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• Week 5 Lecture:
– Background of UML

– Use Case

• Week 5 Lab:
– Modeling with UML diagrams (part 1)

• Week 6 Lecture:
– Class, Sequence

– Component, Deployment

• Week 6 Lab:
– Modeling with UML diagrams (part 2)

Agenda for UML
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• What is a class diagram?

Class Diagram

 Class Diagram: describes the structure of classes 
in the system and the various kinds of static 
relationships among them. 
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• But what is Class and Object?
– A class is a blueprint for an object

– A class describes what an object will be, but it is not the object itself.

– Object-Orientation “features” in Rust:
• Using traits to define shared behavior in an abstract way.

• Using struct to achieve the purpose of class: 

• References: https://doc.rust-lang.org/book/ch17-02-trait-objects.html

• https://jimmco.medium.com/classes-in-rust-c5b72c0f0a4c

Class Diagram (cont.)

Class Object

Properties
Color
Height
Length
Weight

Functions
Sit
Eat
Shake
Run

Properties
Color: Flesh
Height: 15cm
Length: 30cm
Weight: 2kg

Create instance
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Class Diagram (cont.)

 Discussion: 
 What do you see in this diagram?
 What are the elements in this diagram?
 What message(s) this diagram may try to deliver?

Simplified Use Case

Think  Pair   Share
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• What is a class diagram?

Class Diagram (cont.)

– It visualizes:

• the static properties and operations of classes：
– Attributes, methods, and associations.

– It does not show:

• How the classes are dynamically interacted.

• The implementation details.

 Class Diagram: describes the structure of classes 
in the system and the various kinds of static 
relationships among them. 
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Class Diagram (cont.)

• Diagram of one class:

• Class name in top of the box

• Attributes should include all fields of the object

• Operations should not include inherited methods

 Class notation: contains three parts -
class name, attributes, and operations.

Class name

Attributes

Operations
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Class Diagram (cont.)

• Class attributes:

– (1) Visibility:  
• + public: accessible to everything

• # protected: accessible to class, package, and subclasses

• - private: accessible to the class only

• ~ package (default): accessible to class and package

 Syntax:
visibility  name  :  data_type [multiplicity]  =  default_value
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Class Diagram (cont.)

• Class attributes:

– (2) Multiplicity:  

 Syntax:
visibility  name  :  data_type [multiplicity]  =  default_value
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Class Diagram (cont.)

• Class attributes:

• Class operations:

– An example:  

 Syntax:
visibility  name  :  data_type [multiplicity]  =  default_value

 Syntax:
visibility  name  (parameter-list) :  return-type
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Class Diagram (cont.)

• Class relationships:

 Simple association:
• A solid line connects two classes.
• Different types of cardinality.



43CESE4015  Software Systems

Class Relationship (cont.)

 Discussion: 
 (1) In the diagram below, you can see solid lines with a hollow 

arrowhead that points from one class to another class:

 what relationship could this arrowed line indicate?
 What is the relationship between Sensor and Accelerometer?

Attributes and operations of the classes are omitted

• Class relationships:
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Class Relationship (cont.)

• Class relationships:

 Generalization: an inheritance relationship
• Represents an “is-a” relationship
• A solid line with a hollow arrowhead that points from the child to 

the parent class
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Class Relationship (cont.)

• Class relationships:

 Generalization: an inheritance relationship
• Represents an “is-a” relationship
• A solid line with a hollow arrowhead that points from the child to 

the parent class
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Class Relationship (cont.)

 Discussion: 
 (2) In the diagram below, you can see solid lines with an unfilled 

diamond that points from one class to the other classes:

 What relationship could this type of line indicate?
 What is the relationship between Car and Engine?
 What is the relationship between Car and Wheel?
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Class Relationship (cont.)

• Class relationships:

 Aggregation: represents a “is part of” relationship
• A solid line with an unfilled diamond at the association end 

connected to the class of composite.
• Objects of Class A and Class B have separate lifetimes 

(independent).
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Class Relationship (cont.)

 Discussion: 
 (3) In the diagram below, you can see a solid line with a filled 

diamond that points from one class to the other:

 What relationship could this type of line indicate?
 What is the relationship between Building and Floor?
 Why couldn’t we use the aggregation relationship?
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Class Relationship (cont.)

• Class relationships:

 Composition: represents a “is entirely made of” relationship
• A solid line with a filled diamond at the association end 

connected to the class of composite.
• Objects of Class A and Class B have the same lifetime.
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Class Relationship (cont.)

• Putting all together:

 Exercise #1: 
 You are designing the payment module of a shopping system. You 

need design two payment methods, i.e., credit card and debit card
payment, that may have some overleaps in features. 

 What do you think could be the relationships among the three classes 
below? 
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Class Relationship (cont.)

• Putting all together:

 Exercise #2: 
 You are modeling the relationship between university, faculty, and 

departments. What do you think could be the relationships among the 
three classes below? 
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• Short summary:

– When to use:

• Describes the structure of a system by showing its classes (operations 
and attributes) and the relationships among them.

• Useful in conceptual modeling of the structure of the system, and 
helpful in translating the models into programming code.

– It does not show:

• How the classes are interacted.

• The implementation details.

Class Diagram

 Class Diagram: describes the structure of classes 
in the system and the various kinds of static 
relationships among them. 
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Component and Deployment Diagrams
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Component Diagram

 Component Diagram: divides a complex system into multiple components
and shows the inter-relationships between the components.

 The term ‘component’: a module of classes that represents independent 
system or subsystem with the ability to interface with the rest of a more 
complex system. 

• What is the Component Diagram?

– Component diagram is useful to:
• Show the system’s physical structure (organization of the system!).

