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• Identified by the banner:

• Instructions:

1. Divide into teams of two students

2. Discuss the solution to the quiz together

3. Volunteer or be asked to share

4. Points will be awarded for participation: 

1. Every time you share during a game, you earn 0.3 points

2. You can earn up to a maximum of 1 additional point on the final note for this part of the course

3. Do not forget to write your name on the winners’ sheet after the lecture 

QUIZ GAMES

Date Month Year

Think/Write    Pair    Share



OBJECTIVES
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• At the end of the course, you should be able to:

• Explain the purpose of Domain-Specific Languages

• Explain the basics of formal grammar and parsing

• Create basic textual Domain-Specific Languages and review examples of validation and generators

• Assessment:

• Modeling assignment using Domain-Specific Languages (in groups of 2 students)

• Reflection document on Model-Based Development (individual)



AGENDA FOR DOMAIN-SPECIFIC LANGUAGE
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• 15 minutes Introduction

• 30 minutes             Formal grammar and Parsing

• 15 minutes Break 

• 30 minutes How to design a DSL and its grammar

• 10 minutes             Lark parser generator and Transformer and Validator

• 15 minutes General conclusions



INTRODUCTION 

Domain-Specific Languages (DSL)
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WHAT DO YOU ALREADY KNOW?
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1. What do you associate with the term Domain-Specific Language?

2. Do you know any Domain-Specific Languages?

Duration: 1 minute of discussion with your partner and then speak up

Think    Pair    Share



A DSL CAN BE ASSOCIATED WITH A JARGON.
WHAT IS JARGON?
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Oxford dictionaries:

• Special words or expressions used by a profession or group

• that are difficult for others to understand

Wikipedia:

• Terminology defined in relationship to a specific activity, profession, group, or event

• … a barrier to communication with those not familiar with the language

A standard term may be given a more precise or unique usage



MICROSOFT NOTEPAD: A CORRECT SENTENCE
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MICROSOFT NOTEPAD: NO PROBLEM DETECTED, BUT …
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MICROSOFT WORD: SPELLING ERROR
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MICROSOFT WORD: NO PROBLEM DETECTED, BUT …
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MICROSOFT OUTLOOK: WRONG TIMES
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DO YOU KNOW ANY DOMAIN-SPECIFIC LANGUAGES?
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• PlantUML for Unified Modeling Language (UML)

• CREATE Statechart Tools for Finite-State Machines (FSM)



THE SCOPE OF A LANGUAGES
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• General-purpose programming languages:

• C, C++, Java, Python, etc.

• Horizontal Domain-specific languages:

• HTML for web pages

• SQL for relational database queries

• Vertical Domain-specific languages:

• Designed for a specific application by a single company

Universal, 
across 

domains

Specific,
across diverse 
contexts in a 

domain

Specific to a 
project or a 

context within 
a domain



ABSTRACTION LEVELS OF PROGRAMMING LANGUAGES
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DSL AS A SINGLE SOURCE OF TRUTH
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Generate analysis models

Validation

factor >30



METAMODELS AND 
GRAMMARS

Domain-Specific Languages (DSL)
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COMPILER TECHNOLOGY
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EXTENDED BACKUS-NAUR FORM  (OR INSPIRED FROM IT)

Date Month Year

G = (S, N, T, P)

Root of the grammarStart symbolS

Finite set of symbols on the 
LHS of a production rule

Non-
terminals

-N

Alphabet of the languageTerminals-T

LHS can be replaced with RHSProduction 
rule

-P

ID “=” expr:start

ID  “+”  ID:expr

/[a-zA-Z]+/:ID

a=b+c
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HOW DOES A PARSER WORK?

22 15-1-2025
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• Repetition: *  or +

• Optionality:  ?

