

DOMAIN-SPECIFIC LANGUAGES (DSL)

Software Systems (Computer & Embedded Systems Engineering)

Rosilde Corvino

14 – 01 – 2025

Software Systems3

AGENDA OF THE COURSE

2022-2023

Week 10Week 9
(21-1)

Week 8
(16 -1)

Week 8
(14-1)

Week 7
(9-1)

Week 7
(7-1)

Week 6
(19-12)

Week 6
(17-12)

DSL 1StateChart 1IntroductionLectures on
Tuesdays
(2 hours) DSL 2StateChart 2UML 1

1 DSL lec +
conclusion
3 DSL labs

StateChart1 UML
Lect
3 labs

Labs on
Thursdays
(4 hours)

DSL +
Reflection

StatechartUMLAssignment
due on
Friday

4 hours
lab

Title of reference4

• Identified by the banner:

• Instructions:

1. Divide into teams of two students

2. Discuss the solution to the quiz together

3. Volunteer or be asked to share

4. Points will be awarded for participation:

1. Every time you share during a game, you earn 0.3 points

2. You can earn up to a maximum of 1 additional point on the final note for this part of the course

3. Do not forget to write your name on the winners’ sheet after the lecture

QUIZ GAMES

Date Month Year

Think/Write  Pair  Share

OBJECTIVES

Software Systems5 2022-2023

• At the end of the course, you should be able to:

• Explain the purpose of Domain-Specific Languages

• Explain the basics of formal grammar and parsing

• Create basic textual Domain-Specific Languages and review examples of validation and generators

• Assessment:

• Modeling assignment using Domain-Specific Languages (in groups of 2 students)

• Reflection document on Model-Based Development (individual)

AGENDA FOR DOMAIN-SPECIFIC LANGUAGE

Software Systems6 2022-2023

• 15 minutes Introduction

• 30 minutes Formal grammar and Parsing

• 15 minutes Break

• 30 minutes How to design a DSL and its grammar

• 10 minutes Lark parser generator and Transformer and Validator

• 15 minutes General conclusions

INTRODUCTION

Domain-Specific Languages (DSL)

Software Systems7
2022-2023

WHAT DO YOU ALREADY KNOW?

Software Systems8 2022-2023

1. What do you associate with the term Domain-Specific Language?

2. Do you know any Domain-Specific Languages?

Duration: 1 minute of discussion with your partner and then speak up

Think  Pair  Share

A DSL CAN BE ASSOCIATED WITH A JARGON.
WHAT IS JARGON?

Software Systems9 2022-2023

Oxford dictionaries:

• Special words or expressions used by a profession or group

• that are difficult for others to understand

Wikipedia:

• Terminology defined in relationship to a specific activity, profession, group, or event

• … a barrier to communication with those not familiar with the language

A standard term may be given a more precise or unique usage

MICROSOFT NOTEPAD: A CORRECT SENTENCE

Software Systems10 2022-2023

MICROSOFT NOTEPAD: NO PROBLEM DETECTED, BUT …

Software Systems11 2022-2023

MICROSOFT WORD: SPELLING ERROR

Software Systems12 2022-2023

MICROSOFT WORD: NO PROBLEM DETECTED, BUT …

Software Systems13 2022-2023

MICROSOFT OUTLOOK: WRONG TIMES

Software Systems14 2022-2023

DO YOU KNOW ANY DOMAIN-SPECIFIC LANGUAGES?

Software Systems15 2022-2023

• PlantUML for Unified Modeling Language (UML)

• CREATE Statechart Tools for Finite-State Machines (FSM)

THE SCOPE OF A LANGUAGES

Software Systems16 2022-2023

• General-purpose programming languages:

• C, C++, Java, Python, etc.

• Horizontal Domain-specific languages:

• HTML for web pages

• SQL for relational database queries

• Vertical Domain-specific languages:

• Designed for a specific application by a single company

Universal,
across

domains

Specific,
across diverse
contexts in a

domain

Specific to a
project or a

context within
a domain

ABSTRACTION LEVELS OF PROGRAMMING LANGUAGES

Software Systems17 2022-2023

Machine code
addressrtrsop

00000 00001 0001000100000011100011

Assembly language

a
ss

e
m

b
le

r

High-level programming languages
(Python, C++, Java, ..)

