
Unified Modeling Language:

An Introduction

Guohao Lan

Embedded Systems Group

December 13th 2022

CESE4015 Software Systems

2CESE4015 Software Systems

Brief Intro

Guohao Lan,

Assistant Professor

Embedded Systems Group

Doing research in:

Mobile Computing, Eye Tracking, and
Deep Learning

3CESE4015 Software Systems

• At the end of the course, you should be able to:

– Understand:

• The purpose of UML (unified modeling language)

• Three categories of UML diagrams:

– Structural, behavioral, and interactional.

– When and how to apply basic UML diagrams to model software

systems.

• Assessment:

– Modeling assignments using UML diagrams. [Group of two]

– Reflection document on UML-based modeling. [Individual]

Learning objectives

4CESE4015 Software Systems

• Week 5 Lecture:
– Background of UML

– Use Case, Component, Deployment

• Week 5 Lab:
– Modeling with UML diagrams (part 1)

• Week 6 Lecture:
– Class, Sequence

• Week 6 Lab:
– Modeling with UML diagrams (part 2)

Agenda for UML

5CESE4015 Software Systems

• Slides materials are built from different sources:
– Slides created by Marty Stepp, CSE403 @ U Washington.

– UML Distilled, 3rd edition by Martin Fowler.

– The Unified Modeling Language Reference Manual, 2nd edition by James

Rumbaugh, Ivar Jacobson, and Grady Booch.

– Practical UML: A Hands-On Introduction for Developers by Randy Miller.

– IBM Rational Software Architect Documentation:

https://www.ibm.com/docs/en/rational-soft-arch/9.5

• Lab platform:
– PlantUML: https://plantuml.com/

– A tutorial will be given by TAs during the lab sessions.

Acknowledgements

https://www.ibm.com/docs/en/rational-soft-arch/9.5
https://plantuml.com/

6CESE4015 Software Systems

• Week 5 Lecture:
– Background of UML

– Use Case, Component, Deployment

• Week 5 Lab:
– Modeling with UML diagrams (part 1)

• Week 6 Lecture:
– Class, Sequence

• Week 6 Lab:
– Modeling with UML diagrams (part 2)

Agenda for UML

7CESE4015 Software Systems

Background

◼ Discussion:
➢ Did you use any models in the Rust part of the course?

➢ Could you understand of each other’s designs/codes easily?

Think → Pair → Share

8CESE4015 Software Systems

• What is the UML?

– It is a graphical design notation:

• More clear than natural language and code.

• Simplifies system design process and avoid a lot of details.

– Help communicating ideas about a system design.

– It is language and technology independent.

– It is a unified/standardized language.

Background (cont.)

◼ UML: A family of standardized graphical notations that
helps in describing and designing software systems at a
high level of abstraction.

9CESE4015 Software Systems

• UML is based on many earlier software design approaches:

– Evolving since 1990s and highly related to object-oriented programming:

• The Booch method, the Object-modeling Technique (OMT), the Object-oriented Software

Engineering (OOSE) and more.

• Driving force:

– Programming languages do not provide a high enough level of abstraction to

facilitate the design.

Background (cont.)

UML was adopted as a standard by the

Object Management Group (OMG)

Accepted by IOS as a standard and been

periodically revised.

10CESE4015 Software Systems

Why bother with the UML?

From the view of building construction:

A unified standard that can be understood by architects and builders.

UML is programming language and technology independent and is a

unified/standardized language that has been widely used.

11CESE4015 Software Systems

Why bother with the UML? (cont.)

From the view of building construction:

Providing different views (and levels of abstraction) of the design based
on the needs.

12CESE4015 Software Systems

Why bother with the UML? (cont.)

• Ways of using the UML:
– Three modes [1]:

• UML as sketch:

– Use UML to help communicate high-level aspects of a system.

• UML as forward engineering:

– Draw a complete UML diagram before you write codes. The design covers

sufficient design decisions for the programmer to code up.

• UML as reverse engineering:

– Build UML diagrams from existing code in order to help understand it.

[1] UML Distilled, 3rd edition by Martin Fowler

13CESE4015 Software Systems

Overview of UML Diagrams

Diagram

Structure Diagram

Class Diagram

Component Diagram

Composite Structure Diagram

Deployment Diagram

Object Diagram

Package Diagram

Behavior Diagram

Activity Diagram

Use Case Diagram

State Machine Diagram

Interaction

Diagram

Sequence Diagram

Communication Diagram

Interaction Overview Diagram

Timing Diagram

13 official diagram types

14CESE4015 Software Systems

Overview of UML Diagrams (cont.)

