
Model-Based Development

Software Systems (Computer & Embedded Systems Engineering)

Arjan Mooij

January 2023 (week 8)

Modeling for a specific purpose

Software Systems2

• In this course we have focused on the following 3 modeling techniques:
• Unified Modeling Language (UML)

• Finite-State Machines (FSM)

• Domain-Specific Languages (DSL)

2022-2023

Techniques for dealing with complexity

Software Systems3

A. Abstraction: Identify high-level concepts that hide low-level details
• Unified Modeling Language: generic high-level concepts that ignore implementation details
• Finite-State Machines: generic concepts that hide language-specific implementation patterns
• Domain-Specific Languages: domain-specific application concepts instead of implementation details

B. Boundedness: Impose acceptable restrictions on the considered problem space
• Unified Modeling Language: limited to specific aspects of the system
• Finite-State Machines: limited to a specific aspect (behavior) of a component
• Domain-Specific Languages: limited to a specific domain aspect

C. Composition: Divide one problem into multiple independent smaller problems
• Unified Modeling Language: multiple views on the same system, and break-down using component diagrams
• Finite-State Machines: composite and orthogonal state machines (e.g., one per component)
• Domain-Specific Languages: (depending on the specific language)

D. Duplication: Use multiple overlapping approaches for the same problem
• Unified Modeling Language: multiple related views on the same system
• Finite-State Machines: simulation, verification and testing the generated code (to get correct code)
• Domain-Specific Languages: generating both code and tests (to be able to detect errors in the generators)

2022-2023

Unified Modeling Language (UML)

Model-Based Development

Software Systems4 2022-2023

Unified Modeling Language (UML)

Software Systems5

Examples of related languages:

• Unified Modeling Language (UML)
• OMG standard focused on software engineering

• 14 diagram types

• Systems Modeling Language (SysML)
• OMG standard focused on systems engineering

• 7 diagram types based on UML’s 14 diagrams types (sometimes with slightly different names)

• 2 new diagram types:
• Requirement diagram: requirements engineering (functional, performance and interface)

• Parametric diagram: performance analysis and quantitative analysis

• Informal box/arrow pictures
• Focused on general drawings

• No constraints whatsoever on the type of diagram

• Flexibility may look nice, but would the notation be understandable?

2022-2023

• Which alternatives do you know?

Unified Modeling Language (UML)

Software Systems6

Examples of related tools:

• PlantUML
• Command-line tool for single diagrams, integrated with many textual editors, models are easy to generate from a DSL
• Open source licenses, no commercial support

• Graphical UML editors
• Graphical editing of diagrams, (sometimes) with elements that can be used across multiple diagrams
• Code import and code generation (sometimes)
• Some specific tools:

• Enterprise Architect: proprietary license, commercial support by Sparx Systems (Australia)
• LucidChart proprietary license, commercial support by Lucid (USA)

• MagicDraw: proprietary license, commercial support by Dassault Systèmes (France)

• Modelio: open source licenses, commercial support by ModelioSoft (France)
• Rational Rhapsody: proprietary license, commercial support by IBM (USA)

• UML Designer: Eclipse Public License, commercial support by Obeo (France)

• General drawing tools (like Powerpoint / Visio)
• Graphical editing of diagrams, but no/limited specific UML support

➔ Note: different tools support different subsets of UML!

2022-2023

• Which tools do you know?
• Which features distinguish them?

Finite-State Machines (FSM)

Model-Based Development

Software Systems7 2022-2023

Finite-State Machines (FSM)

Software Systems8

Examples of related languages:

• Finite-State Machines (FSM)
• UML diagram type

• Activity diagram
• UML diagram type

• Focused on organizational workflows:

• Internal activities instead of triggered external events

• Concepts: choice (diamond) and concurrency (black bars)

• Business Process Model and Notation (BPMN)
• Similar to UML’s activity diagram

2022-2023

• Which alternatives do you know?

Finite-State Machines (FSM)

Software Systems9

Examples of related tools:

• YAKINDU Statechart Tools
• Graphical editing, but not linked to other UML views
• Simulator and code generator

• Cordis SUITE
• Graphical editing
• Simulator and code generator for PLC (Programmable Logic Controller)

• Graphical UML editors
• Graphical editing, linked to other UML views
• Usually no simulator nor code generator

• General drawing tools (like Powerpoint / Visio)
• Graphical editing, but no specific FSM support
• No simulator nor code generator

2022-2023

• Which tools do you know?
• Which features distinguish them?

