
Domain-Specific Languages (DSL)
Software Systems (Computer & Embedded Systems Engineering)

Rosilde Corvino
January 2023 (week 9)

Extended from a
version by Arjan Mooij

Objectives

At the end of the course, you should be able to:
• Explain the purpose of Domain-Specific Languages, including several application areas
• Explain the basics of grammars and parsing
• Create basic textual Domain-Specific Languages, including editor support, validation and generators

Assessment:
• Modeling assignment using Domain-Specific Languages (in groups of 2 students)
• Reflection document on Model-Based Development (individual)

2022-2023 Software Systems2

Agenda for Domain-specific language
(Each week the Software Systems course has 2 lecture hours + 4 lab hours)

3

• Week 9 Lecture
• 15 minutes Why DSL?
• 30 minutes Formal grammars
• 15 minutes Break
• 30 minutes Generator and Validator
• 5 minutes Application areas
• 10 minutes General conclusions

• Week 9 Lab
• Follow the manual “Creating a Domain Specific Language (DSL) with Xtext” up to section 3.5
• Modeling assignment (Define a formal grammar for your DSL)

2022-2023 Software Systems

Motivation

Domain-Specific Languages (DSL)

Software Systems4 2022-2023

What is Jargon?

Software Systems5

Oxford dictionaries:

• Special words or expressions
• used by a profession or group
• that are difficult for others to understand

Wikipedia:

• Terminology defined in relationship to

a specific activity, profession, group, or event
• … a barrier to communication with those not familiar with the language

A standard term may be given a more precise or unique usage

2022-2023

Domain-Specific
Language

Validation Code Code
Generation

What is a Domain-Specific Language?

Software Systems6

• What are your associations with the term Domain-Specific Language?

• Do you know any Domain-Specific Languages?

2022-2023

Think  Pair  Share

What is a Domain-Specific Language?

Software Systems7

General-purpose programming languages:
• C, C++, Java, Python, etc.

Horizontal Domain-specific languages:
• HTML for web pages
• SQL for relational database queries

Vertical Domain-specific languages:
• Specifically designed for a specific application by a single company

2022-2023

What about the other model-based techniques from this course?

Software Systems8

• PlantUML for Unified Modeling Language (UML)

• CREATE Statechart Tools for Finite-State Machines (FSM)

 Horizontal DSLs

2022-2023

Software Systems9

Generations of programming languages

2022-2023

Machine instructions

1st generation
op rs rt address

100011 00011 01000 00000 00001 000100

Assembly code

2nd generation

a
ss

e
m

b
le

r

High-level programming languages
(Fortran, Cobol, C, Java, ..)

3rd generation

Higher abstraction &
Expressive power

4th generation

co
m

p
ile

r

co
d

e
 g

e
n

e
ra

to
r

Domain-Specific Language (DSL)

2022-2023 Software Systems10

Modeling Perspective on DSLs

Bridging the semantic gap in modeling

Idea

Program/Model in high-level GPL

Reusable encoding
of domain

Simple description
of idea

Complex encoding
of idea and domain

Program/Model in low-level Programming Languages (PL)

Off-the-shelf compilers

Informal:
• Human mind
• Documents

Formal:
• Models
• Compilers
• Source code

Model in DSL
Semantic gap

2022-2023 Software Systems11

DSL as Central Artifact

Generate analysis models

Validation

factor >30

2022-2023 Software Systems12

Microsoft Notepad: A Correct Sentence

2022-2023 Software Systems13

Microsoft Notepad: No Problem Detected, but …

2022-2023 Software Systems14

Microsoft Word: Spelling Error

2022-2023 Software Systems15

Microsoft Word: No Problem Detected, but …

2022-2023 Software Systems16

Microsoft Outlook: Wrong Times

Metamodels and grammars

Domain-Specific Languages (DSL)

Software Systems17 2022-2023

2022-2023 Software Systems18

Compiler Technology
12*(3+4)

84

12 * (3 + 4)

*

12 +

3 4

= +

Formal Grammar

13-1-202419

G = (N, T, P, S)

N - Non terminals

T - Terminals

P - Productions

S - Starting point

E T

T F

+

*

S

id E=

F id

T

F

id id

x

a b

c

x = a + b * c

2)(317 *

Xtext / Xtend

Software Systems20 2022-2023

Xtext - Language Engineering Made Easy! (eclipse.dev)

Extended Backus-Naur Form

Code generation
(.xtend)

Generated code
(.*)

Concrete syntax
(.xtext)

Textual input
(.supervisor)

Meta level, for developing the general infrastructure

Instance level, for developing a specific system

Model
(.xmi)

Abstract syntax
(.ecore)

2022-2023 Software Systems21

Lexical Analysis

Software Systems22

• Regular expressions detecting tokens (tokens == terminals)
• Literal character sequences

‘while’
‘(‘

• Custom terminal definitions

• Terminals that are imported by default in Xtext:
• ID
• INT
• STRING
• ML_COMMENT (= multi-line comment)  Hidden by default
• SL_COMMENT (= single-line comment)  Hidden by default
• WS (= whitespace, tab, newline)  Hidden by default

2022-2023

| choice
? optional
* zero or more times
+ one or more times

Robot: (Message | Task)*

Message: 'Display' STRING

Task: 'Task' 'name' ID ('Task' 'freq' INT)?
'Task' 'moves' (Move)+

Move: 'Move' 'name' ID
('Start' Condition)? ('End' Condition)?
'Speed' INT ('Rotation' INT)?

