous messages. What could this type of
message mean? What do they represent?

|A1ice:5tudent | | Bﬂb:Teacher| | Software Systems:Course |

checlm'u.railabilit-_.,r:

askApproval |
Different types of / - numberﬂfﬁug;bleslnt

messages &SPy

enroll

, >
confirmation | J:|
T{--- T --I S R S ]

Alice:Student | | me:Teacher| | Software Systems:Course
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Sequence Diagram (cont.)

« Common elements in a sequence diagram:

= Message (method call): communication between participants.
= Synchronous message and return.

= Asynchronous message: allows the sender to send additional messages
while the original one is being processed.

Alice:Student ‘ ‘ Bnh:Teacher‘ | Software Systems:Course

Asynchronous __ checkAvailability, .
messages — | | askApproval _

bleSlot

£l

[ numberOfAvall

|, @pproval

enroll ,

, -
confirrmation | J:|

Alice:Student ‘ ‘ Bub:Teacher‘ | Software Systems:Course
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Sequence Diagram (cont.)

« Common elements in a sequence diagram:

= Message (method call): communication between participants.

= The key difference lies in the timing and waiting behavior:
= Synchronous: involve immediate and direct interaction (the sender is waiting!)

= Asynchronous: involve non-blocking communication. The sender can continue its
execution without waiting for a reply.

Alice:Student | | Bnh:Teacher| | Software Systems:Course |

checkAvailability:

]
B

askApproval

numberﬂfﬁlﬁ.r:];blemnt

|, approval

enroll

, >
confirmation | J:|
_{--- T --I o e S 1]

Alice:Student | | Bnb:Teacher| | Software Systems:Course
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Sequence Diagram (cont.)

« Selection and loop:

= (opt) [condition]: the fragment executes only if the supplied condition is true;

‘ Alice:Customer ‘ ‘ Euh:Eashier‘

givelterm .

-
requestPa ment:|
o d ¥ I

[need receipt]

requestReceipt

IveReceipt
{Eil P

AlicE:Custumer‘ ‘ Euh:Eashier‘
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Sequence Diagram (cont.)

« Selection and loop:

= (loop) [condition or items to loop over]: the fragment may execute multiple
times if the supplied condition is true;

| Alice:Customer | | Niki:Cashier| ‘ An ltem:ltem ‘
= : :
Innp [for each item fln the :hnppingCnrt]
giveltem ' :
etCost !
g >
__r_{g_t_urnlteml:cst |:|
payCash : i

=
returnChange H
=3

opt /| [need receipt] .

requestReceipt |
q P -

iveReceipt H
| JiveReceip |

Ahce:Custumer| | Njki:Cashjer| ‘An Iltem:ltem
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Sequence Diagram (cont.)

« Selection and loop:

= (alt) [condition]: alternative multiple fragments = if / elseif/ else;

|AIice:Custumer| | Niki:Cashier‘ |ﬁm ltem:ltem | myRegister ‘ | myTerminal: paymentTerminal |
= 1 ' | '
loop [for each item in the s:l'mppingc.rt] : : :
giveltem s
getCost e ' '
returniternCost | :
_ requestTotalPayment | | .
) T i i |
alt [Pay by Cash] i
payCash ! I I [
depositPayment : L : :
calculatechange: |_| |
- ; - |
returnChange | | I
[Pay by cand] : : :
payByCard ! &
< sendConfirmation :
_ confirmPayment : : :
opt /| [need receipt] I - - .
requestReceipt - i : [
iveReceipt : | |
{_gy_{:_—::__ecmp ! . .
AJice:Custumer| | Niki:Cashier‘ |An ltem:ltem | | myRegister ‘ | myTerminal: paymentTerminal
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Sequence Diagram (cont.)

 When to use the Sequence Diagram?

— To show the interaction between several objects within a single
use case (usage scenario).

— To explore the logic of a use case.
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Closing remarks

 |n the Lab session:

« Go over the tutorial for Component, Class and
Sequence diagrams:

« Work on the modeling assignment.
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