• Three types of diagrams:

– Structural diagrams:

• Emphasizes the static structure of the system and the things that must be

presented in the system, including objects, attributes, operations, components,

and relationships.

• Used extensively in documenting the architecture of the software systems.

Structure Diagram

Class Diagram

Component Diagram

Composite Structure Diagram

Deployment Diagram

Object Diagram

Package Diagram

15CESE4015 Software Systems

Overview of UML Diagrams (cont.)

– Behavioral diagrams:

• Focuses on the dynamic behavior of the systems and changes to the

internal states of objects.

– Behavior: how data moves; how does the system change in time;

how system behaves with different events.

• Interaction diagrams:

– Interaction: emphasize the flow of control, showing collaborations

among objects; how objects communicate;

Behavior Diagram

Activity Diagram

Use Case Diagram

State Machine Diagram

Interaction

Diagram

Sequence Diagram

Communication Diagram

Interaction Overview Diagram

Timing Diagram

16CESE4015 Software Systems

Overview of UML Diagrams (cont.)

Diagram

Structure Diagram

Class Diagram

Component Diagram

Composite Structure Diagram

Deployment Diagram

Object Diagram

Package Diagram

Behavior Diagram

Activity Diagram

Use Case Diagram

State Machine Diagram

Interaction

Diagram

Sequence Diagram

Communication Diagram

Interaction Overview Diagram

Timing Diagram

What will be covered:

17CESE4015 Software Systems

Use Case Diagram

Diagram

Structure Diagram

Class Diagram

Component Diagram

Composite Structure Diagram

Deployment Diagram

Object Diagram

Package Diagram

Behavior Diagram

Activity Diagram

Use Case Diagram

State Machine Diagram

Interaction

Diagram

Sequence Diagram

Communication Diagram

Interaction Overview Diagram

Timing Diagram

18CESE4015 Software Systems

Use Case Diagram (cont.)

◼ Use Case Diagram: a collection of actors, use cases, and their
associations that describes what a system does from the standpoint
of an external observer.

• What is the Use Case Diagram?

– It presents the users of the system and their interactions with the

system.

– Show high-level overview of relationship between use cases, actors,

and the system.

– Does not provide a lot of details.

19CESE4015 Software Systems

Use Case Diagram (cont.)

◼ Discussion:
➢ What do you see in this diagram?

➢ What are the elements in this diagram?

➢ What message(s) this diagram may try
to deliver?

Clinic management system

Think → Pair → Share

20CESE4015 Software Systems

Use Case Diagram (cont.)

• Common elements in the Use Case Diagram:

◼ Actor: a role that a user plays with respect to
the system. Actor could be a user or another
system that interacts with the current system.

❖ Stick figures that represents external users.

❖ Actors must be external objects that produce
or consume data.

❖ Actor is different from the concept of user –
a user can act as different actors.

Actor

21CESE4015 Software Systems

Use Case Diagram (cont.)

• Common elements in the Use Case Diagram:

◼ Use case: is a summary of scenarios that
describes the typical interaction between the
users of a system and the system itself.

❖ Horizontally shaped ovals

❖ Represent different uses/interactions that a
user might have.

❖ Typically represents system function.

Actor

Use case

22CESE4015 Software Systems

Use Case Diagram (cont.)

• Common elements in the Use Case Diagram:

◼ Association: communication between an actor
and a use case.

❖ A solid line between actor and user case.
[No arrow!]

◼ System boundary: a rectangle that separates
the system from the external actors.

❖ All use cases outside the boundary box are
outside the scope of the system.

❖ For large and complex systems, each
module may be the system boundary.

Actor

System boundary

Association
Use case

23CESE4015 Software Systems

• Use Case Relationship:

Use Case Diagram (cont.)

◼ Generalization: indicates one use case is a special kind of another.

❖ Represented by a directed arrow with a triangle arrowhead.
❖ Indicates a parent-child relationship between use cases.
❖ The child use case is connected at the base of the arrow, while the tip of the

arrow is connected to the parent use case.
❖ Generalization is used when we find two or more use cases that have

commonalities in behavior, structure, and purpose.

24CESE4015 Software Systems

• Use Case Relationship:

Use Case Diagram (cont.)

◼ Include: indicates one use case (the base use case) is using the functionality of
another use case (the inclusion use case).

❖ Represented by a directed arrow with dotted line.
❖ The stereotype “<<include>>” identifies the include relationship, where the base

use case includes the functionality of the inclusion use case.
❖ Include relation is used to support the reuse of functionality in a use-case model.

25CESE4015 Software Systems

• Use Case Relationship:

Use Case Diagram (cont.)

