CESE4015 Software Systems

Unified Modeling Language:
An Introduction (Part 2)

Guohao Lan
Embedded Systems Group

December 21th 2023

Agenda for UML

« Week 6 Lecture:

— Class, Sequence
— Component, Deployment

* Week 6 Lab:
— Modeling with UML diagrams (part 2)

CESE4015 Software Systems 32

Class Diagram

Class Diagram

Component Diagram

Composite Structure Diagram

Structure Diagram [«

Deployment Diagram

Object Diagram

Package Diagram

Diagram [+

Activity Diagram

Use Case Diagram

Behavior Diagram ¢ State Machine Diagram

Sequence Diagram

Interaction Communication Diagram

Diagram Interaction Overview Diagram

Timing Diagram
CESE4015 Software Systems 33

Class Diagram

 Whatis a class diagram?

» Class Diagram: describes the structure of classes
in the system and the various kinds of static
relationships among them.

CESE4015 Software Systems 34

Class Diagram (cont.)

« But what is Class and Object?

— Aclass is a blueprint for an object
— Aclass describes what an object will be, but it is not the object itself.

Properties
Color
Height
Length
Weight

Class

. . .
Functions A l’h >
Sit /% Create instance _ﬁ.&*
Eat “\‘:\ ______________ . { ﬁ X
Shake E

Lo A Lt ‘,
Run e Vit :

O LAY \ ’

ot st i
").X. AR

— Object-Orientation “features” in Rust:

Using traits to define shared behavior in an abstract way.
Using struct to achieve the purpose of class:
References: https.//doc.rust-lang.org/book/ch17-02-trait-objects.html

https://jimmco.medium.com/classes-in-rust-cbb72c0f0a4c

CESE4015 Software Systems

Properties
Color: Flesh
Height: 15cm
Length: 30cm
Weight: 2kg

35

Class Diagram (cont.)

= Discussion:
> What do you see in this diagram?
> What are the elements in this diagram?
> What message(s) this diagram may try to deliver?

Librarian
. ops Member @
Simplified Use Case © Jlibrarianip: String [1]
-memberlD: String [1]) -Strfn [1]9
Library System -name: String [1] name: 9
 Borrow Book +b utrm "FEB L [f(k Lb 4 ?{k : BB L [f(k :I :BB < [I: lean iﬁi?f; tlBBDDDDkig R}Duncklé : BBGDDDkig } BE‘?DDD{]EEaEr:"I
e s retumBndlbook: Boak): Agolean)) +manageMembershipimembership: membership): Boolean

J /f
— | < ReturnBook
P — —

Librar{,r Mémber‘““x‘

_\-’}___ h_ __Iz_-k. X
(_SearchBook =
e N EIi @ Book
A " title: String [1]
M Beahioe Librarian = : -
Marfg_e Min R -author: String [0..1]
-numberOfCopies: Int [0..*]
+checkAvailability(): Boolean

Think 2 Pair =2 Share

CESE4015 Software Systems 36

Class Diagram (cont.)

 Whatis a class diagram?

» Class Diagram: describes the structure of classes
in the system and the various kinds of static
relationships among them.

— |t visualizes:

* the static properties and operations of classes:
— Attributes, methods, and associations.
— It does not show:

 How the classes are dynamically interacted.
* The implementation details.

CESE4015 Software Systems 37

Class Diagram (cont.)

* Diagram of one class:

= Class notation: contains three parts -
class name, attributes, and operations.

 Class name in top of the box
« Attributes should include all fields of the object
« Operations should not include inherited methods

Class name —» @ Book

-title: String [1]
-author: String [0..1]
-numberOfCopies: Int [0..%]

Attributes =—p

Operations —p | +CheckAvailability(): Boolean

CESE4015 Software Systems 38

Class Diagram (cont.)

 (Class attributes:

= Syntax:
visibility name : data type

— (1) Visibility:
* + public: accessible to everything
» # protected: accessible to class, package, and subclasses
« - private: accessible to the class only
» ~ package (default): accessible to class and package

Access Right public (+) private (-) protected (#) Package (~)
Members of the same class yes yes yes yes
Members of derived classes yes no yes yes
Members of any other class yes no no in same package

CESE4015 Software Systems 39

Class Diagram (cont.)

 (Class attributes:

= Syntax:
visibility name : data type

— (2) Multiplicity:

Multiplicities Meaning

0..1 zero or one Instance. The notation n . . m indicates n to m instances.
|0..* ar * no limit on the number of instances (including none).