• Alternatives: |

• Grouping: (  )
• Predefined Data Types 

• Aliases: ->

KEY CONCEPTS OF EBNF SYNTAX IN LARK 

Date Month Year

grammar = """
start : client_list

client_list : client ("," client)*
client : name ":" location phone_number? 
location : "Amsterdam" | "Delft"
name : CNAME
phone_number : NUMBER
%import common.CNAME
%import common.NUMBER
%import common.WS
%ignore WS
"""



WHAT IS A VALID PROGRAM ACCORDING TO THIS GRAMMAR?
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Think    Pair    Share

grammar = """
start : client_list

client_list : client ("," client)*
client : name ":" location phone_number? 
location : "Amsterdam" | "Delft"
name : CNAME
phone_number : NUMBER
%import common.CNAME
%import common.NUMBER
%import common.WS
%ignore WS
"""

Duration: 3-minute discussion with your partner and then speak up 



grammar = """
start : client_list

client_list : client ("," client)*
client : name ":" location phone_number? 
location : "Amsterdam" | "Delft"
name : CNAME
phone_number : NUMBER
%import common.CNAME
%import common.NUMBER
%import common.WS
%ignore WS
"""

WHAT IS A VALID PROGRAM ACCORDING TO THIS GRAMMAR?
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grammar = """
start : client_list

client_list : client ("," client)*
client : name ":" location phone_number? 
location : "Amsterdam" -> amsterdam

| "Delft“ -> delft
name : CNAME
phone_number : NUMBER
%import common.CNAME
%import common.NUMBER
%import common.WS
%ignore WS
"""

program = """
Alice: Amsterdam 0621445680, 
Bob: Delft 0621445681, 
Charlie: Amsterdam, 
David: Delft
"""

Pretty printing 



LARK Transformer

LARK
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HOW DOES PARSER GENERATION WORK
IN LARK?

Date Month Year

EBNF 
grammar

Parser toolkit 
LARK Transformer

DSL Parser

Validation 

Generation

Written by the user 
Generated

Library
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HOW IS THE GRAMMAR USED IN LARK?

Date Month Year

grammar = …
program = …

#define the parser
parser = Lark(grammar, start='start', parser='lalr’)

#parse the input program into a tree
tree = parser.parse(program)

#print the tree
print(tree.pretty())



LET’S BUILD A DSL AND ITS 
GRAMMAR

Domain-Specific Languages (DSL)
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• Define the problem domain, scope and aim of the DSL: why do we 
design a DSL?

• Give a few examples of the DSL: what do the examples do?
• Design the DSL syntax: what makes the DSL syntax good? 
• Design the DSL grammar: what makes a grammar good?

HOW TO DESIGN A DSL?

Example-driven explanation 
A language for home security systems configuration
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• Example: A language for home security systems configuration

• We want to build a DSL to model and simulate a home security system

• We want to be able to describe various system configurations
– Th components: cameras and sensors located in different parts of the house

– Behavior of the system when an intrusion is detected in each location

• We want to validate the system model

• From a model, we want to generate parameters to configure a (simple) system 
simulator 

PROBLEM DOMAIN AND SCOPE: WHY DO WE DESIGN A DSL?

Date Month Year
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AN EXAMPLE OF A CONFIGURATION MODEL 

Date Month Year

program = """
SYSTEM { 

CAMERAS { living_room }
SENSORS { living_room bedroom }

}
SYSTEM_BEHAVIOR {

INITIAL idle
IN living_room {

idle -> record: motion_detection
record -> idle: deactivate

}
IN bedroom {

idle -> alarm_on: motion_detection
alarm_on -> idle: deactivate

}
}
COMPONENT_TO_STATE_MAP {

SENSORS: alarm_on record
CAMERAS: record

}""" 

What hardware is installed and in what room? 

What happens when a motion is detected in 
the  living room? 

…and in the bedroom? 

What hardware is used in the different 
states of the system? 
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1. Hierarchical Structure
– The DSL uses nested blocks (`SYSTEM`, `SYSTEM_BEHAVIOR`, `COMPONENT_TO_STATE_MAP`) to organise

related elements.

– This reflects a real-world system configuration.

2. Clarity and Readability
– Keywords like `SYSTEM`, `SYSTEM_BEHAVIOR`, and `COMPONENT_TO_STATE_MAP` make the DSL self-

explanatory and all in capital letters. Although improvements are possible. 