◼ Extend: specify that one use case (extension) extends the behavior of another use
case (base).
❖ Represented by a directed arrow with dotted line. The stereotype “<<extend>>”

identifies the extend relationship.
❖ The extension owns the extend relationship, and we can specify several extend

relationships for a single base use case.
❖ We use extend relationship to show:

❖ A use case is an optional system behavior.
❖ A use case is executed only under certain conditions.

26CESE4015 Software Systems

• An overall example:

Use Case Diagram (cont.)

Generalization

Include

Extend

Association

27CESE4015 Software Systems

Use Case Diagram (cont.)

• When to use the Use Case Diagram?

– To represent the system-user interactions.

– To define and organize the functional requirements of a system.

– Is typically used in the early phase in system design.

28CESE4015 Software Systems

Component and Deployment Diagrams

Diagram

Structure Diagram

Class Diagram

Component Diagram

Composite Structure Diagram

Deployment Diagram

Object Diagram

Package Diagram

Behavior Diagram

Activity Diagram

Use Case Diagram

State Machine Diagram

Interaction

Diagram

Sequence Diagram

Communication Diagram

Interaction Overview Diagram

Timing Diagram

29CESE4015 Software Systems

Component Diagram

◼ Component Diagram: divides a complex system into multiple components
and shows the inter-relationships between the components.

◼ The term ‘component’: a module of classes that represents independent
system or subsystem with the ability to interface with the rest of a more
complex system.

• What is the Component Diagram?

– Component diagram is useful to:

• Show the system’s physical structure.

• Show the system’s static components and their relations .

30CESE4015 Software Systems

Component Diagram (cont.)

• Common elements in the diagram:

◼ Component: represents a modular part of a system that encapsulates its contents.
It can be represented by different ways:

❖ A rectangle with the stereotype <<component>> and/or icon.

❖ A rectangle with the component icon.

❖ A rectangle with the name of the component.

31CESE4015 Software Systems

Component Diagram (cont.)

• Common elements in the Component Diagram:

◼ Assembly:

❖ Provided interface: symbols with a complete circle at the end represent an
interface

❖ Required interface: symbols with a half circle at the end represent an interface
that the component requires.

Provided Interface
Required interface

32CESE4015 Software Systems

Component Diagram (cont.)

• Common elements in the Component Diagram:

◼ Dependency:

❖ Indicates that the functioning of one element depends on the existence of
another element. (Thinking about the #include statement)

Dependency

33CESE4015 Software Systems

Component Diagram (cont.)

Think → Pair → Share

◼ Discussion:
➢ What are the differences between the following two diagrams?

➢ What are the differences between the use of assembly and dependency?

Dependency

Assembly

34CESE4015 Software Systems

Component Diagram (cont.)

• Differences between dependency and assembly:

◼ Dependency:

❖ Is a classifier-level relation between components

◼ Assembly:

❖ Is an instance-level relation between two instances of a class (object) that
established in the run-time of the system.

• Dependency between two components on the classifier level expresses a potential
assembly relationship between the two corresponding instances in system run-time.

35CESE4015 Software Systems

Component Diagram (cont.)

• Differences between dependency and assembly:

• Dependency between two components on the classifier level expresses a potential
assembly relationship between the two corresponding instances in system run-time.

• They are modeling the system at different abstraction

Dependency

Assembly

36CESE4015 Software Systems

Component Diagram (cont.)

• Common elements in the Component Diagram:

◼ Group and package:

37CESE4015 Software Systems

Deployment Diagram

◼ Deployment Diagram: a type of structural diagram that shows a
system’s physical layout, revealing which pieces of software run on
what pieces of hardware.

• What is the Deployment Diagram?

– It shows the physical deployment of the software elements.

– It illustrates the runtime processing for hardware.

– It provides the topology of the hardware system.

38CESE4015 Software Systems

Deployment Diagram (cont.)

• Modeling a wireless sensor node:

Node

Connection

39CESE4015 Software Systems

Deployment Diagram (cont.)

• Another example:

Node
Dependency

Communication

40CESE4015 Software Systems

Closing remarks

• In the Lab session:

– Download and install PlantUML;

– Go over the tutorial for the use case and component diagrams:

• URL: https://software-fundamentals.pages.ewi.tudelft.nl/software-

systems/website/part-2/Tutorials/Summary.html

– Get familiar with the system mentioned in the modeling

assignments;

– Work on the component diagram for the modeling assignment.

https://software-fundamentals.pages.ewi.tudelft.nl/software-systems/website/part-2/Tutorials/Summary.html

	Introduction
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

	Motivation&Background
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

	Use Case
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

	Component and delpoyment diagrams
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

