
Unified Modeling Language:
An Introduction (Part 2)

Guohao Lan
Embedded Systems Group

December 21th 2023

CESE4015 Software Systems

32CESE4015 Software Systems

• Week 5 Lecture:
– Background of UML

– Use Case

• Week 5 Lab:
– Modeling with UML diagrams (part 1)

• Week 6 Lecture:
– Class, Sequence

– Component, Deployment

• Week 6 Lab:
– Modeling with UML diagrams (part 2)

Agenda for UML

33CESE4015 Software Systems

Class Diagram

Diagram

Structure Diagram

Class Diagram

Component Diagram

Composite Structure Diagram

Deployment Diagram

Object Diagram

Package Diagram

Behavior Diagram

Activity Diagram

Use Case Diagram

State Machine Diagram

Interaction
Diagram

Sequence Diagram

Communication Diagram

Interaction Overview Diagram

Timing Diagram

34CESE4015 Software Systems

• What is a class diagram?

Class Diagram

 Class Diagram: describes the structure of classes
in the system and the various kinds of static
relationships among them.

35CESE4015 Software Systems

• But what is Class and Object?
– A class is a blueprint for an object

– A class describes what an object will be, but it is not the object itself.

– Object-Orientation “features” in Rust:
• Using traits to define shared behavior in an abstract way.

• Using struct to achieve the purpose of class:

• References: https://doc.rust-lang.org/book/ch17-02-trait-objects.html

• https://jimmco.medium.com/classes-in-rust-c5b72c0f0a4c

Class Diagram (cont.)

Class Object

Properties
Color
Height
Length
Weight

Functions
Sit
Eat
Shake
Run

Properties
Color: Flesh
Height: 15cm
Length: 30cm
Weight: 2kg

Create instance

36CESE4015 Software Systems

Class Diagram (cont.)

 Discussion:
 What do you see in this diagram?
 What are the elements in this diagram?
 What message(s) this diagram may try to deliver?

Simplified Use Case

Think  Pair  Share

37CESE4015 Software Systems

• What is a class diagram?

Class Diagram (cont.)

– It visualizes:

• the static properties and operations of classes：
– Attributes, methods, and associations.

– It does not show:

• How the classes are dynamically interacted.

• The implementation details.

 Class Diagram: describes the structure of classes
in the system and the various kinds of static
relationships among them.

38CESE4015 Software Systems

Class Diagram (cont.)

• Diagram of one class:

• Class name in top of the box

• Attributes should include all fields of the object

• Operations should not include inherited methods

 Class notation: contains three parts -
class name, attributes, and operations.

Class name

Attributes

Operations

39CESE4015 Software Systems

Class Diagram (cont.)

• Class attributes:

– (1) Visibility:
• + public: accessible to everything

• # protected: accessible to class, package, and subclasses

• - private: accessible to the class only

• ~ package (default): accessible to class and package

 Syntax:
visibility name : data_type [multiplicity] = default_value

40CESE4015 Software Systems

Class Diagram (cont.)

• Class attributes:

– (2) Multiplicity:

 Syntax:
visibility name : data_type [multiplicity] = default_value

41CESE4015 Software Systems

Class Diagram (cont.)

• Class attributes:

• Class operations:

– An example:

 Syntax:
visibility name : data_type [multiplicity] = default_value

 Syntax:
visibility name (parameter-list) : return-type

42CESE4015 Software Systems

Class Diagram (cont.)

• Class relationships:

 Simple association:
• A solid line connects two classes.
• Different types of cardinality.

43CESE4015 Software Systems

Class Relationship (cont.)

 Discussion:
 (1) In the diagram below, you can see solid lines with a hollow

arrowhead that points from one class to another class:

 what relationship could this arrowed line indicate?
 What is the relationship between Sensor and Accelerometer?

Attributes and operations of the classes are omitted

• Class relationships:

44CESE4015 Software Systems

Class Relationship (cont.)

• Class relationships:

 Generalization: an inheritance relationship
• Represents an “is-a” relationship
• A solid line with a hollow arrowhead that points from the child to

the parent class

45CESE4015 Software Systems

Class Relationship (cont.)

• Class relationships:

 Generalization: an inheritance relationship
• Represents an “is-a” relationship
• A solid line with a hollow arrowhead that points from the child to

the parent class

46CESE4015 Software Systems

Class Relationship (cont.)

 Discussion:
 (2) In the diagram below, you can see solid lines with an unfilled

diamond that points from one class to the other classes:

 What relationship could this type of line indicate?
 What is the relationship between Car and Engine?
 What is the relationship between Car and Wheel?

