
Finite-State Machines (FSM)
Software Systems (Computer & Embedded Systems Engineering)

Rosilde Corvino
January 2024 (week 8)

Extended from a
version by Arjan Mooij

Dimensions for each model type

Software Systems2

• Motivation When/where to apply the model type?

• Concepts What elements and relations between them are used in the model type?

• Notation How to represent these concepts in a textual/graphical way?

• Tool How to create models using this notation?

• Skill How to determine which concepts to use for your models?

2022-2023

Objectives

At the end of the course, you should be able to:
• Explain the purpose of Finite-State Machines, including several application areas
• Explain the concepts and notations of Finite-State Machines
• Create basic Finite-State Machines to model software-intensive systems

Assessment:
• Modeling assignment using Finite-State Machines (in groups of 2 students)
• Reflection document on Model-Based Development (individual)

2022-2023 Software Systems3

Agenda for Finite-State Machines
(Each week the Software Systems course has 2 lecture hours + 4 lab hours)

4

• Week 8 Lecture
• 30 minutes Basic Notation and simulation
• 15 minutes Basic Modeling skills
• 15 minutes Break
• 15 minutes Notation and simulation
• 15 minutes Modeling skills
• 15 minutes Application areas

• Week 8 Lab
• Notation and simulation
• Modeling skills

2022-2023 Software Systems

What do you already know about FSM?

Software Systems5

- What is an FSM?
- It is a mathematical model of computation.
- It is an abstract machine that can be in exactly one of a finite number of states at any given time.

- What parts (or type of logic) do you need to realize an FSM?
- Combinatorial and sequential logic

- How many types of FSM do you know?
- Mealy / Moore

- What is the main difference between them?
- Mealy’s output depends on input and current state
- Moore’s output depends only on the current state

- What are possible problems with simple FSM representations?
- Explosion of the number of states and transitions in certain cases

2022-2023

Motivation

Software Systems6

Finite-State Machines are a very practical way to describe behavior:
• User workflow

• In which environment will the system be used?
• E.g., passport renewal (submit application, background check, printing process, delivery, etc.)

• System behavior
• What is the logic that the system should implement?
• E.g., guarantee the safety of traffic lights

• Communication protocols on interfaces
• How should concurrent components interact with each other?
• E.g., only send messages (or call methods) in a specific order (e.g., after initialization)

Note: Finite-State Machines are called State Machine Diagram in UML

2022-2023

Notation and simulation

Finite-State Machines (FSM)

Software Systems7 2022-2023

Software Systems8

What would the elements in this Finite-State Machine mean?

2022-2023

Think  Pair  Share

States, transitions and events

Software Systems9

• State
• Represents a possible mode of a system

• Where the system is executing an activity or waits for an event.
• Each state can be active or inactive
• Visualization:

• Normal state: Rounded rectangle (with a name)
• Initial state: Indicated by an entry point
• Entry Point: Filled black circle (without a name)

• Transition
• Represents a possible state change
• Visualization: Arrow from the source state to the target state (with an event trigger)

• Event
• Represents a possible element on the interface of the system

2022-2023

Software Systems10

Simulation

2022-2023

Live demo

Software Systems11

What would the elements in this Finite-State Machine mean?

2022-2023

Think  Pair  Share

Variables, guards, and effects

Software Systems12

• Variable
• Stores some data that can be changed

• (Model may no longer be finite state)

• Effects:
• Assignment to a variable
• Raise an event (syntax: raise event)
• Sequential composition(syntax: effect1 ; effect2)

• Transition reaction:
• Executed when the transition is taken
• Syntax: trigger [guard] / effect

• Guard is a condition that enables the transition

• State reaction:
• Syntax:

• entry / effect Executed when the state is entered
• exit / effect Executed when the state is exited
• event / effect Executed when no outgoing transition can be taken

• Priorities on the outgoing transitions of a state

2022-2023

Software Systems13

Simulation

2022-2023

Live demo

Software Systems14

What would the elements in this Finite-State Machine mean?

2022-2023

Think  Pair  Share

Triggers

Software Systems15

• Single event trigger
• Trigger when the event is raised
• Syntax: ev1

• Multiple event trigger
• Trigger when one of the event is raised
• Syntax: ev1, ev2

• Time trigger
• Trigger after given amount of time
• Syntax: after 30s

2022-2023

Software Systems16

Simulation

2022-2023

Live demo

Modeling skills

Finite-State Machines (FSM)

Software Systems17 2022-2023

Creation of an FSM

Software Systems18

Ship lock:
• Two gates: bottom and top
• Two valves: bottom (paddle) and top (culvert)

Why would it be interesting to model this?

Safety constraints:
• At most one gate or valve open at a time
• Gates can only be opened when the water levels match

Let’s model the behavior of the lock in terms of the gates and valves!

2022-2023

https://en.wikipedia.org/wiki/Lock_(water_navigation)

Creation of an FSM

Software Systems19

Goal of the model: safe operating procedure of the gates and valves

Events:
• Depend on the gate/valve interface  perhaps first model their interface behavior!

• For the valves we rely on time
• For the gates we rely on sensors that confirm certain positions

• User interactions:
• Start the next swap
• (Possible extension: interrupt a swap?)

Two kinds of state:
• Stable system situation: e.g., gate open
• Instable stable situation: e.g., valve open

2022-2023

Think  Pair  Share

Components:

- Gate 1 (bottom), gate 2 (top), paddle, culvert

External interface:

- Input from an operator: swap

- Input from a sensor: G1Closed, G2Closed

- When G1 is closed: output OpenCulvert

- When the lock is full: output CloseCulvert,
OpenG2

- When G2 is closed: output OpenPaddle

- When the lock is empty: output ClosePaddle,
OpenG1

Software Systems20 2022-2023

Components:

- Gate 1 (bottom), gate 2 (top), paddle, culvert

External interface:

- Input from an operator: swap

- Input from a sensor: G1Closed, G2Closed

- When G1 is closed: output OpenCulvert

- When the lock is full: output CloseCulvert, OpenG2

- When G2 is closed: output OpenPaddle

- When the lock is empty: output ClosePaddle, OpenG1

Software Systems21 2022-2023

