
Unified Modeling Language:

An Introduction

Guohao Lan 

Embedded Systems Group

December 20th 2022

CESE4015  Software Systems



2CESE4015  Software Systems

• Week 5 Lecture:
– Background of UML

– Use Case, Component, Deployment

• Week 5 Lab:
– Modeling with UML diagrams (part 1)

• Week 6 Lecture:
– Class, Sequence

• Week 6 Lab:
– Modeling with UML diagrams (part 2)

Agenda for UML



3CESE4015  Software Systems

Class Diagram

Diagram

Structure Diagram

Class Diagram

Component Diagram

Composite Structure Diagram

Deployment Diagram

Object Diagram

Package Diagram

Behavior Diagram

Activity Diagram

Use Case Diagram

State Machine Diagram

Interaction 

Diagram

Sequence Diagram

Communication Diagram

Interaction Overview Diagram

Timing Diagram



4CESE4015  Software Systems

Class Diagram (cont.)

• Class diagram:

– Is a type of structural diagram:

• Emphasizes the static structure of the system and the things that must be 

presented in the system, including objects, attributes, operations, and 

relationships.

• Used extensively in documenting the architecture of the software systems.

Structure Diagram

Class Diagram

Component Diagram

Composite Structure Diagram

Deployment Diagram

Object Diagram

Package Diagram



5CESE4015  Software Systems

• What is a class diagram?

– It shows:

• The static properties and operations of classes and the constraints that 

apply to the way objects are connected.

– It does not show:

• How the classes are interacted.

• The implementation details.

Class Diagram (cont.)

◼ Class Diagram: describes the classes (types of objects) in 
the system and the various kinds of static relationships that 
exist among them. 



6CESE4015  Software Systems

• Difference between a Class and an Object?
– A class represents the type of the object and is a blueprint for an object.

– A class describes what an object will be, but it is not the object itself.

Class Diagram (cont.)

Class Object

Properties

Color

Height

Length

Weight

Functions

Sit

Eat

Shake

Run

Properties

Color: Flesh

Height: 15cm

Length: 30cm

Weight: 2kg

Create instance



7CESE4015  Software Systems

• Difference between a Class and an Object?
– A class represents the type of the object and is a blueprint for an object.

– A class describes what an object will be, but it is not the object itself.

– Object-Orientation “features” in Rust:

• Using traits to define shared behavior in an abstract way.

• Using struct to achieve the “purpose of class: 

• References: https://doc.rust-lang.org/book/ch17-02-trait-objects.html

• https://jimmco.medium.com/classes-in-rust-c5b72c0f0a4c

Class Diagram (cont.)

https://doc.rust-lang.org/book/ch17-02-trait-objects.html
https://jimmco.medium.com/classes-in-rust-c5b72c0f0a4c


8CESE4015  Software Systems

Class Diagram (cont.)

• Diagram of one class:

• Class name in top of the box

• Attributes should include all fields of the object

• Operations should not include inherited methods

◼ Class notation: contains three parts - class name, 
attributes, and operations.

Class name

Attributes

Operations



9CESE4015  Software Systems

Class Relationship (cont.)

• Class relationships:

◼ Generalization: an inheritance relationship
• Represents an “is-a” relationship

• A solid line with a hollow arrowhead that points from the child 
to the parent class.

• An important concept in object-oriented design.

• The ability of one class to inherit the identical functions or 
properties of another class.



10CESE4015  Software Systems

Class Relationship (cont.)

• Class relationships:

◼ Simple association:
• A solid line connects two classes.

• Different types of cardinality.



11CESE4015  Software Systems

Class Relationship (cont.)

• Class relationships:

◼ Aggregation: represents a “is part of” relationship
• A solid line with an unfilled diamond at the association end 

connected to the class of composite.

• Objects of Class A and Class B have separate lifetimes:

• The lifecycle of a part of Class is independent from the 
whole class’s lifecycle. 



12CESE4015  Software Systems

Class Relationship (cont.)

• Class relationships:

◼ Composition: represents a “is entirely made of” relationship
• A solid line with a filled diamond at the association end 

connected to the class of composite.

• Objects of Class A and Class B have the same lifetime.

• The lifecycle of a part of Class is dependent on the whole 
class’s lifecycle. 



13CESE4015  Software Systems

Class Diagram (cont.)

• Diagram of one class:

• Class name in top of the box

• Attributes should include all fields of the object

• Operations should not include inherited methods

◼ Class notation: contains three parts - class name, 
attributes, and operations.

Class name

Attributes

Operations



14CESE4015  Software Systems

Class Diagram (cont.)

• Class attributes:

– (1) Visibility:  

• + public: accessible to everything

• # protected: accessible to class, package, and subclasses

• - private: accessible to the class only

• ~ package (default): accessible to class and package

◼ Syntax:

visibility  name  :  data_type [multiplicity]  =  default_value



15CESE4015  Software Systems

Class Diagram (cont.)

• Class attributes:

– (2) Multiplicity:  

◼ Syntax:

visibility  name  :  data_type [multiplicity]  =  default_value



16CESE4015  Software Systems

Class Diagram (cont.)

• Class attributes:

– An example:  

◼ Syntax:

visibility  name  :  data_type [multiplicity]  =  default_value



17CESE4015  Software Systems

Class Diagram (cont.)

• Class operations:

– An example:

◼ Syntax:

visibility  name  (parameter-list) :  return-type



18CESE4015  Software Systems

Class Diagram (cont.)