1 exactly one instance

1" at least one instance

CESE4015 Software Systems 40

Class Diagram (cont.)

 (Class attributes:

= Syntax:
visibility name : data_type

» Class operations:

= Syntax:
visibility name (parameter-list) : return-type

— An example:

@ Book

-title: String [1] = "default name of new book"
-author: String [0..1] = "default author"
-numberOfCopies: Int [0..*¥] =0

+checkAvailability(): Boolean
CESE4015 Software Systems 41

Class Diagram (cont.)

» Class relationships:

= Simple association:
A solid line connects two classes.
Different types of cardinality.

@Librarian| 1 Manage |@Enuk| Borrow 1 |@Member

| 1% | | 1.#* |
Multiplicities Meaning
0..1 zero or one instance. The notation . . m indicates » to m instances.
0.* or * |no limit on the number of instances (including none).
1 lexactly one instance
| at least one instance

CESE4015 Software Systems 42

Class Relationship (cont.)

» Class relationships:

= Discussion:

> (1) In the diagram below, you can see solid lines with a hollow
arrowhead that points from one class to another class:

@Enansnr
@A[[Elemmeter @Gymscupe @TemperaturESEnsur

Attributes and operations of the classes are omitted

> what relationship could this arrowed line indicate?
> What is the relationship between Sensor and Accelerometer?

CESE4015 Software Systems 43

Class Relationship (cont.)

* Class relationships:

= Generalization: an inheritance relationship
Represents an “is-a” relationship

A solid line with a hollow arrowhead that points from the child to
the parent class

©Sensur
@Accemmmeter @Gyr&scupe @TemperaturESEnsur

CESE4015 Software Systems 44

Class Relationship (cont.)

* Class relationships:

= Generalization: an inheritance relationship
Represents an “is-a” relationship

A solid line with a hollow arrowhead that points from the child to
the parent class

@ User

-userlD: String [1]
-name: String [1]

+borrowBookibook: Book): Boolean
+returnBook{book: Book): Boolean
+searchBook{book: Book): Boolean

/N

@ Library Member

-userlD: String [1]
-name: String [1]

@ Librarian

-userlD: String [1]
-name: String [1]

CESE4015 Software Systems

+borrowBookibook: Book): Boolean
+returnBook{book: Book): Boolean
+searchBook({book: Book): Boolean
+payMembershipFee(): Boolean

+hborrowBookibook: Book): Boolean
+returnBook{book: Book): Boolean
+searchBook(book: Book): Boolean
+updateBook(book: Book): Boolean
+searchMembership(): Member

45

Class Relationship (cont.)

= Discussion:

> (2) In the diagram below, you can see solid lines with an unfilled
diamond that points from one class to the other classes:

> What relationship could this type of line indicate?
> What is the relationship between Car and Engine?
> What is the relationship between Car and Wheel?

CESE4015 Software Systems 46

Class Relationship (cont.)

* Class relationships:

= Aggregation: represents a “is part of” relationship

A solid line with an unfilled diamond at the association end
connected to the class of composite.

Objects of Class A and Class B have separate lifetimes
(independent).

CESE4015 Software Systems 47

Class Relationship (cont.)

= Discussion:

> (3) In the diagram below, you can see a solid line with a filled
diamond that points from one class to the other:

(c)Building

]

I..
‘@ Flcmri

> What relationship could this type of line indicate?
> What is the relationship between Building and Floor?
> Why couldn’t we use the aggregation relationship?

CESE4015 Software Systems 48

Class Relationship (cont.)

* Class relationships:

= Composition: represents a “is entirely made of” relationship

A solid line with a filled diamond at the association end
connected to the class of composite.

Objects of Class A and Class B have the same lifetime.

CESE4015 Software Systems 49

Class Relationship (cont.)

» Putting all together:

= Exercise #1:

> You are designing the payment module of a shopping system. You
need design two payment methods, i.e., credit card and debit card
payment, that may have some overleaps in features.

> What do you think could be the relationships among the three classes
below?

!@ PaymentMethod

@CreditCardPayment @DebitCar[ﬂPayment

CESE4015 Software Systems 50

Class Relationship (cont.)

» Putting all together:

= Exercise #2:

> You are modeling the relationship between university, faculty, and
departments. What do you think could be the relationships among the
three classes below?

‘@ Department

CESE4015 Software Systems 51

Class Diagram

* Short summary:

» Class Diagram: describes the structure of classes
in the system and the various kinds of static
relationships among them.