47CESE4015 Software Systems

Class Relationship (cont.)

• Class relationships:

 Aggregation: represents a “is part of” relationship
• A solid line with an unfilled diamond at the association end

connected to the class of composite.
• Objects of Class A and Class B have separate lifetimes

(independent).

48CESE4015 Software Systems

Class Relationship (cont.)

 Discussion:
 (3) In the diagram below, you can see a solid line with a filled

diamond that points from one class to the other:

 What relationship could this type of line indicate?
 What is the relationship between Building and Floor?
 Why couldn’t we use the aggregation relationship?

49CESE4015 Software Systems

Class Relationship (cont.)

• Class relationships:

 Composition: represents a “is entirely made of” relationship
• A solid line with a filled diamond at the association end

connected to the class of composite.
• Objects of Class A and Class B have the same lifetime.

50CESE4015 Software Systems

Class Relationship (cont.)

• Putting all together:

 Exercise #1:
 You are designing the payment module of a shopping system. You

need design two payment methods, i.e., credit card and debit card
payment, that may have some overleaps in features.

 What do you think could be the relationships among the three classes
below?

51CESE4015 Software Systems

Class Relationship (cont.)

• Putting all together:

 Exercise #2:
 You are modeling the relationship between university, faculty, and

departments. What do you think could be the relationships among the
three classes below?

52CESE4015 Software Systems

• Short summary:

– When to use:

• Describes the structure of a system by showing its classes (operations
and attributes) and the relationships among them.

• Useful in conceptual modeling of the structure of the system, and
helpful in translating the models into programming code.

– It does not show:

• How the classes are interacted.

• The implementation details.

Class Diagram

 Class Diagram: describes the structure of classes
in the system and the various kinds of static
relationships among them.

53CESE4015 Software Systems

Component and Deployment Diagrams

Diagram

Structure Diagram

Class Diagram

Component Diagram

Composite Structure Diagram

Deployment Diagram

Object Diagram

Package Diagram

Behavior Diagram

Activity Diagram

Use Case Diagram

State Machine Diagram

Interaction
Diagram

Sequence Diagram

Communication Diagram

Interaction Overview Diagram

Timing Diagram

54CESE4015 Software Systems

Component Diagram

 Component Diagram: divides a complex system into multiple components
and shows the inter-relationships between the components.

 The term ‘component’: a module of classes that represents independent
system or subsystem with the ability to interface with the rest of a more
complex system.

• What is the Component Diagram?

– Component diagram is useful to:
• Show the system’s physical structure (organization of the system!).

• Show the system’s static components and their relations.

55CESE4015 Software Systems

Component Diagram (cont.)

• Common elements in the diagram:

 Component: represents a modular part of a system that encapsulates its contents.
It can be represented by different ways:

 A rectangle with the stereotype <<component>> and/or icon.
 A rectangle with the component icon.
 A rectangle with the name of the component.

56CESE4015 Software Systems

Component Diagram (cont.)

• Common elements in the Component Diagram:

 Dependency:
 Indicates that the functioning of one element depends on the existence of

another element. (Thinking about the #include statement)

Dependency

57CESE4015 Software Systems

Component Diagram (cont.)

• Common elements in the Component Diagram:

 Assembly:
 Provided interface: symbols with a complete circle at the end represent an

interface

 Required interface: symbols with a half circle at the end represent an interface
that the component requires.

Provided Interface
Required interface

58CESE4015 Software Systems

Component Diagram (cont.)

• Dependency between two components on the classifier level expresses a potential
assembly relationship between the two corresponding instances in system run-time.

• They are modeling the system at different abstraction

Dependency

Assembly

 Discussion:
 In the following two diagrams, what could be the difference?

59CESE4015 Software Systems

Component Diagram (cont.)

• Common elements in the Component Diagram:

 Group and package:

60CESE4015 Software Systems

Deployment Diagram

 Deployment Diagram: a type of structural diagram that
shows a system’s physical layout, revealing which pieces
of software run on what pieces of hardware.

• What is the Deployment Diagram?

– It shows the physical deployment of the software elements.

– It illustrates the runtime processing for hardware.

– It provides the topology of the hardware system.

61CESE4015 Software Systems

Deployment Diagram (cont.)

• Modeling a wireless sensing system:

Node

Connection

62CESE4015 Software Systems

Deployment Diagram (cont.)