Domain specific languages

co
m

p
ile

r

co
d

e
 g

e
n

e
ra

to
r

Metaprogramming (manipulate, generate, or reason about code itself)

Hardware operations

Machine Instructions

Algorithm and data structures

Abstraction semantics

Specific tasks and workflows

to
o

l g
e

n
e

ra
to

rs

DSL AS A SINGLE SOURCE OF TRUTH

Software Systems18 2022-2023

Generate analysis models

Validation

factor >30

METAMODELS AND
GRAMMARS

Domain-Specific Languages (DSL)

Software Systems19
2022-2023

COMPILER TECHNOLOGY

Software Systems20 2022-2023

12*(3+4)

84

12 * (3 + 4)

*

12 +

3 4

grammar

Title of reference21

EXTENDED BACKUS-NAUR FORM (OR INSPIRED FROM IT)

Date Month Year

G = (S, N, T, P)

Root of the grammarStart symbolS

Finite set of symbols on the
LHS of a production rule

Non-
terminals

-N

Alphabet of the languageTerminals-T

LHS can be replaced with RHSProduction
rule

-P

ID “=” expr:start

ID “+” ID:expr

/[a-zA-Z]+/:ID

a=b+c

= +

HOW DOES A PARSER WORK?

22 15-1-2025

e t

t f

+

*

s

id e=

f id

t

f

id id

x

a b

c

2)(317 *

line
ID “=” e:s1.
e “+” t | t :e2.
t “*” f | f:t3.
ID:f4.

c*b+a=x

Title of reference23

• Repetition: * or +

• Optionality: ?

• Alternatives: |

• Grouping: ()
• Predefined Data Types

• Aliases: ->

KEY CONCEPTS OF EBNF SYNTAX IN LARK

Date Month Year

grammar = """
start : client_list

client_list : client ("," client)*
client : name ":" location phone_number?
location : "Amsterdam" | "Delft"
name : CNAME
phone_number : NUMBER
%import common.CNAME
%import common.NUMBER
%import common.WS
%ignore WS
"""

WHAT IS A VALID PROGRAM ACCORDING TO THIS GRAMMAR?

Software Systems24 2022-2023

Think  Pair  Share

grammar = """
start : client_list

client_list : client ("," client)*
client : name ":" location phone_number?
location : "Amsterdam" | "Delft"
name : CNAME
phone_number : NUMBER
%import common.CNAME
%import common.NUMBER
%import common.WS
%ignore WS
"""

Duration: 3-minute discussion with your partner and then speak up

grammar = """
start : client_list

client_list : client ("," client)*
client : name ":" location phone_number?
location : "Amsterdam" | "Delft"
name : CNAME
phone_number : NUMBER
%import common.CNAME
%import common.NUMBER
%import common.WS
%ignore WS
"""

WHAT IS A VALID PROGRAM ACCORDING TO THIS GRAMMAR?

Software Systems25 2022-2023

grammar = """
start : client_list

client_list : client ("," client)*
client : name ":" location phone_number?
location : "Amsterdam" -> amsterdam

| "Delft“ -> delft
name : CNAME
phone_number : NUMBER
%import common.CNAME
%import common.NUMBER
%import common.WS
%ignore WS
"""

program = """
Alice: Amsterdam 0621445680,
Bob: Delft 0621445681,
Charlie: Amsterdam,
David: Delft
"""

Pretty printing

LARK Transformer

LARK

Title of reference26

HOW DOES PARSER GENERATION WORK
IN LARK?

Date Month Year

EBNF
grammar

Parser toolkit
LARK Transformer

DSL Parser

Validation

Generation

Written by the user
Generated

Library

Title of reference27

HOW IS THE GRAMMAR USED IN LARK?

Date Month Year

grammar = …
program = …

#define the parser
parser = Lark(grammar, start='start', parser='lalr’)

#parse the input program into a tree
tree = parser.parse(program)

#print the tree
print(tree.pretty())

LET’S BUILD A DSL AND ITS
GRAMMAR

Domain-Specific Languages (DSL)

Software Systems28
2022-2023

• Define the problem domain, scope and aim of the DSL: why do we
design a DSL?

• Give a few examples of the DSL: what do the examples do?
• Design the DSL syntax: what makes the DSL syntax good?
• Design the DSL grammar: what makes a grammar good?

HOW TO DESIGN A DSL?

Example-driven explanation
A language for home security systems configuration

Title of reference30

• Example: A language for home security systems configuration

• We want to build a DSL to model and simulate a home security system

• We want to be able to describe various system configurations
– Th components: cameras and sensors located in different parts of the house

– Behavior of the system when an intrusion is detected in each location

• We want to validate the system model

• From a model, we want to generate parameters to configure a (simple) system
simulator

PROBLEM DOMAIN AND SCOPE: WHY DO WE DESIGN A DSL?