— When to use:

« Describes the structure of a system by showing its classes (operations
and attributes) and the relationships among them.

« Useful in conceptual modeling of the structure of the system, and
helpful in translating the models into programming code.

— |t does not show:
e How the classes are interacted.
* The implementation details.

CESE4015 Software Systems 52

Component and Deployment Diagrams

Class Diagram

Component Diagram

Composite Structure Diagram

Structure Diagram [« _
Deployment Diagram

Object Diagram

Package Diagram

Diagram [+

Activity Diagram

Use Case Diagram

Behavior Diagram ¢ State Machine Diagram

Sequence Diagram

Interaction Communication Diagram

Diagram Interaction Overview Diagram

Timing Diagram
CESE4015 Software Systems 53

Component Diagram

* What is the Component Diagram?

= Component Diagram: divides a complex system into multiple components
and shows the inter-relationships between the components.

= The term ‘component’: a module of classes that represents independent
system or subsystem with the ability to interface with the rest of a more
complex system.

— Component diagram is useful to:
* Show the system’s physical structure (organization of the system!).
* Show the system’s static components and their relations.

CESE4015 Software Systems 54

Component Diagram (cont.)

« Common elements in the diagram:

= Component: represents a modular part of a system that encapsulates its contents.
It can be represented by different ways:

A rectangle with the stereotype <<component>> and/or icon.
A rectangle with the component icon.
A rectangle with the name of the component.

i

«component» second Component

First Component

i ‘

‘ Thrid Component

CESE4015 Software Systems 55

Component Diagram (cont.)

« Common elements in the Component Diagram:

= Dependency:

Indicates that the functioning of one element depends on the existence of
another element. (Thinking about the #include statement)

Dependency

7O\

g 1| searchin g 1| use
Student Database ™~ -~~~ 77 Student Profile Finder -0

2]
Study Report Generator

CESE4015 Software Systems 56

Component Diagram (cont.)

« Common elements in the Component Diagram:

= Assembly:

Provided interface: symbols with a complete circle at the end represent an
interface

Required interface: symbols with a half circle at the end represent an interface
that the component requires.

/ Required interface

= P =
L Study Report Generator

Provided Interface

-\

SN -
Master Student Database | o Student Profile Finder L
b]

Student ID J udent Profite

EI 2
Bachelor Student Database ot

Student ID

CESE4015 Software Systems 57

Component Diagram (cont.)

= Discussion:
> In the following two diagrams, what could be the difference?

Dependency

£ 1| searchin g 1| use
Student Database ™~ -~~~ 77 Student Profile Finder -0

g]
Study Report Generator

Assembly

E I E P E
Master Student Database - Student Profile Finder th)_' Study Report Generator

Student ID ft student Profile
|

Bachelor Student Database :

" Student 1D

Dependency between two components on the classifier level expresses a potential
assembly relationship between the two corresponding instances in system run-time.

They are modeling the system at different abstraction

CESE4015 Software Systems 58

Component Diagram (cont.)

« Common elements in the Component Diagram:

= Group and package:

Student Management Euhsystem\

g2 1| use
Study Report Generator ~ 7 7“1 Student Profile Fmder

S L7/E‘:nt Iﬂtuder}*\

Student Datahase

g]
Master Student Database

Bachelor Student Database

CESE4015 Software Systems 59

Deployment Diagram

* What is the Deployment Diagram?

= Deployment Diagram: a type of structural diagram that
shows a system’s physical layout, revealing which pieces
of software run on what pieces of hardware.

— It shows the physical deployment of the software elements.
— ltillustrates the runtime processing for hardware.
— It provides the topology of the hardware system.

CESE4015 Software Systems 60

Deployment Diagram (cont.)

 Modeling a wireless sensing system:

Cable ADC

«hardware» «hardware» «hardware»
Power Source Micro-controller Sensor
Node N
«software» «hardware» ANIES «software»
Wireless Driver Wireless Transceiver Cloud Server
Connection

CESE4015 Software Systems 61

Deployment Diagram (cont.)

* Another example:

Node

N

sdevices»
A Computer

Buyer Client

House Information Search Engine

Purchase Handler

£]

Dependency \

«devices»)
Bank Server [
]
] I 4
Mortgage Application Handler —Q
7 0 Application 1D
F .Y
K B
| use * use
",
s
[I W
. (_:_ustu mer Data basig_ | I _ﬂurtgage Databagn_ﬁ_,_.