Syntactic Analysis

2022-2023 Software Systems23

• Context-free grammars using Extended Backus-Naur Form (EBNF)
• More expressive than regular expressions, e.g., recursion to parse nested brackets

| choice
? optional
* zero or more times
+ one or more times

2022-2023 Software Systems24

Abstract Syntax

2022-2023 Software Systems25

Concrete and Abstract Syntax

What is a valid state machine description according to this
grammar?

Software Systems26

• < ADD EXAMPLES >

2022-2023

Think  Pair  Share

s1 s2

s3

event1

event2

event3

event4

Software Systems27

• < ADD EXAMPLES >

2022-2023

StateMachine machine
Init s1
States s1 s2 s3
Events event1 event2 event3 event4
Transitions
From s1
Trigger event1
To s2
From s1
Trigger event1
To s2
From s2
Trigger event2
To s3
From s3
Trigger event4
To s1
FromTo s3
Event event3
Final s1

15 minutes break

Software Systems282022-2023

Let’s build a grammar example

Domain-Specific Languages (DSL)

Software Systems29 2022-2023

General Tips and Tricks

2022-2023 Software Systems30

• It may help to first create an example instance, and afterwards create a grammar.
• “test-driven”

• Look at the abstract syntax!
• E.g., check missing attribute names

• Don’t be too restrictive in the grammar; validation can be used for extra checks.
• Focus on specifying (not on executing)
• A DSL is not a general-purpose programming language
• Use enumeration types when appropriate:

enum ChangeKind :
ADD = 'add'

| MOVE = 'move'
;

Write a grammar for the following DSL

Software Systems31 2022-2023

Think  Pair  Share

Planning planningA
Person Mary
Person John
Person Pascal
Task task1: Mary Pascal

Planning planningB
Person John
Task task1: John

| choice
? optional
* zero or more times
+ one or more times

Robot: (Message | Task)*
Message: 'Display' STRING
Task: 'Task' 'name' ID ('Task' 'freq' INT)?

Software Systems32 2022-2023

Planning:
"Planning" name=ID
(persons += Person | tasks += Task)*
;

Person:
"Person" name=ID
;

Task:
"Task" name=ID ":" persons+=[Person]+
;

Planning planningA
Person Mary
Person John
Person Pascal
Task task1: Mary Pascal

Planning planningB
Person John
Task task1: John

Editor support, validation and generators

Domain-Specific Languages (DSL)

Software Systems33 2022-2023

Code generation
(.xtend)

Generated code
(.*)

Concrete syntax
(.xtext)

Textual input
(.supervisor)

Meta level, for developing the general infrastructure

Instance level, for developing a specific system

Model
(.xmi)

Abstract syntax
(.ecore)

2022-2023 Software Systems34

2022-2023 Software Systems35

Xtext Starting Points for Advanced Features
• Auto-formatting (<CTRL>-<SHIFT>-<F>)
• Code generation
• Scoping rules (for references)
• Validation

• Content assist (<CTRL>-<SPACE>)
• Labels for hovers
• Outline tree
• Quickfixes (for validation results)

• Feature for creating a plugin

2022-2023 Software Systems36

Model-to-Text Generation – Example Manual

generate

ge
neratorr

Grammar

Generator

M
et

a-
le

ve
l

w
or

ks
pa

ce
Ru

nt
im

e
w

or
ks

pa
ce

Xtend: “JAVA with spice” (http://www.eclipse.org/xtend/)

2022-2023 Software Systems37

Flexible, expressive dialect of Java, which compiles into readable Java 8 compatible source code

• Extension methods - enhance closed types with new functionality

• Lambda Expressions - concise syntax for anonymous function literals

• Operator overloading - make your libraries even more expressive

• Powerful switch expressions - type-based switching with implicit casts

• Multiple dispatch - a.k.a. polymorphic method invocation

• Template expressions - with intelligent white space handling

• No statements - everything is an expression

• Properties - short-hands for accessing and defining getters and setters

• …

Xtend - Documentation (eclipse.dev)

2022-2023 Software Systems39

Starting Point for Code Generation

2022-2023 Software Systems40

Definition of Text Generator

2022-2023 Software Systems41

DSL as Central Artifact

Generate analysis models

Validation

factor >30

Consistency between Generated Artifacts

Artifacts generated from a single model are consistent with model by construction
• No more manual synchronization of code, diagrams, analysis models, and documentation!