Date Month Year

Title of reference31

AN EXAMPLE OF A CONFIGURATION MODEL

Date Month Year

program = """
SYSTEM {

CAMERAS { living_room }
SENSORS { living_room bedroom }

}
SYSTEM_BEHAVIOR {

INITIAL idle
IN living_room {

idle -> record: motion_detection
record -> idle: deactivate

}
IN bedroom {

idle -> alarm_on: motion_detection
alarm_on -> idle: deactivate

}
}
COMPONENT_TO_STATE_MAP {

SENSORS: alarm_on record
CAMERAS: record

}"""

What hardware is installed and in what room?

What happens when a motion is detected in
the living room?

…and in the bedroom?

What hardware is used in the different
states of the system?

Title of reference32

1. Hierarchical Structure
– The DSL uses nested blocks (`SYSTEM`, `SYSTEM_BEHAVIOR`, `COMPONENT_TO_STATE_MAP`) to organise

related elements.

– This reflects a real-world system configuration.

2. Clarity and Readability
– Keywords like `SYSTEM`, `SYSTEM_BEHAVIOR`, and `COMPONENT_TO_STATE_MAP` make the DSL self-

explanatory and all in capital letters. Although improvements are possible.

3. Concise Commands
– State transitions are expressed succinctly, such as `source_state -> target_state: event` (e.g.,`idle ->

alarm_on: motion_detection`).

WHAT MAKES A DSL SYNTAX GOOD?

Date Month Year

WRITE A GRAMMAR FOR THE FOLLOWING DSL

Software Systems34 2022-2023

Think  Pair  Share

| choice
? optional
* zero or more times
+ one or more times
(…) grouping

program = """
SYSTEM {

CAMERAS { living_room }
SENSORS { living_room bedroom }

}
SYSTEM_BEHAVIOR {

INITIAL idle
IN living_room {

idle -> record: motion_detection
record -> idle: deactivate

}
IN bedroom {

idle -> alarm_on: motion_detection
alarm_on -> idle: deactivate

}
}
COMPONENT_TO_STATE_MAP {

SENSORS: alarm_on record
CAMERAS: record

}"""

Duration: take 10 minutes to discuss with your
partner and then share with the others

Software Systems35 2022-2023

grammar = """
start: system (rules)? (maps)?

system: "SYSTEM" "{" (camera sensor | sensor camera) "}"
camera: "CAMERAS" "{" ID+ "}“
sensor: "SENSORS" "{" ID+ "}“

rules: "SYSTEM_BEHAVIOR" "{" rule+ "}"
rule: "INITIAL" ID -> initial | "IN" ID "{" action+ "}"
action: transition | transition ":" event
transition: ID "->" ID
event: "after" NUMBER "second"

| ID

maps: "COMPONENT_TO_STATE_MAP" "{" map+ "}"
map: "SENSORS" ":" ID+

| "CAMERAS" ":" ID+

%import common.CNAME -> ID
%import common.NUMBER
%import common.WS
%ignore WS
"""

program = """
SYSTEM {

CAMERAS { living_room }
SENSORS { living_room bedroom }

}
SYSTEM_BEHAVIOR {

INITIAL idle
IN living_room {

idle -> record: motion_detection
record -> idle: deactivate

}
IN bedroom {

idle -> alarm_on: motion_detection
alarm_on -> idle: deactivate

}
}
COMPONENT_TO_STATE_MAP {

SENSORS: alarm_on record
CAMERAS: record

}"""

WHAT MAKES A GRAMMAR GOOD?

Title of reference36 Date Month Year

Makes the DSL easier to understand and use.Clarity

Ensures reliable parsing and interpretation.Unambiguity

Promotes maintainability and reuse of grammar components.Modularity

Allows new features to be added without breaking existing rules.Extensibility

Avoids redundancy and keeps parsing efficient.Compactness

Validates domain-specific requirements directly in the grammar.Domain Constraints

Enhances readability and maintainability.Consistency

VALIDATION AND
GENERATION

Domain-Specific Languages (DSL)

Software Systems37 2022-2023

THE LARK TRANSFORMER (USES THE VISITOR DESIGN PATTERN)

Title of reference38 Date Month Year

N5 N6N6

N1

N2 N4N3

The Visitor Pattern lets you separate algorithms from the
objects they operate on.

Think of it as an inspector visiting different parts of your
code structure depth-first.