Communication

«protocols TCP/IP

adevices»
Real Estate Server

House Information Search Engine

£

CESE4015 Software Systems

I
|
|
IL.ISE
|

Y

[___H_nuse Data bas_r?:_,]

House 1D

bZ

Sequence Diagram

Class Diagram

Component Diagram

Composite Structure Diagram

Structure Diagram [«

Deployment Diagram

Object Diagram

Package Diagram

Diagram [+

Activity Diagram

Use Case Diagram

Behavior Diagram ¢ State Machine Diagram

Sequence Diagram

Communication Diagram

Interaction
Diagram Interaction Overview Diagram

Timing Diagram
CESE4015 Software Systems 63

Sequence Diagram (cont.)

 What is the Sequence Diagram?

» Sequence Diagram: an “interaction diagram” that

models a single scenario in the system.
shows how example objects interact wit

The diagram

N each other

and the messages that are passed between them.

CESE4015 Software Systems

64

Sequence Diagram (cont.)

= Discussion:
> What do you see in this diagram?
> What are the elements in this diagram?
> What message(s) this diagram may try to deliver?

‘ Customer ‘ l Cashier ‘

veltern |
g >

calculateCost

< |

regquestPayment

‘ Customer | ‘ Cashier ‘

Think 2 Pair 2 Share

CESE4015 Software Systems 65

Sequence Diagram (cont.)

* What is the Sequence Diagram?

» Sequence Diagram: an “interaction diagram” that
models a single scenario in the system. The diagram
shows how example objects interact with each other
and the messages that are passed between them.

— Itis a behavioral diagram that shows:
« Lifelines of participants
 Messages shared
 How objects are activated
« Which object is controlling the flow

— Does not provide a lot of implementation details.

CESE4015 Software Systems 66

Sequence Diagram (cont.)

« Common elements in a sequence diagram:

= Participant: object that acts in the diagram.
= Squares with object type, optionally preceded by “hame:”

Name syntax: <objectname>:<classname>

= Object can be specified (with a name) or general (without a name to
represent any object in that class).

Object with
jec Wl 4 name Anonymous object

‘ Alice:Customer ‘ ‘ ‘Cashier |

giveltem .

-
‘ ‘ calculateCost

CESE4015 Software Systems 67

Sequence Diagram (cont.)

« Common elements in a sequence diagram:

= Participant: object that acts in the diagram.
= Squares with object type, optionally preceded by “hame:”

= Lifeline: represents the time that an object exists.
= Represented by dashed vertical line.

Alice;Customer ‘ ‘ :Cashier ‘

giveltern }: — Object lifeline

calculateCost

CESE4015 Software Systems 68

Sequence Diagram (cont.)

« Common elements in a sequence diagram:

= Activation: a thin rectangle on the lifeline that represents the period
during which a participant is performing an operatlon/actlon (e.q.,
running its code or waiting for another participant’s method to flnlsh)

‘ Customer ‘ ‘ Cashier ‘

Iveltern :
g e

Activated period of calculateCost

the Customer \ :|

requestPayment
< q Y

----------------------------- ik \ Two activated periods

payCash J:| / of the Cashier

returnChange

Customer ‘ | Cashier |

CESE4015 Software Systems 69

Sequence Diagram (cont.)

Difference between activation and lifeline?

Activation: a thin rectangle on the lifeline that represents the period
during which a participant is performing an operatlon/act|on (e.q.,
running its code or waiting for another participant’s method to finish).

Lifeline: represents the time that an object (participant) exists.

‘ Customer ‘ ‘ Cashier ‘

- —
giveltem -
————————— =

culatecoct — Cashier exists but is not
CalCulatel.os
D performing any operation

reguestPayment
< d Y

Cashier is performing
|, retumnChange ‘ “ an operation

‘ Customer | ‘ Cashier |

CESE4015 Software Systems 70

Sequence Diagram (cont.)

« Common elements in a sequence diagram:

= Message (method call): communication between participants.
= Synchronous message and return.

= If the caller sends a synchronous message, it must wait until it receives
a response (message return) from the target.

‘ Customer ‘ ‘ Cashier ‘

Il giveltermn }:_
L
/ calculateCost
Synchronous message <]
requestPayment

o S i
payCash -
Synchronous message return >
ﬁ_fetu_rnchar]gg_ i

‘ Customer | ‘ Cashier ‘

CESE4015 Software Systems 71

Sequence Diagram (cont.)

