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• At the end of the course, you should be able to:

– Understand:

• The purpose of UML (unified modeling language)

• Three categories of UML diagrams:

– Structural, behavioral, and interactional.

– When and how to apply basic UML diagrams to model software 

systems.

• Assessment:

– Modeling assignments using UML diagrams.      [Group of two]

– Reflection document on UML-based modeling.   [Individual]

Learning objectives
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• Week 5 Lecture:
– Background of UML

– Use Case, Component, Deployment

• Week 5 Lab:
– Modeling with UML diagrams (part 1)

• Week 6 Lecture:
– Class, Sequence

• Week 6 Lab:
– Modeling with UML diagrams (part 2)

Agenda for UML
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• Slides materials are built from different sources:
– Slides created by Marty Stepp, CSE403 @ U Washington.

– UML Distilled, 3rd edition by Martin Fowler.

– The Unified Modeling Language Reference Manual, 2nd edition by James 

Rumbaugh, Ivar Jacobson, and Grady Booch.

– Practical UML: A Hands-On Introduction for Developers by Randy Miller.

– IBM Rational Software Architect Documentation: 

https://www.ibm.com/docs/en/rational-soft-arch/9.5

• Lab platform:
– PlantUML: https://plantuml.com/

– A tutorial will be given by TAs during the lab sessions.

Acknowledgements

https://www.ibm.com/docs/en/rational-soft-arch/9.5
https://plantuml.com/
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• Week 5 Lecture:
– Background of UML

– Use Case, Component, Deployment

• Week 5 Lab:
– Modeling with UML diagrams (part 1)

• Week 6 Lecture:
– Class, Sequence

• Week 6 Lab:
– Modeling with UML diagrams (part 2)

Agenda for UML
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Background

◼ Discussion: 
➢ Did you use any models in the Rust part of the course?

➢ Could you understand of each other’s designs/codes easily? 

Think → Pair  → Share
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• What is the UML?

– It is a graphical design notation:

• More clear than natural language and code.

• Simplifies system design process and avoid a lot of details.

– Help communicating ideas about a system design.

– It is language and technology independent.

– It is a unified/standardized language.

Background (cont.)

◼ UML: A family of standardized graphical notations that 
helps in describing and designing software systems at a 
high level of abstraction.
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• UML is based on many earlier software design approaches:

– Evolving since 1990s and highly related to object-oriented programming:

• The Booch method, the Object-modeling Technique (OMT), the Object-oriented Software 

Engineering (OOSE) and more.

• Driving force:

– Programming languages do not provide a high enough level of abstraction to 

facilitate the design.

Background (cont.)

UML was adopted as a standard by the 

Object Management Group (OMG)

Accepted by IOS as a standard and been 

periodically revised.



10CESE4015  Software Systems

Why bother with the UML?

From the view of building construction:

A unified standard that can be understood by architects and builders.

UML is programming language and technology independent and is a 

unified/standardized language that has been widely used.
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Why bother with the UML? (cont.)

From the view of building construction:

Providing different views (and levels of abstraction) of the design based 
on the needs.
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Why bother with the UML? (cont.)

• Ways of using the UML:
– Three modes [1]:

• UML as sketch:

– Use UML to help communicate high-level aspects of a system.

• UML as forward engineering:

– Draw a complete UML diagram before you write codes. The design covers 

sufficient design decisions for the programmer to code up.

• UML as reverse engineering:

– Build UML diagrams from existing code in order to help understand it.

[1] UML Distilled, 3rd edition by Martin Fowler
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Overview of  UML Diagrams

Diagram

Structure Diagram

Class Diagram

Component Diagram

Composite Structure Diagram

Deployment Diagram

Object Diagram

Package Diagram

Behavior Diagram

Activity Diagram

Use Case Diagram

State Machine Diagram

Interaction 

Diagram

Sequence Diagram

Communication Diagram

Interaction Overview Diagram

Timing Diagram

13 official diagram types
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Overview of  UML Diagrams (cont.)

• Three types of diagrams:

– Structural diagrams:

• Emphasizes the static structure of the system and the things that must be 

presented in the system, including objects, attributes, operations, components, 

and relationships.

• Used extensively in documenting the architecture of the software systems.