Class MyTransformer (Transformer):
start(): new_process()

Class Transformer:
start() : pass

Title of reference40

THE LARK TRANSFORMER (REAL EXAMPLE)

Date Month Year

Pretty-printer transformer
class PrettyPrinter(Transformer):

def start(self, items):
system, rules, maps = items
return f"{system}\n{rules}\n{maps}"

def system(self, items):
camera, sensor = items
return f"SYSTEM:\n {camera}\n {sensor}"

…

Inherit from the base Transformer

Has a method for
each grammar rule

Each method
signature takes self
(the transformer
class) and items (the
children of the
current transformed
rule) as input
parameter

def __default__(self, data, children, meta):
return " ".join(children)

pretty_printer = PrettyPrinter()
result = pretty_printer.transform(tree)
print(result)

__default__
method for all the
rules for which
the base
Transformer is not
overwritten

Title of reference41

• Semantic Validation: Checking the correctness of the DSL.

• Error Handling: Providing context-aware feedback for invalid DSL constructs.

• Editor support: Highlighting and formatting the code in an editor.

• Output generation: Converting the parse tree into meaningful outputs, such as
configuration files, executable code, or other usable formats.

• We’ll give two examples: semantic validation and Output generation

WHAT CAN WE DO WITH A TRANSFORMER?

Date Month Year

Title of reference42

SEMANTIC VALIDATION

Date Month Year

def check(program, grammar):

class ExtractData(Transformer):
def camera(self, rooms):

return {"cameras": rooms}

def sensor(self, rooms):
return {"sensors": rooms}

…

parser = Lark(grammar, parser='lalr’,
transformer=ExtractData())

data = parser.parse(program)

Extracted data
system = data[0]
rules = data[1]
maps = data[2]["maps"]
cameras = system["cameras"]
sensors = system["sensors"]

Validation checks pseudo-code

room = all the room names

1. if room not in cameras or sensors:
2. errors(f"{room}’ not declared.")

1. if "record_video" in a room not in cameras:
2. errors(f"Action 'record_video' not
allowed.")

Run the check
check(program, grammar)

Live demo

Title of reference43

CODE GENERATION

Date Month Year

class SystemRulesTransformer(Transformer):
def __init__(self):

…
def system(self, items):

cameras, sensors = items
self.sys.extend(cameras + sensors)
return items

…
System: ['living_room_camera', 'living_room_sensor', 'bedroom_sensor’]
States: {'alarm_on_bedroom', 'record_living_room', 'idle’}
Transitions: {('idle', 'motion_detection_living_room'): 'record_living_room',
('record_living_room', 'deactivate'): 'idle', ('idle', 'motion_detection_bedroom'):
'alarm_on_bedroom', ('alarm_on_bedroom', 'deactivate'): 'idle’}
State to Elements: {'alarm_on_bedroom': ['bedroom_sensor'], 'record_living_room':
['living_room_sensor', 'living_room_camera']}

Live demo

CLOSING REMARKS

Domain-Specific Languages (DSL)

Software Systems44 2022-2023

HAVE YOU REACHED THE OBJECTIVES?

Software Systems45 2022-2023

• How many of you knew about Domain-specific languages before today?

• Do you understand the purpose and application areas of domain-specific
languages?

• Do you feel capable of explaining the concepts and notations of formal grammar
and parsing?

• Could you start designing basic DSLs to model software systems?

REFLECTION DOCUMENT

Software Systems46 2022-2023

• Contents:

• Formulate your informed view on Model-Based Development for Software Systems

• Motivate this view based on your experiences in this course

• (Optional) You may relate it to other (properly-referenced) experience/information sources

• (Optional) You may relate it to your prior software development experiences

• Grading criteria:

• Showing an understanding of model-based development for software systems

• Providing an overarching view with supporting arguments (including your experiences in this
course)

• Referencing all used sources (facts, experiences, etc.) in an appropriate way

• Note: Individual assignment, to be submitted as PDF (Length: 1-page A4= 500 words)

MASTER INTERNSHIP
POSSIBILITIES

Title of reference47

Date Month Year

SMART CYPHER QUERY GENERATOR

POSSIBLE TOPICS TO EXPLORE AROUND HYBRID
SOLUTIONS COMBINING LLMS WITH DSLs:
1. Leveraging LLMs for Automated Code Analysis

and Refactoring
2. Using LLMs to Ensure Requirements

Compliance in Software Development
3. Using LLMs for program visualisation and

understanding
4. Validating LLM-generated DSL code

If you are interested, contact me at:

rosilde.corvino@tno.nl

RENAISSANCE: CODE ANALYSIS AND RESTRUCTURING

MODELING FOR A SPECIFIC PURPOSE

Software Systems48 2022-2023

• In this course, we have focused on the following 3 modeling techniques:

• Unified Modeling Language (UML)  Use cases / Structure of System / Sequence of event

• Finite-State Machines (FSM)  Behavior of System / Components / Interfaces

• Domain-Specific Languages (DSL)  Specific aspects of the structure or the behaviours

SEE YOU AT THE LAB 

Software Systems492022-2023