« Common elements in a sequence diagram:

= Discussion:

> In the following diagram, you can see a type of messages that is
different from the synchronous messages. What could this type of
message mean? What do they represent?

|A1ice:5tudent | | Bﬂb:Teacher| | Software Systems:Course |

checlm'u.railabilit-_.,r:

askApproval |
Different types of / - numberﬂfﬁug;bleslnt

messages &SPy

enroll

, >
confirmation | J:|
T{--- T --I S R S]

Alice:Student | | me:Teacher| | Software Systems:Course

CESE4015 Software Systems 72

Sequence Diagram (cont.)

« Common elements in a sequence diagram:

= Message (method call): communication between participants.
= Synchronous message and return.

= Asynchronous message: allows the sender to send additional messages
while the original one is being processed.

Alice:Student ‘ ‘ Bnh:Teacher‘ | Software Systems:Course

Asynchronous __ checkAvailability, .
messages — | | askApproval _

bleSlot

£l

[numberOfAvall

|, @pproval

enroll ,

, -
confirrmation | J:|

Alice:Student ‘ ‘ Bub:Teacher‘ | Software Systems:Course

CESE4015 Software Systems 73

Sequence Diagram (cont.)

« Common elements in a sequence diagram:

= Message (method call): communication between participants.

= The key difference lies in the timing and waiting behavior:
= Synchronous: involve immediate and direct interaction (the sender is waiting!)

= Asynchronous: involve non-blocking communication. The sender can continue its
execution without waiting for a reply.

Alice:Student | | Bnh:Teacher| | Software Systems:Course |

checkAvailability:

]
B

askApproval

numberﬂfﬁlﬁ.r:];blemnt

|, approval

enroll

, >
confirmation | J:|
_{--- T --I o e S 1]

Alice:Student | | Bnb:Teacher| | Software Systems:Course
CESE4015 Software Systems 74

Sequence Diagram (cont.)

« Selection and loop:

= (opt) [condition]: the fragment executes only if the supplied condition is true;

‘ Alice:Customer ‘ ‘ Euh:Eashier‘

givelterm .

-
requestPa ment:|
o d ¥ I

[need receipt]

requestReceipt

IveReceipt
{Eil P

AlicE:Custumer‘ ‘ Euh:Eashier‘

CESE4015 Software Systems 75

Sequence Diagram (cont.)

« Selection and loop:

= (loop) [condition or items to loop over]: the fragment may execute multiple
times if the supplied condition is true;

| Alice:Customer | | Niki:Cashier| ‘ An ltem:ltem ‘
= : :
Innp [for each item fln the :hnppingCnrt]
giveltem ' :
etCost !
g >
__r_{g_t_urnlteml:cst |:|
payCash : i

=
returnChange H
=3

opt /| [need receipt] .

requestReceipt |
q P -

iveReceipt H
| JiveReceip |

Ahce:Custumer| | Njki:Cashjer| ‘An Iltem:ltem

CESE4015 Software Systems 76

Sequence Diagram (cont.)

« Selection and loop:

= (alt) [condition]: alternative multiple fragments = if / elseif/ else;

|AIice:Custumer| | Niki:Cashier‘ |ﬁm ltem:ltem | myRegister ‘ | myTerminal: paymentTerminal |
= 1 ' | '
loop [for each item in the s:l'mppingc.rt] : : :
giveltem s
getCost e ' '
returniternCost | :
_ requestTotalPayment | | .
) T i i |
alt [Pay by Cash] i
payCash ! I I [
depositPayment : L : :
calculatechange: |_| |
- ; - |
returnChange | | I
[Pay by cand] : : :
payByCard ! &
< sendConfirmation :
_ confirmPayment : : :
opt /| [need receipt] I - - .
requestReceipt - i : [
iveReceipt : | |
{_gy_{:_—::__ecmp ! . .
AJice:Custumer| | Niki:Cashier‘ |An ltem:ltem | | myRegister ‘ | myTerminal: paymentTerminal

CESE4015 Software Systems 77

Sequence Diagram (cont.)

 When to use the Sequence Diagram?

— To show the interaction between several objects within a single
use case (usage scenario).

— To explore the logic of a use case.

CESE4015 Software Systems 78

Closing remarks

 |n the Lab session:

« Go over the tutorial for Component, Class and
Sequence diagrams:

« Work on the modeling assignment.

CESE4015 Software Systems 79