Structure Diagram

Class Diagram

Component Diagram

Composite Structure Diagram

Deployment Diagram

Object Diagram

Package Diagram
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Overview of  UML Diagrams (cont.)

– Behavioral diagrams:

• Focuses on the dynamic behavior of the systems and changes to the 

internal states of objects. 

– Behavior: how data moves; how does the system change in time; 

how system behaves with different events.

• Interaction diagrams:

– Interaction: emphasize the flow of control, showing collaborations 

among objects; how objects communicate; 

Behavior Diagram

Activity Diagram

Use Case Diagram

State Machine Diagram

Interaction 

Diagram

Sequence Diagram

Communication Diagram

Interaction Overview Diagram

Timing Diagram
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Overview of  UML Diagrams (cont.)

Diagram

Structure Diagram

Class Diagram

Component Diagram

Composite Structure Diagram

Deployment Diagram

Object Diagram

Package Diagram

Behavior Diagram

Activity Diagram

Use Case Diagram

State Machine Diagram

Interaction 

Diagram

Sequence Diagram

Communication Diagram

Interaction Overview Diagram

Timing Diagram

What will be covered:
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Use Case Diagram

Diagram

Structure Diagram

Class Diagram

Component Diagram

Composite Structure Diagram

Deployment Diagram

Object Diagram

Package Diagram

Behavior Diagram

Activity Diagram

Use Case Diagram

State Machine Diagram

Interaction 

Diagram

Sequence Diagram

Communication Diagram

Interaction Overview Diagram

Timing Diagram
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Use Case Diagram (cont.)

◼ Use Case Diagram: a collection of actors, use cases, and their 
associations that describes what a system does from the standpoint 
of an external observer.

• What is the Use Case Diagram?

– It presents the users of the system and their interactions with the 

system.

– Show high-level overview of relationship between use cases, actors, 

and the system.

– Does not provide a lot of details.
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Use Case Diagram (cont.)

◼ Discussion: 
➢ What do you see in this diagram?

➢ What are the elements in this diagram?

➢ What message(s) this diagram may try 
to deliver?

Clinic management system

Think → Pair  → Share
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Use Case Diagram (cont.)

• Common elements in the Use Case Diagram:

◼ Actor: a role that a user plays with respect to 
the system. Actor could be a user or another 
system that interacts with the current system. 

❖ Stick figures that represents external users.

❖ Actors must be external objects that produce 
or consume data.

❖ Actor is different from the concept of user –
a user can act as different actors.

Actor
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Use Case Diagram (cont.)

• Common elements in the Use Case Diagram:

◼ Use case: is a summary of scenarios that 
describes the typical interaction between the 
users of a system and the system itself. 

❖ Horizontally shaped ovals

❖ Represent different uses/interactions that a 
user might have.  

❖ Typically represents system function.

Actor

Use case
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Use Case Diagram (cont.)

• Common elements in the Use Case Diagram:

◼ Association: communication between an actor 
and a use case.

❖ A solid line between actor and user case. 
[No arrow!]

◼ System boundary: a rectangle that separates 
the system from the external actors. 

❖ All use cases outside the boundary box are 
outside the scope of the system.

❖ For large and complex systems, each
module may be the system boundary.

Actor

System boundary

Association
Use case
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• Use Case Relationship:

Use Case Diagram (cont.)

◼ Generalization: indicates one use case is a special kind of another. 

❖ Represented by a directed arrow with a triangle arrowhead. 
❖ Indicates a parent-child relationship between use cases.
❖ The child use case is connected at the base of the arrow, while the tip of the 

arrow is connected to the parent use case. 
❖ Generalization is used when we find two or more use cases that have 

commonalities in behavior, structure, and purpose.
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• Use Case Relationship:

Use Case Diagram (cont.)

◼ Include: indicates one use case (the base use case) is using the functionality of 
another use case (the inclusion use case).

❖ Represented by a directed arrow with dotted line. 
❖ The stereotype “<<include>>” identifies the include relationship, where the base 

use case includes the functionality of the inclusion use case.
❖ Include relation is used to support the reuse of functionality in a use-case model.
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• Use Case Relationship:

Use Case Diagram (cont.)