Ensuring consistency between generated artifacts is very challenging
• Consistent implementation of the DSL semantics required in all generators
• Artifacts may cover different aspects or are at different level of abstraction
• No single mitigation technique works for all artifacts

Some approaches
1. Formalizing the DSL semantics independently of the details of any code generator
2. Model checking equivalence of generated artifacts and/or semantics
3. Testing equivalence of generated artifacts and/or semantics

2022-2023 Software Systems42

2022-2023 Software Systems43

Starting Point for Model Validation

2022-2023 Software Systems44

Validation: Example from Manual

Validation Properties

2022-2023 Software Systems45

Basic (using Xtext/Xtend technologies, while editing)
• Parsing correct syntactic structure (keywords, grammar)
• Naming elements with unique names (usually per element type and scope)
• Referencing references refer to elements that have been defined
• Type checking expressions have a well-defined and correct type (and/or measurement unit)
• Structural no unused or unconnected elements, no cyclic dependencies between elements
• Domain-specific e.g., length of messages

Advanced (using external analysis tools, after editing)
• Ranges e.g., relative limits between 0 and 1, positive distances, no division by zero
• Safety e.g., low speeds if objects are close and approaching
• Deadlock object movements cannot be blocked completely

Application areas

Domain-Specific Languages (DSL)

2022-2023 Software Systems46

Where to Introduce DSLs?

Software Systems47

“The narrower the domain,
the easier it becomes
to build a good, high-level language
and make generators produce first class code” [Tolvanen 2010]

Restricted domain with some variability

Focus on:
• Essential domain concepts (INSTEAD OF implementation details)
• Structured, reusable solution (INSTEAD OF ad-hoc implementation)

2022-2023

Software Systems48

Where to Introduce DSLs?

Purpose of domain-specific modelling

Abstraction: from low-level implementations to readable requirements
• especially if the complexity is high

Configuration: from custom systems to reusable components with clear variability points
• especially if the product family is large

Independence: from platform-dependent software to technology-independent solutions
• especially if framework changes are expected

Understanding: from descriptions in natural text to formal, well-defined terminology
• especially if the main concepts and their relations are unclear

2022-2023

Closing remarks

Domain-Specific Languages (DSL)

Software Systems50 2022-2023

Objectives

At the end of the course, you should be able to:
• Explain the purpose of Domain-Specific Languages, including several application areas
• Explain the basics of grammars and parsing
• Create basic textual Domain-Specific Languages, including editor support, validation and generators

Assessment:
• Modeling assignment using Domain-Specific Languages (in groups of 2 students)
• Reflection document on Model-Based Development (individual)

2022-2023 Software Systems51

Closing remarks

Model-Based Development

Software Systems53 2022-2023

Modeling for a specific purpose

Software Systems54

• In this course we have focused on the following 3 modeling techniques:
• Unified Modeling Language (UML)  Use cases / Structure of System / Sequence of event
• Finite-State Machines (FSM)  Behavior of System / Components / Interfaces
• Domain-Specific Languages (DSL)  Specific aspect of the structure or the behaviours

2022-2023

Model-Based Development

Software Systems55

• Models-based development uses all four techniques for dealing with complexity:
• Abstraction: Identify high-level concepts that hide low-level details
• Boundedness: Impose acceptable restrictions on the considered problem space
• Composition: Divide one problem into multiple independent smaller problems
• Duplication: Use multiple overlapping approaches for the same problem

• General modeling goals:
• Speeding up software development of large complex systems

• Human understanding
• Early validation
• Code generation
• Automated testing

• Bridging the gap between application domain expertise and technical system realization

• Notes:
• Modeling is for a specific purpose; there exist many different types of models
• Modeling often helps you to detect important unclarities

2022-2023

Objectives

At the end of the course, you should be able to:
• Explain some complexity challenges of software-intensive high-tech systems
• Explain the 3 modelling techniques UML – FSM and DSL
• Explain the purpose of Model-Based Development
• Compare Model-Based Development with other techniques you know

Assessment:
• Modeling assignments for 3 modeling techniques (in groups of 2 students)
• Reflection document on Model-Based Development (individual)

2022-2023 Software Systems56

Reflection document

Software Systems57

Contents:
• Formulate your informed view on Model-Based Development for Software Systems
• Motivate this view based on your experiences in this course

• (Optional) You may relate it to other (properly-referenced) experience/information sources
• (Optional) You may relate it to your prior software development experiences

Grading criteria:
• Showing understanding of model-based development for software systems
• Providing an overarching view with supporting arguments (including your experiences in this course)
• Referencing all used sources (facts, experiences, etc.) in an appropriate way

Note:
• Individual assignment, to be submitted as PDF
• Length: 1 – 2 pages A4 (= 500-1000 words)

2022-2023

See you at the lab 

Software Systems582022-2023