Domain-Specific Languages (DSL)

Model-Based Development

Software Systems10 2022-2023

Domain-Specific Languages (DSL)

Software Systems11

Some examples:

• MetaEdit+ (graphical)
• Proprietary, commercial support by MetaCase (Finland)

• MetaProgrammingSystem (projectional editing: text and graphical)
• Apache 2.0 license, commercial support by JetBrains (Czech Republic)

• Rascal (textual)
• BSD license, commercial support by Swat.engineering (The Netherlands)

• Spoofax (textual)
• Apache 2.0 license, no commercial support (developed in PL group of TU Delft)

• Xtext (textual) and Sirius (graphical)
• Eclipse Public License, commercial support by TypeFox (Germany) and Obeo (France)

2022-2023

• Which tools do you know?
• Which features distinguish them?

2022-2023 Software Systems12

General-purpose Programming Language (GPL) → DSL
GPL advantages

• Many people already use them and know them (company can choose
many employees)

• Freedom, not limited to a specific domain

• Wide community that can help with problems

• (Generate only code)

GPL disadvantages

• Freedom to shoot yourself in the foot

• A lot hard to learn – More complicated, many features

• Really large code bases that are harder to maintain

• Much more about the system than the problem domain

DSL disadvantages

• You need to make it, so maybe not cost-effective if the problem is
simple enough

• May be a completely paradigm from what you are used to

DSL advantages

• Easy to express stuff, because you are so restricted

• Not bother to implement domain specific concepts

• Generate multiple artifacts (code, documents)

• Can be designed in a way that people outside the field (of
programming) can understand it

2022-2023 Software Systems13

General-purpose Programming Language (GPL) → DSL
GPL advantages

• …

GPL disadvantages

• …

DSL disadvantages

• …

DSL advantages

• …

2022-2023 Software Systems14

Comparison

General-purpose Programming Languages (GPL)
+ Wide range of application areas
+ Widely-used, well-known languages
+ Single off-the-shelf development tool

- Useable by programmers only
- Focus on technical implementation
- Difficult to avoid language abuse
- Limited set of early validation rules
- Compiler is difficult to customize

Domain-Specific Languages (DSL)
- Restricted to one application area
- Custom languages must be developed
- Extra development tool and build step

+ Also useable by non-programmers
+ Focus on domain requirements
+ Easy to control the possible use
+ More validation in application area
+ Generate many customized artifacts

=> In practice aim for a combination of GPLs and DSLs

Closing remarks

Model-Based Development

Software Systems15 2022-2023

Model-Based Development

Software Systems16

• Models-based development uses all four techniques for dealing with complexity:
• Abstraction: Identify high-level concepts that hide low-level details
• Boundedness: Impose acceptable restrictions on the considered problem space

• Composition: Divide one problem into multiple independent smaller problems

• Duplication: Use multiple overlapping approaches for the same problem

• General modeling goals:
• Speeding up software development of large complex systems

• Human understanding

• Early validation

• Code generation

• Automated testing

• Bridging the gap between application domain expertise and technical system realization

• Notes:
• Modeling is for a specific purpose; there exist many different types of models

• Modeling often helps you to detect important unclarities

2022-2023

Some other techniques

Software Systems17

• Control of continuous-time physical processes
• Simulation, Analysis, Coding, Verification

• Some tools:

• MATLAB Simulink

• Low-code/No-code
• Related to horizontal DSLs

• Some tools:

• Mendix

• Model Based Systems Engineering
• Collaboration and traceability across multiple related diagram types

• Some tools:

• Capella

• Cameo Systems Modeler

2022-2023

Objectives

At the end of the course, you should be able to:
• Explain some complexity challenges of software-intensive high-tech systems

• Explain 4 techniques for dealing with complexity

• Explain the purpose of Model-Based Development

• Compare Model-Based Development with other techniques

Assessment:
• Modeling assignments for 3 modeling techniques (in groups of 2 students)

• Reflection document on Model-Based Development (individual)

2022-2023 Software Systems18

Reflection document

Software Systems19

Contents:

• Formulate your informed view on Model-Based Development for Software Systems

• Motivate this view based on your experiences in this course
• (Optional) You may relate it to other (properly-referenced) experience/information sources
• (Optional) You may relate it to your prior software development experiences

Grading criteria:

• Showing understanding of model-based development for software systems

• Providing an overarching view with supporting arguments (including your experiences in this course)

• Referencing all used sources (facts, experiences, etc.) in an appropriate way

Note:

• Individual assignment, to be submitted as PDF

• Length: 1-2 pages A4 (= 500-1000 words)

2022-2023