◼ Extend: specify that one use case (extension) extends the behavior of another use 
case (base).
❖ Represented by a directed arrow with dotted line. The stereotype “<<extend>>” 

identifies the extend relationship.
❖ The extension owns the extend relationship, and we can specify several extend 

relationships for a single base use case.
❖ We use extend relationship to show:

❖ A use case is an optional system behavior.
❖ A use case is executed only under certain conditions.
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• An overall example: 

Use Case Diagram (cont.)

Generalization

Include

Extend

Association
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Use Case Diagram (cont.)

• When to use the Use Case Diagram?

– To represent the system-user interactions.

– To define and organize the functional requirements of a system.

– Is typically used in the early phase in system design.



28CESE4015  Software Systems

Component and Deployment Diagrams

Diagram

Structure Diagram

Class Diagram

Component Diagram

Composite Structure Diagram

Deployment Diagram

Object Diagram

Package Diagram

Behavior Diagram

Activity Diagram

Use Case Diagram

State Machine Diagram

Interaction 

Diagram

Sequence Diagram

Communication Diagram

Interaction Overview Diagram

Timing Diagram



29CESE4015  Software Systems

Component Diagram

◼ Component Diagram: divides a complex system into multiple components
and shows the inter-relationships between the components.

◼ The term ‘component’: a module of classes that represents independent 
system or subsystem with the ability to interface with the rest of a more 
complex system. 

• What is the Component Diagram?

– Component diagram is useful to:

• Show the system’s physical structure.

• Show the system’s static components and their relations .
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Component Diagram (cont.)

• Common elements in the diagram:

◼ Component: represents a modular part of a system that encapsulates its contents. 
It can be represented by different ways:

❖ A rectangle with the stereotype <<component>> and/or icon.

❖ A rectangle with the component icon.

❖ A rectangle with the name of the component.
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Component Diagram (cont.)

• Common elements in the Component Diagram:

◼ Assembly:

❖ Provided interface: symbols with a complete circle at the end represent an 
interface

❖ Required interface: symbols with a half circle at the end represent an interface 
that the component requires.

Provided Interface
Required interface
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Component Diagram (cont.)

• Common elements in the Component Diagram:

◼ Dependency:

❖ Indicates that the functioning of one element depends on the existence of 
another element. (Thinking about the #include statement)

Dependency
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Component Diagram (cont.)

Think → Pair  → Share

◼ Discussion: 
➢ What are the differences between the following two diagrams? 

➢ What are the differences between the use of assembly and dependency?

Dependency

Assembly
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Component Diagram (cont.)

• Differences between dependency and assembly:

◼ Dependency:

❖ Is a classifier-level relation between components

◼ Assembly:

❖ Is an instance-level relation between two instances of a class (object) that 
established in the run-time of the system.

• Dependency between two components on the classifier level expresses a potential 
assembly relationship between the two corresponding instances in system run-time.
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Component Diagram (cont.)

• Differences between dependency and assembly:

• Dependency between two components on the classifier level expresses a potential 
assembly relationship between the two corresponding instances in system run-time.

• They are modeling the system at different abstraction 

Dependency

Assembly
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Component Diagram (cont.)

• Common elements in the Component Diagram:

◼ Group and package:
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Deployment Diagram

◼ Deployment Diagram: a type of structural diagram that shows a 
system’s physical layout, revealing which pieces of software run on 
what pieces of hardware.

• What is the Deployment Diagram?

– It shows the physical deployment of the software elements.

– It illustrates the runtime processing for hardware.

– It provides the topology of the hardware system.
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Deployment Diagram (cont.)

• Modeling a wireless sensor node:

Node

Connection
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Deployment Diagram (cont.)

• Another example:

Node
Dependency

Communication
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Closing remarks

• In the Lab session:

– Download and install PlantUML;

– Go over the tutorial for the use case and component diagrams: 

• URL: https://software-fundamentals.pages.ewi.tudelft.nl/software-

systems/website/part-2/Tutorials/Summary.html

– Get familiar with the system mentioned in the modeling 

assignments;

– Work on the component diagram for the modeling assignment.

https://software-fundamentals.pages.ewi.tudelft.nl/software-systems/website/part-2/Tutorials/Summary.html
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