• Another example:

Node
Dependency

Communication

63CESE4015 Software Systems

Sequence Diagram

Diagram

Structure Diagram

Class Diagram

Component Diagram

Composite Structure Diagram

Deployment Diagram

Object Diagram

Package Diagram

Behavior Diagram

Activity Diagram

Use Case Diagram

State Machine Diagram

Interaction
Diagram

Sequence Diagram

Communication Diagram

Interaction Overview Diagram

Timing Diagram

64CESE4015 Software Systems

Sequence Diagram (cont.)

 Sequence Diagram: an “interaction diagram” that
models a single scenario in the system. The diagram
shows how example objects interact with each other
and the messages that are passed between them.

• What is the Sequence Diagram?

65CESE4015 Software Systems

Sequence Diagram (cont.)

 Discussion:
 What do you see in this diagram?
 What are the elements in this diagram?
 What message(s) this diagram may try to deliver?

Think  Pair  Share

66CESE4015 Software Systems

Sequence Diagram (cont.)

• What is the Sequence Diagram?

– It is a behavioral diagram that shows:
• Lifelines of participants

• Messages shared

• How objects are activated

• Which object is controlling the flow

– Does not provide a lot of implementation details.

 Sequence Diagram: an “interaction diagram” that
models a single scenario in the system. The diagram
shows how example objects interact with each other
and the messages that are passed between them.

67CESE4015 Software Systems

Sequence Diagram (cont.)

• Common elements in a sequence diagram:

 Participant: object that acts in the diagram.
 Squares with object type, optionally preceded by “name:”

 Object can be specified (with a name) or general (without a name to
represent any object in that class).

Object with a name
Anonymous object

Name syntax: <objectname>:<classname>

68CESE4015 Software Systems

Sequence Diagram (cont.)

• Common elements in a sequence diagram:

 Participant: object that acts in the diagram.
 Squares with object type, optionally preceded by “name:”

 Lifeline: represents the time that an object exists.
 Represented by dashed vertical line.

Object lifeline

69CESE4015 Software Systems

Sequence Diagram (cont.)

• Common elements in a sequence diagram:

 Activation: a thin rectangle on the lifeline that represents the period
during which a participant is performing an operation/action (e.g.,
running its code or waiting for another participant’s method to finish).

Activated period of
the Customer

Two activated periods
of the Cashier

70CESE4015 Software Systems

Sequence Diagram (cont.)

• Difference between activation and lifeline?

 Activation: a thin rectangle on the lifeline that represents the period
during which a participant is performing an operation/action (e.g.,
running its code or waiting for another participant’s method to finish).

 Lifeline: represents the time that an object (participant) exists.

Cashier is performing
an operation

Cashier exists but is not

performing any operation

71CESE4015 Software Systems

Sequence Diagram (cont.)

• Common elements in a sequence diagram:

 Message (method call): communication between participants.
 Synchronous message and return.

 If the caller sends a synchronous message, it must wait until it receives
a response (message return) from the target.

Synchronous message

Synchronous message return

72CESE4015 Software Systems

Sequence Diagram (cont.)

• Common elements in a sequence diagram:

Different types of

messages

 Discussion:
 In the following diagram, you can see a type of messages that is

different from the synchronous messages. What could this type of
message mean? What do they represent?

73CESE4015 Software Systems

Sequence Diagram (cont.)

• Common elements in a sequence diagram:

 Message (method call): communication between participants.
 Synchronous message and return.
 Asynchronous message: allows the sender to send additional messages
while the original one is being processed.

Asynchronous

messages

74CESE4015 Software Systems

Sequence Diagram (cont.)

• Common elements in a sequence diagram:

 Message (method call): communication between participants.

 The key difference lies in the timing and waiting behavior:
 Synchronous: involve immediate and direct interaction (the sender is waiting!)
 Asynchronous: involve non-blocking communication. The sender can continue its
execution without waiting for a reply.

75CESE4015 Software Systems

Sequence Diagram (cont.)

• Selection and loop:

 (opt) [condition]: the fragment executes only if the supplied condition is true;

76CESE4015 Software Systems

Sequence Diagram (cont.)

• Selection and loop:
 (loop) [condition or items to loop over]: the fragment may execute multiple

times if the supplied condition is true;

77CESE4015 Software Systems

Sequence Diagram (cont.)

• Selection and loop:
 (alt) [condition]: alternative multiple fragments = if / elseif/ else;

78CESE4015 Software Systems

Sequence Diagram (cont.)

• When to use the Sequence Diagram?
– To show the interaction between several objects within a single

use case (usage scenario).

– To explore the logic of a use case.

79CESE4015 Software Systems

Closing remarks

• In the Lab session:
• Go over the tutorial for Component, Class and

Sequence diagrams:

• Work on the modeling assignment.

