

MODEL-BASED DEVELOPMENT:
INTRODUCTION

Date

Software Systems (Computer & Embedded System Engineering)

Rosilde Corvino

17-12-2024

Software Systems3

LECTURERS AND TEACHING ASSISTANTS

2022-2023

Rosilde Corvino (TNO-ESI) Guohao Lan (TU Delft) Pepijn Kremers (Teaching assistant)

Mission: Embedding cutting-edge methodologies into the Dutch high-tech
systems industry to cope with the ever-increasing complexity of their products

Philosophy:“the industry as a lab”

Partners:

4

Software Systems5

• At the end of the course, you should be able to:

• Explain some complexity challenges of software-intensive high-tech systems

• Explain the purpose of Model-Based Development, some of its principles and approaches

• For 3 specific modeling techniques: explain their purpose and the basic concepts and create basic
models

• Compare Model-Based Development with other methodologies

• Assessment:

• Modeling assignments for 3 modeling techniques (in groups of 2 students)

• Maximum of 2 points per assignment

• Reflection document on Model-Based Development (individual)

• Maximum of 4 points

OBJECTIVES OF THE COURSE

2022-2023

Software Systems6

AGENDA OF THE COURSE

2022-2023

Week 10Week 9
(21-1)

Week 8
(16 -1)

Week 8
(14-1)

Week 7
(9-1)

Week 7
(7-1)

Week 6
(19-12)

Week 6
(17-12)

DSL 1StateChart 1IntroductionLectures on
Tuesdays
(2 hours) DSL 2StateChart 2UML 1

1 DSL lec +
conclusion
3 DSL labs

StateChart1 UML
Lect
3 labs

Labs on
Thursdays
(4 hours)

DSL +
Reflection

StatechartUMLAssignment
due on
Friday

Title of reference7

• Identified by the banner:

• Instructions:

1. Divide into teams of two students

2. Discuss the solution to the quiz together

3. Volunteer or be asked to share

4. Points will be awarded for participation:

1. Every time you share during a game, you earn 0.3 points

2. You can earn up to a maximum of 1 additional point on the final note for this part of the course

3. Do not forget to write your name on the winners’ sheet after the lecture

QUIZ GAMES

Date Month Year

Think/Write  Pair  Share

Software Systems8

10 minutes Opening

15 minutes Complexity challenges in large-scale software systems

20 minutes Model-based development to manage the complexity

OUTLINE OF THIS LECTURE

2022-2023

COMPLEXITY CHALLENGES IN LARGE-SCALE
SOFTWARE SYSTEMS

9
2022-2023

Software Systems

Software Systems10

• Agree on the definition of the following terms:

• Embedded Systems

• Cyber-Physical Systems

• Software-Intensive Systems

• What kind of software-intensive cyber-physical systems do you know that contain embedded systems and
are from companies that are leaders in the Dutch high-tech systems industry?

• Duration: 5 minutes (3 minutes thinking and discussion with your partner)

WHAT TYPES OF SYSTEMS ARE WE TALKING ABOUT?

2022-2023

Think/Write  Pair  Share

Software Systems11

WHAT TYPES OF SYSTEMS ARE WE TALKING ABOUT?

2022-2023

#1

#1

#1

#1 #1
#1

Software Systems12

• Systems used during medical interventions:

• Minimally-invasive surgery

• Cardiac, vascular and neurological

• X-ray is used as “eyes of the surgeon”

• 1 or 2 X-ray planes (connected by a C-arm), consisting of:

• Tube: generates X-ray

• Detector: receives X-ray

• Table at which the patient lays

• Patient is positioned between the tube and detector

• User interface for the surgeon:

• Tablet to select the medical procedure

• Joysticks to move the table and C-arms

• 3-6 pedals to control the system during a medical procedure

• Screen to display visual images and video

MODELING ASSIGNMENT IS INSPIRED BY INTERVENTIONAL X-RAY SYSTEMS

2022-2023

Software Systems13

When you compile your list, consider that:

• Complexity means being challenging to grasp or not straightforward

• You can get some ideas by answering these questions:

• What makes such systems complex?

• What makes the software of such systems complex?

• What makes the design of such systems complex?

• What makes the design of the software inside such systems complex?

• Duration: 5 minutes (3 minutes thinking and discussion with your partner)

WHAT TO CONSIDER WHEN DEVELOPING SOFTWARE FOR COMPLEX CYBER-
PHYSICAL SYSTEMS?

2022-2023

Think/Write  Pair  Share

Software Systems14

• Multi-disciplinarity: closely related to physical systems and application domains

• Team effort: multiple development teams that evolve over time

• Highly-specialization: not many identical systems in the field

• Integration: interaction with other systems and humans (outside of your control)

• Large code bases: tens of thousands, or even millions, of lines of code (LOC)

• Long-lived code bases: embedded software evolves over decades

• Performance: quantitative performance criteria (hard real-time, competition)

• Dependability: non-functional requirements like availability, reliability, maintainability

WHAT TO CONSIDER WHEN DEVELOPING SOFTWARE FOR COMPLEX CYBER-
PHYSICAL SYSTEMS?