3. Concise Commands
– State transitions are expressed succinctly, such as `source_state -> target_state: event` (e.g.,`idle -> 

alarm_on: motion_detection`).

WHAT MAKES A DSL SYNTAX GOOD?

Date Month Year



WRITE A GRAMMAR FOR THE FOLLOWING DSL
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Think    Pair    Share

| choice
? optional
* zero or more times
+ one or more times
(…)   grouping 

program = """
SYSTEM { 

CAMERAS { living_room }
SENSORS { living_room bedroom }

}
SYSTEM_BEHAVIOR {

INITIAL idle
IN living_room {

idle -> record: motion_detection
record -> idle: deactivate

}
IN bedroom {

idle -> alarm_on: motion_detection
alarm_on -> idle: deactivate

}
}
COMPONENT_TO_STATE_MAP {

SENSORS: alarm_on record
CAMERAS: record

}""" 

Duration: take 10 minutes to discuss with your 
partner and then share with the others



Software Systems35 2022-2023

grammar = """
start: system (rules)? (maps)?

system: "SYSTEM" "{" (camera sensor | sensor camera) "}"
camera: "CAMERAS" "{" ID+ "}“
sensor: "SENSORS" "{" ID+ "}“

rules: "SYSTEM_BEHAVIOR" "{" rule+ "}"
rule: "INITIAL" ID -> initial | "IN" ID "{" action+ "}"
action: transition | transition ":" event
transition: ID "->" ID 
event: "after" NUMBER "second"

| ID 

maps: "COMPONENT_TO_STATE_MAP" "{" map+ "}" 
map: "SENSORS" ":" ID+

| "CAMERAS" ":" ID+ 

%import common.CNAME -> ID 
%import common.NUMBER
%import common.WS
%ignore WS 
"""

program = """
SYSTEM { 

CAMERAS { living_room }
SENSORS { living_room bedroom }

}
SYSTEM_BEHAVIOR {

INITIAL idle
IN living_room {

idle -> record: motion_detection
record -> idle: deactivate

}
IN bedroom {

idle -> alarm_on: motion_detection
alarm_on -> idle: deactivate

}
}
COMPONENT_TO_STATE_MAP {

SENSORS: alarm_on record
CAMERAS: record

}""" 



WHAT MAKES A GRAMMAR GOOD?
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Makes the DSL easier to understand and use.Clarity

Ensures reliable parsing and interpretation.Unambiguity

Promotes maintainability and reuse of grammar components.Modularity

Allows new features to be added without breaking existing rules.Extensibility

Avoids redundancy and keeps parsing efficient.Compactness

Validates domain-specific requirements directly in the grammar.Domain Constraints

Enhances readability and maintainability.Consistency



VALIDATION AND 
GENERATION

Domain-Specific Languages (DSL)
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THE LARK TRANSFORMER (USES THE VISITOR DESIGN  PATTERN) 
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N5 N6N6

N1

N2 N4N3

The Visitor Pattern lets you separate algorithms from the 
objects they operate on. 

Think of it as an inspector visiting different parts of your 
code structure depth-first.

Class MyTransformer (Transformer):
start(): new_process()

Class Transformer:
start() : pass
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THE LARK TRANSFORMER (REAL EXAMPLE) 

Date Month Year

# Pretty-printer transformer
class PrettyPrinter(Transformer):

def start(self, items):
system, rules, maps = items
return f"{system}\n{rules}\n{maps}"

def system(self, items):
camera, sensor = items
return f"SYSTEM:\n {camera}\n {sensor}"

…

Inherit from the base Transformer

Has a method for 
each grammar rule

Each method 
signature takes self 
(the transformer 
class) and items (the 
children of the 
current transformed 
rule) as input 
parameter

def __default__(self, data, children, meta):
return " ".join(children)

pretty_printer = PrettyPrinter()
result = pretty_printer.transform(tree)
print(result)

__default__ 
method for all the
rules for which
the base 
Transformer is not
overwritten
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• Semantic Validation: Checking the correctness of the DSL.