• Show the system’s static components and their relations.
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Component Diagram (cont.)

• Common elements in the diagram:

 Component: represents a modular part of a system that encapsulates its contents. 
It can be represented by different ways:

 A rectangle with the stereotype <<component>> and/or icon.
 A rectangle with the component icon.
 A rectangle with the name of the component.



56CESE4015  Software Systems

Component Diagram (cont.)

• Common elements in the Component Diagram:

 Dependency:
 Indicates that the functioning of one element depends on the existence of 

another element. (Thinking about the #include statement)

Dependency
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Component Diagram (cont.)

• Common elements in the Component Diagram:

 Assembly:
 Provided interface: symbols with a complete circle at the end represent an 

interface

 Required interface: symbols with a half circle at the end represent an interface 
that the component requires.

Provided Interface
Required interface
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Component Diagram (cont.)

• Dependency between two components on the classifier level expresses a potential 
assembly relationship between the two corresponding instances in system run-time.

• They are modeling the system at different abstraction 

Dependency

Assembly

 Discussion: 
 In the following two diagrams, what could be the difference? 
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Component Diagram (cont.)

• Common elements in the Component Diagram:

 Group and package:
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Deployment Diagram

 Deployment Diagram: a type of structural diagram that 
shows a system’s physical layout, revealing which pieces 
of software run on what pieces of hardware.

• What is the Deployment Diagram?

– It shows the physical deployment of the software elements.

– It illustrates the runtime processing for hardware.

– It provides the topology of the hardware system.
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Deployment Diagram (cont.)

• Modeling a wireless sensing system:

Node

Connection
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Deployment Diagram (cont.)

• Another example:

Node
Dependency

Communication
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Sequence Diagram
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Sequence Diagram (cont.)

 Sequence Diagram: an “interaction diagram” that 
models a single scenario in the system. The diagram 
shows how example objects interact with each other 
and the messages that are passed between them.

• What is the Sequence Diagram?
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Sequence Diagram (cont.)

 Discussion: 
 What do you see in this diagram?
 What are the elements in this diagram?
 What message(s) this diagram may try to deliver?

Think  Pair   Share



66CESE4015  Software Systems

Sequence Diagram (cont.)

• What is the Sequence Diagram?

– It is a behavioral diagram that shows:
• Lifelines of participants

• Messages shared

• How objects are activated

• Which object is controlling the flow

– Does not provide a lot of implementation details.

 Sequence Diagram: an “interaction diagram” that 
models a single scenario in the system. The diagram 
shows how example objects interact with each other 
and the messages that are passed between them.
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Sequence Diagram (cont.)

• Common elements in a sequence diagram:

 Participant: object that acts in the diagram.
 Squares with object type, optionally preceded by “name:”

 Object can be specified (with a name) or general (without a name to 
represent any object in that class).

Object with a name
Anonymous object

Name syntax: <objectname>:<classname>
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Sequence Diagram (cont.)

• Common elements in a sequence diagram:

 Participant: object that acts in the diagram.
 Squares with object type, optionally preceded by “name:”

 Lifeline: represents the time that an object exists.
 Represented by dashed vertical line.

Object lifeline
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Sequence Diagram (cont.)

• Common elements in a sequence diagram:

 Activation: a thin rectangle on the lifeline that represents the period 
during which a participant is performing an operation/action (e.g., 
running its code or waiting for another participant’s method to finish).

Activated period of 
the Customer

Two activated periods 
of the Cashier
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Sequence Diagram (cont.)

• Difference between activation and lifeline?

 Activation: a thin rectangle on the lifeline that represents the period 
during which a participant is performing an operation/action (e.g., 
running its code or waiting for another participant’s method to finish).

 Lifeline: represents the time that an object (participant) exists.

Cashier is performing 
an operation

Cashier exists but is not 

performing any operation
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Sequence Diagram (cont.)

• Common elements in a sequence diagram:

 Message (method call): communication between participants.
 Synchronous message and return.

 If the caller sends a synchronous message, it must wait until it receives 
a response (message return) from the target. 

Synchronous message

Synchronous message return
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Sequence Diagram (cont.)

• Common elements in a sequence diagram:

Different types of 

messages

 Discussion: 
 In the following diagram, you can see a type of messages that is 

different from the synchronous messages. What could this type of 
message mean? What do they represent?



73CESE4015  Software Systems

Sequence Diagram (cont.)

• Common elements in a sequence diagram:

 Message (method call): communication between participants.
 Synchronous message and return.
 Asynchronous message: allows the sender to send additional messages 
while the original one is being processed.

Asynchronous 

messages
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Sequence Diagram (cont.)

• Common elements in a sequence diagram:

 Message (method call): communication between participants.

 The key difference lies in the timing and waiting behavior:
 Synchronous: involve immediate and direct interaction (the sender is waiting!)
 Asynchronous: involve non-blocking communication. The sender can continue its 
execution without waiting for a reply.
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Sequence Diagram (cont.)

• Selection and loop:

 (opt) [condition]: the fragment executes only if the supplied condition is true;
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Sequence Diagram (cont.)

• Selection and loop:
 (loop) [condition or items to loop over]: the fragment may execute multiple 

times if the supplied condition is true;
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Sequence Diagram (cont.)

• Selection and loop:
 (alt) [condition]: alternative multiple fragments =  if / elseif/ else;
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Sequence Diagram (cont.)

• When to use the Sequence Diagram?
– To show the interaction between several objects within a single 

use case (usage scenario).

– To explore the logic of a use case.
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Closing remarks

• In the Lab session:
• Go over the tutorial for Component, Class and 

Sequence diagrams: 

• Work on the modeling assignment.