2022-2023

MODEL-BASED DEVELOPMENT TO
MANAGE THE COMPLEXITY

Software Systems15
2022-2023

Software Systems16

• A model is a simplified representation of a system used to:

• understand,

• analyze,

• or predict its behavior,

• often serving as a basis for code generation

WHAT IS A MODEL?

2022-2023

Title of reference17

MBD is a methodology, i.e., a structured set of methods, practices, and procedures used to achieve a specific
objective.

It provides a systematic way to plan, execute, and manage software development.

It ensures consistency, efficiency, and quality.

It combines principles, approaches, and techniques.

• Principles: fundamental truth guiding the methodology

• Approaches: strategies to deal with complexity

• Techniques: methods or procedures used to accomplish a particular task

MODEL BASED DEVELOPMENT

Date Month Year

Software Systems18

• “Keep it simple, stupid” (KISS)

• https://en.wikipedia.org/wiki/KISS_principle

• Most models work best if they are kept simple rather than made complicated

• Simplicity should be a key goal in design, and unnecessary complexity should be avoided

• “Don't repeat yourself" (DRY)

• https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

• Replace repetition of software patterns with abstractions and use data normalization (no variations)

MBD PRINCIPLES

2022-2023

Software Systems19

A. Abstraction: Identify high-level concepts that hide low-level details

• Architects design a building in terms of walls (instead of bricks)

• Aerospace engineers reason about processor instructions instead of individual transistors

B. Boundedness: Impose acceptable restrictions on the considered problem space

• Architects design a building for a specific set of usage scenarios (residential, industrial, retail)

• Aerospace engineers assume that airplanes do not need to be usable in outer space

C. Composition: Divide one problem into multiple independent smaller problems

• Architects design a new district in terms of buildings with separate foundations

• Aerospace engineers separate flight control from cabin control and in-flight entertainment

D. Duplication: Use multiple overlapping approaches for the same problem

• Architects use blueprints with multiple perspectives on the same building

• Aerospace engineers introduce fallback systems for safety-critical functionality

APPROACHES FOR DEALING WITH COMPLEXITY

2022-2023

Software Systems20

– Unified Modeling Language (UML): A standardized modeling language that includes various diagrams like class
diagrams, sequence diagrams, and use case diagrams to visualize the design of a system.

– Entity-Relationship Diagrams (ERD): Used to model the data structure of a system, showing entities, attributes,
and relationships.

– Statecharts: Diagrams that represent the states and transitions of a system, useful for modeling dynamic
behavior.

– Data Flow Diagrams (DFD): Illustrate how data moves through a system, showing inputs, processes, and
outputs.

– Flowcharts: Visual representations of the sequence of steps in a process or system.

– Domain-Specific Languages (DSL): Specialized languages tailored to specific aspects of a system, providing
higher abstraction and efficiency.

– Petri Nets: Used for modeling concurrent systems, showing transitions and states in a graphical form.

EXAMPLES OF MODELING TECHNIQUES ARE

2022-2023

Software Systems21

• The software development lifecycle (SDLC) is a structured process for planning, creating, testing, and
deploying software applications.

SOFTWARE DEVELOPMENT LIFE-CYCLE

2022-2023

Requirements
analysis Design Implementation Testing Deployment Maintenance

•Stakeholder Identification
•Requirements Elicitation
•Documentation
•Analysis and Negotiation
•Validation and Verification

•High-Level Design:
components and interactions
•Detailed Design: algorithms,
data structures and interfaces
•Design documentation

•Coding
•Code Reviews
•Unit Testing

•Integration Testing
•System Testing
•User Acceptance Test

•Deployment Planning
•Deployment Execution
•Post-Deployment Verification

•Monitoring
•Bug Fixes
•Updates and Enhancements
•Documentation Update

Software Systems22

• Duration: 5 minutes (3 minutes thinking and discussion with your partner)

SDLC: WHERE ARE MODELING TECHNIQUES USED AND HOW?

2022-2023

Requirements
analysis Design Implementation Testing Deployment Maintenance

Think/Write  Pair  Share

Software Systems23

SDLC: WHERE ARE MODELING TECHNIQUES USED AND HOW?

2022-2023

Requirements
analysis Design Implementation Testing Deployment Maintenance

• DSL to capture domain-
specific requirements

• UML to capture system
architecture: components
and interactions

• Statechart: system
behavior

• UML: class diagrams
• DSL: code generation for

domain-specific modules,
e.g. middleware

• UML: use case diagram for
scenario-based testing

• Statechart: verify the
behavior of state
dependent modules

• UML: deployment diagram • DSL: for scripting code
restructuring

Software Systems24

MODELING FOR A SPECIFIC PURPOSE

2022-2023