• Error Handling: Providing context-aware feedback for invalid DSL constructs.

• Editor support: Highlighting and formatting the code in an editor.

• Output generation: Converting the parse tree into meaningful outputs, such as 
configuration files, executable code, or other usable formats.

• We’ll give two examples: semantic validation and Output generation

WHAT CAN WE DO WITH A TRANSFORMER?

Date Month Year
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SEMANTIC VALIDATION

Date Month Year

def check(program, grammar):

class ExtractData(Transformer):
def camera(self, rooms):

return {"cameras": rooms}

def sensor(self, rooms):
return {"sensors": rooms}

…

parser = Lark(grammar, parser='lalr’,
transformer=ExtractData())

data = parser.parse(program)

# Extracted data
system = data[0]
rules = data[1]
maps = data[2]["maps"]
cameras = system["cameras"]
sensors = system["sensors"]

# Validation checks pseudo-code

room = all the room names

1. if room not in cameras or sensors:
2. errors(f"{room}’ not declared.") 

1. if "record_video" in a room not in cameras:
2. errors(f"Action 'record_video' not 
allowed.")

# Run the check
check(program, grammar)

Live demo
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CODE GENERATION

Date Month Year

class SystemRulesTransformer(Transformer):
def __init__(self):

…
def system(self, items):

cameras, sensors = items
self.sys.extend(cameras + sensors)
return items

…
System: ['living_room_camera', 'living_room_sensor', 'bedroom_sensor’] 
States: {'alarm_on_bedroom', 'record_living_room', 'idle’} 
Transitions: {('idle', 'motion_detection_living_room'): 'record_living_room', 
('record_living_room', 'deactivate'): 'idle', ('idle', 'motion_detection_bedroom'): 
'alarm_on_bedroom', ('alarm_on_bedroom', 'deactivate'): 'idle’} 
State to Elements: {'alarm_on_bedroom': ['bedroom_sensor'], 'record_living_room': 
['living_room_sensor', 'living_room_camera']}

Live demo



CLOSING REMARKS

Domain-Specific Languages (DSL)
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HAVE YOU REACHED THE OBJECTIVES?
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• How many of you knew about Domain-specific languages before today?

• Do you understand the purpose and application areas of domain-specific 
languages?

• Do you feel capable of explaining the concepts and notations of formal grammar 
and parsing?

• Could you start designing basic DSLs to model software systems?



REFLECTION DOCUMENT
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• Contents:

• Formulate your informed view on Model-Based Development for Software Systems

• Motivate this view based on your experiences in this course

• (Optional) You may relate it to other (properly-referenced) experience/information sources

• (Optional) You may relate it to your prior software development experiences

• Grading criteria:

• Showing an understanding of model-based development for software systems

• Providing an overarching view with supporting arguments (including your experiences in this 
course)

• Referencing all used sources (facts, experiences, etc.) in an appropriate way

• Note:  Individual assignment, to be submitted as PDF (Length:   1-page A4= 500 words)



MASTER INTERNSHIP 
POSSIBILITIES
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Date Month Year

SMART CYPHER QUERY GENERATOR

POSSIBLE TOPICS TO EXPLORE AROUND HYBRID 
SOLUTIONS COMBINING LLMS WITH DSLs:
1. Leveraging LLMs for Automated Code Analysis 

and Refactoring
2. Using LLMs to Ensure Requirements 

Compliance in Software Development
3. Using LLMs for program visualisation and 

understanding
4. Validating LLM-generated DSL code

If you are interested, contact me at:

rosilde.corvino@tno.nl

RENAISSANCE: CODE ANALYSIS AND RESTRUCTURING



MODELING FOR A SPECIFIC PURPOSE
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• In this course, we have focused on the following 3 modeling techniques:

• Unified Modeling Language (UML)    Use cases / Structure of System / Sequence of event 

• Finite-State Machines (FSM)     Behavior of System / Components / Interfaces

• Domain-Specific Languages (DSL)      Specific aspects of the structure or the behaviours



SEE YOU AT THE LAB 

Software Systems492022-2023