• An example:



19CESE4015  Software Systems

• Short summary:

– When to use:

• Describes the structure of a system by showing its classes (operations 

and attributes) and the relationships among them.

• Useful in conceptual modeling of the structure of the system, and 

helpful in translating the models into programming code.

– It does not show:

• How the classes are interacted.

• The implementation details.

Class Diagram

◼ Class Diagram: describes the classes (types of objects) in 
the system and the various kinds of static relationships that 
exist among them. 



20CESE4015  Software Systems

Sequence Diagram

Diagram

Structure Diagram

Class Diagram

Component Diagram

Composite Structure Diagram

Deployment Diagram

Object Diagram

Package Diagram

Behavior Diagram

Activity Diagram

Use Case Diagram

State Machine Diagram

Interaction 

Diagram

Sequence Diagram

Communication Diagram

Interaction Overview Diagram

Timing Diagram



21CESE4015  Software Systems

Sequence Diagram (cont.)

– Sequence diagram:

• Focuses on the dynamic behavior of the systems and changes to the 

internal states of objects. 

• Interaction diagrams:

– Interaction: emphasize the flow of control, showing collaborations 

among objects; how objects communicate; 

Behavior Diagram

Activity Diagram

Use Case Diagram

State Machine Diagram

Interaction 

Diagram

Sequence Diagram

Communication Diagram

Interaction Overview Diagram

Timing Diagram



22CESE4015  Software Systems

Sequence Diagram (cont.)

◼ Sequence Diagram: an “interaction diagram” that 
models a single scenario execution in the system. The 
diagram shows how example objects interact with each 
other and the messages that are passed between them.

• What is the Sequence Diagram?

– Show high-level overview of relationship between use cases, actors, and 

the system.

– It is a behavioral diagram.

– Does not provide a lot of details.



23CESE4015  Software Systems

Sequence Diagram (cont.)

• Common elements in a sequence diagram:

◼ Participant: object that acts in the diagram.

◼ Squares with object type, optionally preceded by “name:”

◼ Object can be specify (with a name) or general (without a name to represent 
any object in that class).

Object with a name
Anonymous 

object

Object of an 

unknown class

Name syntax: <objectname>:<classname>



24CESE4015  Software Systems

Sequence Diagram (cont.)

• Common elements in a sequence diagram:

◼ Participant: object that acts in the diagram.

◼ Squares with object type, optionally preceded by “name:”

◼ Lifeline: represents the period of time that an object exists.

◼ Represented by dashed vertical line.

Object lifeline

Name syntax: <objectname>:<classname>



25CESE4015  Software Systems

Sequence Diagram (cont.)

• Common elements in a sequence diagram:

◼ Participant: object that acts in the diagram.

◼ Squares with object type, optionally preceded by “name:”

◼ Lifeline: represents the period of time that an object exists.

◼ Represented by dashed vertical line.

◼ Participants in the system take the responsibility in managing the data, processing the 
data, moving data around the system, handling requests, and many other operations.



26CESE4015  Software Systems

Sequence Diagram (cont.)

• Common elements in a sequence diagram:

◼ Activation: a thin rectangle on the lifeline that represents the period 
during which a participant is performing an operation (e.g., running 
its code or waiting for another participant’s method to finish).

Activated period of 

the Customer

Two activated periods 

of the Cashier



27CESE4015  Software Systems

Sequence Diagram (cont.)

• Difference between activation and lifeline?

◼ Activation: a thin rectangle on the lifeline that represents the period 
during which a participant is performing an operation (e.g., running 
its code or waiting for another participant’s method to finish).

◼ Lifeline: represents the time that an object (participant) exists.

Cashier is performing 

an operation

Cashier exists but is not 

performing any operation



28CESE4015  Software Systems

Sequence Diagram (cont.)

• Common elements in a sequence diagram:

◼ Message (method call): communication between participants.

◼ Synchronous message and return.

◼ If the caller sends a synchronous message, it must wait until it receives 
a response (message return) from the target. 

Synchronous message

Synchronous message return



29CESE4015  Software Systems

Sequence Diagram (cont.)

• Common elements in a sequence diagram:

◼ Message (method call): communication between participants.

◼ Asynchronous message: allows the sender to send additional messages 
while the original one is being processed.

Asynchronous 

messages



30CESE4015  Software Systems

Sequence Diagram (cont.)

• Common elements in a sequence diagram:

◼ Summary of different message conventions in UML:



31CESE4015  Software Systems

Sequence Diagram (cont.)

• Selection and loop:

◼ (opt) [condition]: the fragment executes only if the supplied condition is true;



32CESE4015  Software Systems

Sequence Diagram (cont.)

• Selection and loop:
◼ (loop) [condition or items to loop over]: the fragment may execute multiple 

times if the supplied condition is true;



33CESE4015  Software Systems

Sequence Diagram (cont.)

• Selection and loop:
◼ (alt) [condition]: alternative multiple fragments =  if / elseif/ else;



34CESE4015  Software Systems

Sequence Diagram (cont.)

• When to use the Sequence Diagram?

– To show the interaction between several objects within a single 

use case (usage scenario).

– To explore the logic of a use case.



35CESE4015  Software Systems

Closing remarks

• In the Lab session:

• Go over the tutorial for Class and Sequence diagrams. 

• Work on the Class and Sequence diagrams in the 

modeling assignment.


	Class diagram
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

	Sequence diagram
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35


